

Independent Sets in Corona Graphs

Carmen Ortiz , Mònica Villanueva

Abstract

The corona of two graphs G and H is the graph $G \odot H$ obtained by taking one copy of G; |V(G)| copies of H; and joining each vertex of the *i*-th copy of H to the *i*-th vertex of G. For general graphs, counting independent sets as well as maximal independent sets are $\#\mathcal{P} - complete$ problems. In this work, for a general graph H we determine the number of independent sets in $K_n \odot H$, $K_{1,n} \odot H$, $\overline{K_n} \odot H$ and $W_{1,n} \odot H$. We also establish the number of maximal independent sets of the corona graph $G \odot H$ of two general graphs G and H.

1 Introduction

G = (V, E) is a finite undirected connected graph with no multiple edges or self loops, vertex-set V(G) = V and edge-set E(G) = E. The neighbourhood of a vertex v in G is $N[v] = \{u \in V | (u, v) \in E\} \cup \{v\}$. For a positive integer n, the complete graph, the chordless path and the chordless cycle on n vertices are denoted by K_n , P_n and C_n , respectively. $K_{1,n}$ is the star tree with n pendant vertices. The wheel graph $W_{1,n}$ has a single vertex u connected to all vertices of an n-cycle.

²⁰⁰⁰ AMS Subject Classification: 05C69, 05C76.

Keywords and Phrases: independent sets, corona graphs.

A clique in a graph G is a maximal complete subgraph of G. An independent set of G is a subset S of V such that no two vertices are adjacent. $S \subseteq V$ is a maximal independent set (mis) if it is not properly contained in any other independent set of G. The number of mis of a graph G is $\mu(G)$. An independent set is maximum if it has maximum cardinality. The size of a maximum independent set of G is denoted by $\alpha(G)$.

A molecule can be modeled as a graph with vertices representing atoms and edges representing bonds. A topological index is associated with chemical compounds to predict some properties since there is a very close relation between chemical characteristics of many compounds and the topological structure of its molecular graph. The Merrifield-Simmons index is the number of independent sets of the associated molecular graph and it is correlated with the boiling point of the molecule [9].

The molecular graph of some chemical compounds is obtained as a corona graph. For example, cycloalkanes with a single ring [17]. Various topological indices of different corona graphs have been studied. The Merrifield-Simmons index of a caterpillar graph $P_n \odot K_1$ and a sunlet graph $C_n \odot K_1$ are determined by Reyhani et al. [14]. Wu et al. [16] studied this index for the corona graphs $P_n \odot K_2$ and $C_n \odot K_2$. Hamzed et al. [6] discussed the cases $C_n \odot H$ and $P_n \odot H$.

A Clar structure is a mis of the Clar graph of the corresponding benzenoid hydrocarbons [3]. This paper deals with benzenoid hydrocarbons whose Clar graphs are either paths or cycles.

Valiant [15] showed that the problem of counting the number of mis is $\#\mathcal{P} - complete$ for a general graph. Okamoto et al. [10] proved that the problem remains so even for chordal graphs. Li et al. [8] determined the largest number of mis among all *n*-vertex bipartite graphs with at least one cycle. Hujter and Tuza [7] and Chang and Jou [1] solved the problem for triangle-free graphs. Ortiz and Villanueva determined $\mu(G)$ of a caterpillar graph [11] and also of grid graphs [12].

In this work, we determine the number of independent sets of various corona graphs: $K_n \odot H$, $K_{1,n} \odot H$, $\overline{K_n} \odot H$ and $W_{1,n} \odot H$ where H is an

arbitrary graph. We establish the number of mis of $G \odot H$ as a function of the number of independent sets of G and the number of mis of H. In the special case of $C_n \odot K_1$ we show that its number of mis is given by the Fibonacci sequence. We build the independent graph (intersection graph of mis) and the clique graph (intersection graph of cliques) of $C_n \odot K_1$.

2 Preliminaries

The Fibonacci sequence is given by $F_0 = 0$, $F_1 = 1$ and the recurrence formula $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. The Lucas sequence is defined by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$.

Prodinger and Tichy [13] introduced the *Fibonacci number* f(G) of a graph G as the number of independent sets of G, not necessarily maximal, including the empty set. They proved the following results.

Lemma 2.1. The Fibonacci number of

- a) a complete graph is $f(K_n) = n + 1$ for $n \ge 1$,
- b) a chordless path is $f(P_n) = F_{n+2}$ for $n \ge 1$,
- c) a chordless cycle is $f(C_n) = L_n$ for $n \ge 3$,
- d) a star tree is $f(K_{1,n}) = 2^n + 1$ for $n \ge 1$,
- e) a wheel graph is $f(W_{1,n}) = f(C_n) + 1$ for $n \ge 3$.

