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SOAP BUBBLES IN SPACE FORMS

Joao Lucas Marques Barbosa*®
Antonio Gervasio Colares *®

1. Introduction

It is known that the surface tension on a soap bubble in R forces the minimum
of its area among all surfaces bounding a region of the same volume. This
means that soap bubbles are stable solutions for a certain variational problem.
It is also well known, from our experience, that soap bubbles are spherical. But
this is far from being a precise mathematical formulation and answer to this
physical phenomenon.

In 1884, Schwarz proved that, among the compact surfaces embedded in R?
enclosing the same volume, the sphere has the least area. Probably, he was
the first to study the variational problem of minimizing the area preserving
the enclosed volume. In his famous notes [HH], H. Hopf pointed out that
immersed surfaces with constant mean curvature are critical points for that
variational problem, but he directed the attention of the readers of his notes
to the determination of all compact immersed surfaces with constant mean
curvature in R®. In 1973 R. Reilly [RR] retook Hopf’s idea and has shown that
hypersurfaces of R**! with constant r-mean curvature H, are critical points for

the variation problem of minimizing the functional
A= s am,
M

keeping the volume fixed, where S, = (") H, . Reilly also computed the second
variation formula for this problem. In 1984 J.L. Barbosa and M.P. do Carmo
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generalized Schwarz’s result in the class of immersed compact hypersurfaces in
R, They introduced the notion of stability and showed that spheres are the
only stable critical points of the variational problem of minimizing the area
functional keeping the volume constant.

Recently the notion of stability was extended to the functionals treated by
R. Reilly when the ambient space has constant sectional curvatures. Similar
results to the ones of Barbosa and do Carmo have been obtained by Barbosa -
do Carmo - Eschenburg [BCE], Alencar - do Carmo - Colares [ACC], Alencar -
do Carmo - Rosenberg [ACR] and Barbosa - Colares [BC1] and [BC2].

In this work we give an unified presentation of all the relevant results in this

subject; an overview of the stability problem for closed hypersurfaces.

2. Preliminaries

Let M"“(c) be an orientable simply connected complete Riemannian manifold
with constant sectional curvatures c. Represent by (.,.) its Riemannian struc-
ture and by D the associated connection form. Denote by dM a chosen globally

defined volume form of M.
 Let M™ be a compact connected orientable Riemannian manifold and z :
VI 7 () an isometric immersion. Choose a globally defined unit normal
vector field N along M and denote by A the second fundamental form of z,

associated to N, defined by
A=DN. (1)

At each point p € M, the eigenvalues of A, the principal curvatures of the im-
mersion, are represented by ki(p),...,kn(p). The elementary symmetric func-
tions S, of ky,...,k, are globally defined on M, by

det(t] — A) = 2(1 AT (2)

Symmetric functions provide examples of invariants associated to the immersion
and allow the definition of the r-mean curvatures as H, = S,/(}'). Another

set of invariants can be produced by the Newton transformations P., defined
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inductively by

PO = I
P. = S51-AP,_,. (3)
If e1,...,¢2, are the eigenvectors of A, we represent by A; the restriction of the

transformation A to the subspace normal to e; and by S.(A;) the r-symmetric
function associated to A;. It can be proved that €1,..., €y are, also, eigenvectors

of P,. Consequently, A and P, are simultaneously diagonalizable and
P,(e,-) = S,-(A,‘)e,' . (4)

In [RR] R. Reilly has shown that S, =constant is the Euler equation of a
variational problem. This matter will be central in the present work.

A variation of the immersion z is a differentiable map X : Ix M™ — Wﬂ(c)
such that, for each t € I = (—¢,¢), Xi(p) = X(¢t,p), p € M, is an immersion,
Xo = z, and X;|opm = z|am, where OM denotes the boundary of M™. The
balance of volume is the real function V : I — R defined by

t) = *dM .
V( ) /[o,t]xMX G

We decide to call it “balance of volume” because, for a compact closed hyper-
surface M in the Euclidean space, it measures the balance of volume of the
domain enclosed by M, from the time 0 to the time ¢. A variation is said to be
volume preserving if V(t) = 0.

For a general variation X, we denote by N, the unit normal vector field of
the immersion X; and, by dM;, the volume element of the metric induced on
M by X;. It can be proved that

%(th) = (=Si1f(t) + div(8Xx/0t)T)dM, , (5)

where f(t) = (0X/8t, N;), div stands for the divergence operator and (0x/0t)T
is the tangent component of §X/t. It is a standard result that

%V(t) = /M F(t)aM, . (6)
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3. Stability for S; = constant

For an isometric immersion £ : M® — R™*! of a compact manifold M™, we will

consider here the variational problem of minimizing the area functional

.A=/MdM, (7)

among volume preserving variations. This has been treated in [BC]. To deter-
mine the corresponding Euler equation, we use Lagrange’s multipliers rule, by

considering the operator
J(t) = A(t) + \V(2), (8)
where A is a constant to be determined, and compute its derivative.
Proposition 3.1. (First Variation Formula). For any variation of z,
J'(0) = /M(—s1 +k)fdM | 9)

where k is a constant.
As a consequence of this proposition, critical points of the above variational

problem are the immersions z with
S; = constant . (10)
We can say more, as shown in the following proposition.

Proposition 3.2. ([BC]). Under the above notation, the following are equiva-

lent statements:
(i) = has constant mean curvature;
(ii) A'(0) =0, for all volume preserving variations;

(i) J'(0) = 0, .for all variations.
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In order to know whether or not z is a local minimum, one has to consider

the second variation formula. By the first variation formula we have

J(t) = A(t) = /M(—Sl(t) + k) f(8)dM, , (11)

for the function f satisfying

/M Ft)aM, =0 .

Since at the point ¢ = 0 we have 5;(0) —k = 0, we just need to computer S;(0).
In [RR] it is proved that

Si=Af+]AIPf,

where || A||? is the square of the norm of the second fundamental form of z and

A is the Laplacian. Therefore, the derivative of ( 11) at t =0, is

n e s ! . 2 :
A'0) == [ SifdM == [ F(AF+]14 M
Thus, we have proved the following proposition.

Proposition 3.3. (Second Variation Formula). Let z : M™ — R"t! an isomet-
ric immersion with Sy constant. For volume preserving variations, the second

derivative of A at t = 0 is given by

A'0) == [ fAf+IAIPf)dM . (12)

Definition. Letz : M™ — R"*! be an isometric immersion with S; = constant.
We say that z is stable if A'(0) > 0, for any volume preserving variation.
The first result about stable submanifolds with constant S; was proved by

Barbosa and do Carmo.

Theorem 3.4. ([BC], 1984). Let z : M™ — R™! be an isometric immersion of
an orientable, compact without boundary, Riemannian manifold M™ with S, =

constant. Then, z is stable if and only if z(M™) is a hypersphere.
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Sketch of the proof. Assuming stability of the immersion, the proof is done

by considering the “test function”
f=n+(z,N)S:. (13)
Standard computation and stability then yields

0<— [ f(AF+IAPf)aM = [ (Sn—lAIaM <0, (14)

from where one concludes that the immersion is totally umbilic.

A first generalization of Theorem 3.4 was obtained four years later.

Theorem 3.5. ([BCE], 1988). Consider z : M™ — M (c), where M (c)
represents either S™*1(1) or H™*'(—1) and M™ is an orientable, compact with-
out boundary, Riemannian manifold. Assume z has constant Si. Then, z is

stable if and only if z(M™) is a geodesic sphere.

Here “stable” means the same as above. The formula of first variation is
also the same as (9). The second variation formula is the same as the one in
(12) with one more term involving the curvature ¢ of the ambient manifold.

This arises from the equation -
518) = Af + AP +enf

(see [RR]). In 1988, Heintz in [HE] obtained an unified and simple proof of
Theorems 3.4 and 3.5, by using estimates of the first eigenvalue of the Laplacian.

A survey on stability for S; =constant is given in [CM].

4. Stability for S; = constant

First, we seek a functional on M whose critical points are immersions with S; =

constant. Such functional turns out to be:

A = /M SidM . (15)
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This is going to be shown by the use of the first variation formula. We point

out that, for S; = constant, we used the functional
An=dl /M /M Sodl

with So = 1. Therefore, our choice is a natural generalization of the previous
one.
The first difficulty to work with (15) is in the computation of the first vari-

ation formula, which is given below.

Proposition 4.1. (First Variation Formula). Let z: M™ — R™*! be as above.
Set J1 = A; + kV. For any variation of z,

HO) = [ (=S:+ k)M, (16)

where k is a constant.

Proof. By ([BC2], Proposition 4.1)
S1(t) = A(f) + (5§ — 252)f + DiaxyayrSt -

Using this and (5) we get

A0) = [ [(S2-28)f + DyggyeSs

0X

+ Su(=51f +div(—;) 1AM
t
A
= /M[_zs2 f + DiggyrS1 + Sudiv( )T 1dM
= /M SpfdM |
where we have used that
1. 0X s O
D(%)TSl + SldlU(W)T = dzU(Sl('E)T) .

To finish the proof, just use (6).
This proposition says that critical points of this variational problem are the
immersions with S; = constant. An ‘analogous of Proposition 3.2 also holds

with the changes:
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1. S; in place of S ;
2. A; in place of A ;
3. Ji in place of J .