Let $f_k(G)$ be the number of independent sets of size k of the graph G. We define $f_0(G) = 1$.

Lemma 2.2. a) $f_1(K_n) = n$ and $f_k(K_n) = 0$ with $n \ge 1$ and $k \ge 2$, b) $f_k(\overline{K_n}) = \binom{n}{k}$ with $1 \le k \le n$, c) $f_k(K_{1,n}) = \binom{n}{k}$ for $2 \le k \le n$ and $f_1(K_{1,n}) = n + 1$, d) $f_1(W_{1,n}) = 1 + f_1(C_n)$ and $f_k(W_{1,n}) = f_k(C_n)$ for $2 \le k \le \lfloor \frac{n}{2} \rfloor$.

Lemma 2.3. For $n \ge 2$ and $1 \le k \le \lceil \frac{n}{2} \rceil$, $f_k(P_n) = f_k(P_{n-1}) + f_{k-1}(P_{n-2})$ with $f_0(P_n) = 1$, $f_1(P_n) = n$, $f_2(P_n) = \binom{n-1}{2}$, $f_1(P_1) = 1$, $f_1(P_2) = 2$ and $f_2(P_2) = 0$.

Proof. Let $V(P_n) = \{v_1, v_2, ..., v_a, ..., v_b, ..., v_n\}$. If k = 1, we have n alternatives for choosing one vertex of P_n .

If k = 2, let $S = \{v_a, v_b\}$ with $1 \le a \le b-2 \le n-2$, be an independent set of P_n . Since v_a can be chosen in n-2 different ways then v_b has n-(a+1) options. Thus, $f_2(P_n) = \sum_{a=1}^{n-2} (n-(a+1)) = \frac{1}{2}(n-1)(n-2)$.

For $k \geq 3$, let S be an independent set of P_{n-1} having k vertices. S is also an independent set of P_n . If we consider an independent set R of P_{n-2} that has k-1 vertices, $R \cup \{v_n\}$ is an independent set of P_n .

Lemma 2.4. For $n \ge 3$ and $1 \le k \le \lfloor \frac{n}{2} \rfloor$, $f_k(P_n) = \binom{n-(k-1)}{k}$.

Proof. Applying induction on n we have that $f_k(P_{n-1}) = \binom{n-1-(k-1)}{k} = \binom{n-k}{k}$ and $f_{k-1}(P_{n-2}) = \binom{n-2-(k-2)}{k-1} = \binom{n-k}{k-1}$. By binomial coefficient property and Lemma 2.3, the result follows.

Lemma 2.5. For $n \ge 3$ and $1 \le k \le \lfloor \frac{n}{2} \rfloor$, $f_k(C_n) = f_k(C_{n-1}) + f_{k-1}(C_{n-2})$ with $f_0(C_n) = 1$, $f_1(C_n) = n$ and $f_2(C_n) = \frac{n(n-3)}{2}$.

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$. If k = 1, we have n alternatives for choosing one vertex of C_n .

If k = 2, let $S = \{v_a, v_b\}$ be an independent set of C_n with a + 1 < b. We have that v_a can be either v_1 or v_2 , ..., or v_{n-2} . If a = 1 then v_b has n - 3 options but if $a \neq 1$ then v_b has n - (a + 1) options. Thus, $f_2(C_n) = (n-3) + \sum_{a=2}^{n-2} (n - (a + 1)) = \frac{n(n-3)}{2}.$

For $k \geq 3$, let S be an independent set of C_{n-1} having k vertices. We have that S is also an independent set of C_n . Now consider an independent set R in C_{n-2} that has k-1 vertices. There are three cases:

-If $v_1 \in R$ and $v_{n-2} \notin R$ then $R \cup \{v_{n-1}\}$ is an independent set of C_n .

-If $v_1 \notin R$ and $v_{n-2} \in R$ then $R \cup \{v_n\}$ is an independent set of C_n .

-If $v_1 \notin R$ and $v_{n-2} \notin R$ then $R \cup \{v_n\}$ is an independent set of C_n . In this case $R \cup \{v_{n-1}\}$ is also an independent set of C_{n-1} and of C_n . But it has already been considered in $f_k(C_{n-1})$.

Lemma 2.6. For $n \ge 3$ and $1 \le k \le \lfloor \frac{n}{2} \rfloor$, $f_k(C_n) = \binom{n-k}{k} + \binom{n-(k+1)}{k-1}$.