In order to decide whether or not the immersion is a local minimum we

compute the second variation formula.

Proposition 4.2. (Second Variation Formula). Let z : M™ — R be an

isometric immersion with Sy = constant. For volume preserving variations,
A1(0) = =2 [ [FIL(f) + (5152~ 353)f1dM . )
The proof uses that
Sy = Li(f) + (5152 — 383)f + D(ax/atyrSz + ¢(n — 1)1 f (18)
(see [BC2], Prop. 4.1), where L, is a second order operator given by
Li(f) = di( AV f), (19)

with P, = §;1— A, as in (3), and c is the curvature of the ambient space (which
vanishes in R"*!). This operator coincides with the Laplacian (up to a constant

factor) if M is umbilic; in fact, in this case
P =(n—k)I
and so
Ly(f) = (n — R)A(),

where k is the eigenvalue of A. This operator has appeared by the first time in
[CY].

This variational problem has been extended (in [ACC]) to the case when am-
bient space is Fﬂ(c). One uses the same functional A; and the first variation

formula (16), holds. On the other hand, formula (17) for the second variation

has one more term involving the curvature c of the ambient space, as follows:

A(0) = =2 [ JIa() + ($15:~355)f + eln = DS /M ,  (20)
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as one can see from (18).

Stability for this problem is defined as follows:

Definition. Let z : M" — ﬁnﬂ(c) be an isometric immersion with S; =
constant. We say that z is 1-stable if A(0) > 0, for any volume preserving

“variation.

Theorem 4.3. ([ACC], 1993). Let  : M™ — M"*'(c) be an isometric im-
mersion of an orientable, compact without boundary, Riemannian manifold M™
in FH(C), ¢ > 0, with S; = constant. When ¢ > 0 we further assume that
z(M™) is contained in an open hemisphere of S"™*'. Then, z is 1-stable if and
only if z(M™) is a geodesic sphere.

The proof begins by seeking a “test function” f with

jMfszo.

For Sy = constant in R™*!, Barbosa and do Carmo used the integrand of the
first Minkowski formula (13). Here, a natural candidate is the integrand of the

second Minkowski formula

f:

Since S; = constant, to compute L; f we must only compute L, S; and L, (z,N).

n —

1
) Sl-i-(.’l:,N)Sg.

This was done in [ACC]. The proof in R™*! is completed in a similar way as the
Barbosa - do Carmo’s proof for Theorem 3.4. For ¢ > 0, the proof is similar to
that of Theorem 3.5.

The case when the ambient manifold has curvature ¢ < 0 was left as an open
problem. As matter of fact, by that time, nobody knew even a formulation for
a variation problem that would give, as critical points, hypersurfaces with S, =

constant, r > 2, in the sphere or in the hyperbolic space.

5. Stability for S,,; = constant

Which are the immersed hypersurfaces with S,+1 = constant? A first answer is

the following theorem.
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Theorem 5.1. ([ACR], 1993). Let z : M™ — R™*! be an isometric immersion
of an orientable, compact without boundary, Riemannian manifold M™ with

S,41 = constant. Then, z is r-stable if and only if z(M™) is a sphere.

Here r-stable means that the immersion has S,4; = constant and further-
more A”(0) > 0, with respect to volume preserving variations, where A, is the
functional

A= /M S,dM (21)

defined by R. Reilly [RR]. In fact, the formulation of the problem of r-stability
in Euclidean spaces became natural after the paper of Barbosa and do Carmo.
The formulas for the first and second variation follow a precise pattern, as

we can see in the following comparative table.

In Rt

Jyy SodM

= Ju S1fdM

I HAS - (82 - 28;)f}dM

[ |

S) = constant j’(O)

A = f S1dM
Sy = constant A(0) = —2f SafdM
A1) = —2Yy F{Lf — (5152 355 fYdM
A = [y SdM
Sr4+1 = constant AL0) = —(r+1)[f; Sr1fdM
A0) = —(r+1) oy FALef = (S1Se41 = (r +2)Sr42f}dM
In S™'(1) and H™1(-1)
A = [, SodM
S; = constant A'(0) = —[3SifdM
A0) = —1h F{AF - (82— 285)f +enf}dM
Ay = f S,dM
S, = constant Aj(0) = Jiy SafdM
A{(0) = —2fo{L1f (5152 —3S3)f + c(n — 1)S1 f}dM
Aun 1 7
Sr+1 = constant Ac(0) = 7
AL(0) = 7
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Remark 1. We use that ||A||2 = S — 28, in ( 12) to get the above expression
of A”(0).

Remark 2. To compute A.(0), we use that
S,’. = Lr_l(f) + (SIS, - (7‘ + 1)Sr+1f + C(Tl —-r+ I)S -lf + D(ax/at)rsr (22)

(see [BC2], Prop. 4.1).
This was first proved by Reilly in [RR].