Proof. Analogous to the proof of Lemma 2.4.

Lemma 2.7. The number of maximal independent sets of a) a complete graph is $\mu(K_n) = n$ for $n \ge 1$, b) [5] a path graph is $\mu(P_n) = \mu(P_{n-2}) + \mu(P_{n-3})$ for $n \ge 4$ with $\mu(P_1) = 1$ and $\mu(P_2) = \mu(P_3) = 2$, c) [5] a cycle graph is $\mu(C_n) = \mu(C_{n-2}) + \mu(C_{n-3})$ for $n \ge 6$ with $\mu(C_3) = 3$, $\mu(C_4) = 2$ and $\mu(C_5) = 5$, d) the complement of a complete graph $\mu(\overline{K_n}) = 1$ for $n \ge 1$, e) a star tree is $\mu(K_{1,n}) = 2$ for $n \ge 1$, f) a wheel graph is $\mu(W_{1,n}) = \mu(C_n) + 1$.

3 Independent Sets in Corona Graphs

Frucht and Harary [4] defined the corona of two graphs G and H as the graph $G \odot H$ obtained by taking one copy of G; |V(G)| copies of H and joining the *i*-th vertex of G to every vertex in the *i*-th copy of H.

Lemma 3.1 ([2]).

- a) For two disjoint graphs G and H: $f(G \cup H) = f(G) \cdot f(H)$.
- b) For a graph G and a vertex $v \in V(G)$: f(G) = f(G-v) + f(G-N[v]).

Theorem 3.1. Let H be an arbitrary graph. The number of independent sets of the graph $K_n \odot H$ is:

$$f(K_n \odot H) = f(H)^{n-1}[f(H) + n].$$

Proof. Let $G_n = K_n \odot H$ and $V(K_n) = \{v_1, v_2, ..., v_n\}$. Applying Lemma 3.1 to G_n , we have that $G_n - v_n = G_{n-1} \cup H^n$ and $G_n - N[v_n] = \bigcup_{i=1}^{n-1} H^i$ where H^i is the i-th copy of H, with i = 1, ..., n.

Thus $f(G_n) = f(H)f(G_{n-1}) + f(H)^{n-1}$ and the result follows.

Theorem 3.2. The number of independent sets of the graph $\overline{K_n} \odot H$ is $f(\overline{K_n} \odot H) = (f(H) + 1)^n$.

Proof. Direct consequence of Lemma 3.1.

Theorem 3.3. The number of independent sets of the graph $K_{1,n} \odot H$ is: $f(K_{1,n} \odot H) = f(H)^n + f(H)(f(H) + 1)^n.$

Proof. Let $G_n = K_{1,n} \odot H$ and $V(K_{1,n}) = \{u, v_1, v_2, ..., v_n\}$. Applying Lemma 3.1 to G_n we have that $G_n - v_n = G_{n-1} \cup H^n$ and $G_n - N[v_n] = H^u \cup [\bigcup_{i=1}^{n-1} (v_i \odot H^i)]$ where H^i is the i-th copy of H and H^u is the copy of H connected to the universal vertex u.

Thus, $f(G_n) = f(H)f(G_{n-1}) + f(H)(1 + f(H))^{n-1}$. This is equivalent to the recurrence equation: $X_n = kX_{n-1} + k(k+1)^{n-1}$ whose solution is $X_n = Ck^{n-1} + k[(k+1)^n - k^n]$ where k = f(H) and C = k(k+1).

Theorem 3.4. The number of independent sets of $G_n = W_{1,n} \odot H$ is: $f(W_{1,n} \odot H) = [f(C_n \odot H)]f(H) + f(H)^n.$

Proof. Let u be the universal vertex of $W_{1,n}$. By Lemma 3.1 we have that $G_n - u = (C_n \odot H) \cup H$ and $G_n - N[u] = H^1 \cup H^2 \ldots \cup H^n$. Therefore, the result follows.

Hamzed et al. [6] proved that

 $f(C_n \odot H) = f(P_{n-1} \odot H)f(H) + f(P_{n-3} \odot H)f(H)^2.$

4 Maximal Independent Sets in Corona Graphs

Theorem 4.1. Let |V(G)| = n and |V(H)| = m. The number of mis of the graph $G \odot H$ is:

$$\mu(G \odot H) = \sum_{k=0}^{\alpha(G)} f_k(G) \mu(H)^{n-k}.$$

Proof. Let S be an independent set of size k in G. For each vertex v_i in G such that $v_i \notin S$ consider a mis T^i of H^i . We have that $T = \bigcup_{\substack{i=1 \\ v_i \notin S}}^n T^i$ is

an independent set of $G \odot H$ because $T^i \cap T^j = \phi$ for $i \neq j$. Thus, $S \cup T$ is also an independent set in $G \odot H$. Moreover, $S \cup T$ is maximal. In fact, if we add a vertex $v_j \in V(G) \setminus S$ to $S \cup T$ then it is not an independent set since v_j is adjacent to every vertex of $T^j \subset T$. On the other hand, if we add a vertex $x \in H^i$ for some $i \in \{1, 2, ..., n\}$ such that $v_i \notin S$ then T^i is not maximal in H^i , a contradiction.

Since H has $\mu(H)$ mis and S has size k, there are $\mu(H)^{n-k}$ different sets that can be added to S. Furthermore, a set that contains one mis of every copy H^i is also a mis of $G \odot H$.

Table 1	summarizes	the number	r of mis	for some	particular	cases.

$G \searrow H$	K_m	P_m	C_m
K_n	$(n+m)m^{n-1}$	$(n+\mu(P_m))\mu(P_m)^{n-1}$	$(n+\mu(C_m))\mu(C_m)^{n-1}$
P_n	$\sum_{k=0}^{\left\lceil \frac{n}{2} \right\rceil} f_k(P_n) m^{n-k}$	$\sum_{k=0}^{\left\lceil \frac{n}{2} \right\rceil} f_k(P_n) \mu(P_m)^{n-k}$	$\sum_{k=0}^{\left\lceil \frac{n}{2} \right\rceil} f_k(P_n) \mu(C_m)^{n-k}$
C_n	$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} f_k(C_n) m^{n-k}$	$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} f_k(C_n) \mu(P_m)^{n-k}$	$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} f_k(C_n) \mu(C_m)^{n-k}$
$K_{1,n}$	$m^n + \sum_{k=0}^n \binom{n}{k} m^{n-k+1}$	$\mu(P_m)^n + \sum_{k=0}^n \binom{n}{k} \mu(P_m)^{n-k+1}$	$\mu(C_m)^n + \sum_{k=0}^n \binom{n}{k} \mu(C_m)^{n-k+1}$

Table 1: Number of Maximal Independent Sets of Corona Graphs.

In [11] it was proven that for $n \geq 1$: $\mu(P_n \odot \overline{K_m}) = F_{n+2}$ with $\mu(P_1 \odot \overline{K_m}) = 2$ and $\mu(P_2 \odot \overline{K_m}) = 3$.

The number of mis of $P_n \odot K_m$ satisfies $\mu(P_n \odot K_m) = m[\mu(P_{n-1} \odot K_m) + \mu(P_{n-2} \odot K_m)] \text{ for } m \ge 2; n \ge 3.$

5 Independent and Clique Graph of $G_n = C_n \odot K_1$

The intersection graph $\mathcal{I}(G)$ of all mis on G is called the *Independent* Graph of G.

Theorem 5.1. The Independent Graph of $G_n = C_n \odot K_1$ is a complete

graph with $\mu(G_n)$ vertices minus one edge if n is even and it is a complete graph if n is odd.

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$ and $R = \{r_1, r_2, ..., r_n\}$ with r_i the vertex of the i-th copy of K_1 . Given an independent set S of C_n , we have that $S \cup (R \setminus Adj_R(S))$ is a mis of G_n . If n is even, the only pair of disjoint mis in G_n is $\{v_1, r_2, v_3, ..., r_i, v_{i+1}, r_{i+2}, ..., r_n\}$ and $\{r_1, v_2, r_3, ..., v_i, r_{i+1}, v_{i+2}, ..., v_n\}$. But if n is odd there are no disjoint mis in G_n . In fact, since any mis of G_n contains at most $\frac{n-1}{2}$ vertices of the cycle C_n , it must contain at least $\frac{n+1}{2}$ vertices of R. Thus, any pair of mis has at least one common vertex in R.

The Clique Graph $\mathcal{K}(G)$ of G is the intersection graph of its cliques.

A chordless sun graph has vertex set $V(C_n) \cup V(R)$ such that $V(C_n) = \{v_1, ..., v_n\}$ induces a chordless cycle C_n and $R = \{r_1, ..., r_n\}$ is an independent set. Each vertex r_i is adjacent to v_i and $v_{(imodn)+1}$ for i = 1, ..., n.

Theorem 5.2. For $n \ge 4$, the Clique Graph $\mathcal{K}(G_n)$ of the corona graph $G_n = C_n \odot K_1$ is a chordless sun graph $S(C_n)$.

Proof. Every clique of G_n is isomorphic to K_2 . Let L_i be the clique induced by $\{v_i, v_{i+1}\}$ with $v_i, v_{i+1} \in V(C_n)$ for i = 1, ..., n - 1 and the clique L_n induced by $\{v_n, v_1\}$. Call M_i the clique induced by v_i and r_i . L_1 shares v_1 with M_1 and with L_n . For i = 2, ..., n - 1, L_i shares v_i with L_{i-1} and M_i . Moreover, L_i shares v_{i+1} with both L_{i+1} and M_{i+1} . Thus, G_n has 2n cliques such that their associated vertices in $\mathcal{K}(G_n)$ induce a chordless cycle C_n with n triangles, each one sharing an edge with C_n . Triangle T_i has vertices L_{i-1}, L_i and $M_i, i = 2, ..., n$ and T_1 has vertices L_1, L_n and M_1 .

6 Conclusions

We have determine the number of independent sets of various corona graphs. It can be deduced that $f_k(C_n) = f_k(P_n) - f_{k-2}(P_{n-1})$. We obtain recursive and combinatorial expressions for the number of independent sets with a given size of a chordless path P_n and a cycle C_n . It would be interesting to study the number of independent sets and to characterize the independent and the clique graph of other corona graphs.

References

- G. J. Chang and M. J. Jou, The Number of Maximal Independent Sets in Connected Triangle-free Graphs, Discrete Mathematics 197-198 (1999), 169–178.
- H. Deng and S. Chen, The Extremal Unicyclic Graphs with respect to Hosoya Index and Merrifield-Simmons Index, MATCH Commun. Math. Comput. Chem. 59 (2008), 171–190.
- [3] S. El-Basil, Binomial-combinatorial Properties of Clar Structures, Discrete Applied Mathematics 19 (1998), no. 1-3, 145–156.
- [4] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Mathematicae 4 (1970), no.3, 322–325.
- [5] Z. Füredi, The Number of Maximal Independent Sets in Connected Graphs, Journal of Graph Theory 11 (1987), 463–470.
- [6] A. Hamzeh, A. Iranmanesh, S. Hossein-Zadeh and M. A. Hosseinzadeh, *The Hosoya Index and the Merrifield-Simmons Index of Some Graphs*, Transactions on Combinatorics 1 (2012), no.4, 51–60.
- [7] M. Hujter and Z. Tuza. The Number of Maximal Independent Sets in Triangle-free Graphs, SIAM Journal on Discrete Mathematics 6(1993), 284–288.
- [8] S. Li, H. Zhang and X. Zhang, Maximal Independent Sets in Bipartite Graphs with at least One Cycle, Discrete Mathematics and Theoretical Computer Science 15 (2013), no.2, 243–258.
- [9] R. E. Merrifield and H. E. Simmons, Topological Methods in Chemistry (1989), Wiley, New York.
- [10] Y. Okamoto, T. Uno and R. Uehara, Counting the Number of Independent Sets in Chordal Graphs, Journal of Discrete Algorithms 6 (2008), 229–242.

- [11] C. Ortiz and M. Villanueva, Maximal Independent Sets in Caterpillar Graphs, Discrete Applied Mathematics 160 (2012), 259–266.
- [12] C. Ortiz and M. Villanueva, Maximal Independent Sets in Grid Graphs, International Transactions in Operational Research 24 (2007), 369-385.
- [13] H. Prodinger and R. F. Tichy, *Fibonacci Numbers of Graphs*, Fibonacci Quart. **20** (1982), no.1, 16-21.
- [14] M. H. Reyhani, S. Alikhani and M. A. Iranmanesh, Hosoya and Merrifield-Simmons Indices of Some Classes of Corona of Two Graphs, Transactions on Combinatorics 1 (2012), no.4, 1–7.
- [15] L. G. Valiant, The Complexity of Computing the Permanent, Theoretical Computer Science 8 (1979), 189–201.
- [16] S. Wu, J. Yang and H. Cheng, Merrifield-Simmons Index of the Corona of Two Graphs, South Asian Journal of Mathematics 2 (2012), no.3, 274–278.
- [17] I. G. Yero and J. A. Rodriguez-VelÃ_jzquez, On the Randic Index of Corona Product Graphs, ISRN Discrete Mathematics, Volume 2011, Article ID 262183, 7 pages. doi:10.5402/2011/262183.

Carmen Ortiz	Mónica Villanueva			
Industrial Engineering School	Informatic Engineering Depart-			
Universidad de Valparaiso	ment			
Chile	Universidad de Santiago de Chile			
carvic.ortiz@gmail.com	Chile			
	monica.villanueva@usach.cl			