Remark 3. The expression for S],, is used to obtain the formula of A7(0),
where appears a second order operator L, (generalization of L; given in (19),
given by

L(f) = dio( BV ) ,

where P, is the Newton transformation defined in (3). The operator L, satisfies:
(i) Lo(f) = Af;
(i1) if Sy41 > 0, then L, is elliptic ((BC2], Prop. 3.2);

(iii) if ey,..., e, is an orthonormal basis of proper vectors of A (hence of P,),

then L, is elliptic if and only if (P,e;,e;) > 0, Vi.

To formulate the variational problem, with S,4; = constant, in $"*!(1) and
H™1(-1), we are going the define a functional A, ., on M, whose critical points
are hypersurfaces with S,4; = constant, for volume preserving variations.

We can not simply use the functional
A= [ S.aM,
M
given above for the Euclidean space. In fact, its derivation would give us
A(0) = —(r + 1)/M[S,+1f+ e(n —r +1)S,_1f)dM .

This involves also S,_;, and so S,4; = constant would not imply .4.(0) = 0.
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In [BC2] was proposed the functional
A= /M Fo(S1,53,...,5,)dM ,

where the functions F, are defined inductively by

FrF =1
B =5 (23)
F. = 5,+C(’“—’"1+1)Fr-2, 2<r<n-L

.

Observe that, for ¢ = 0, A, . coincides with A,. Consider the operator
Jrc(t) = Are(t) + AV(t), A = constant to be determined. (24)

Proposition 5.2. (First Variation Formula). Let z : M™ — Fﬂ(c) be an
isometric immersion of an orientable, compact, Riemannian manifold M™. For

any variation of z,
Fel0) = [ [+ DSrir + KlfdM (25)

where k is a constant.

Proof. For a volume preserving variation we claim that

A O) == +1) [ Sef()dM, .

Suppose ¢ = 0. By (22) and (5) we get

A0 = [ [(515; = (r +1)51)1(t) + DioxsonS-
+ S, (=S + div(dX/0t)T) f(t)]dM, .

Because

Diox/jonrSs + Srdio(0X/0t)T = div(S,(0X/0t)T) , (26)

the claim is proved for ¢ = 0.
Suppose ¢ # 0. Then, the terms of A . which involves ¢ can be written as
Ex d
> cd; [ MS;-zith + /M Sr-zia(th)] ) (27)

i=1
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where [7!] = the greatest integer less than ™1 and d; is a constant. By (22)
and (5) applied to (27) we obtain that the non-vanishing terms have the form

dd; /M{[—(r — 2+ 1)S_gip1 + e(r — 2 — 1)S,_3iy
+D(ox/otyrSr-2i) f () + Sr—2:div(0X/0t)T}dM, . (28)

But, the first two terms in (28) cancel with terms in
/M Ci—ld{_lsyl._z(‘-_l)dMg

and
/M i1 5] _gi41)dM, .

On the other hand, the last two terms of (28) also vanishes by (26) with S,_y;
in place of S,, proving the claim also for ¢ # 0.

To finish the proof of the proposition, we just add a term of the form

/M kf(t)dM, .

This proposition says that the critical points of the above variational prob-

lem are the immersions z for which
Sr4+1 = constant .

To decide whether or not z is a local minimum, we restrict ourselves to volume
preserving variation and compute A/ (0) at the point z. For such variations,

(1]
Jr,c - 'Ar,c'

Proposition 5.3. (Second Variation Formula). Let z : M™ — M"*'(z) be
an isometric immersion with S,4; = constant. Then, for volume preserving

variations,
AL(0) = ~(r+1) [ LS+ (S15rs1 = (r+2)Sw1a)f +e(n—r)S, ldM. (29)

The proof is a simple application of formulas (22) and (5).
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Definition. Let z : M™ — I\_/an(c) be an isometric immersion with S,y =

constant. We say that x is r-stable if A (0) > 0, for any volume preserving

variation of .

The theorem below has been proved by Alencar, do Carmo and Rosenberg
in [ACR] for ¢ = 0 and by Barbosa and Colares in [BC2], for ¢ # 0. Here,
M (c) is R, S™1(1) or H!(-1).

Theorem 5.4. (Alencar, Barbosa, do Carmo, Colares and Rosenberg, 1993).
Let 2z : M™ — M"H(c) be an isometric immersion of an orientable, compact
without boundary, Riemannian manifold, with S,41 = constant. If ¢ > 0 suppose
z(M™) is contained in an open hemisphere of S**1. Then, x is r-stable if and

only if z(M™) is a geodesic sphere.

Sketch of the Proof. The condition is sufficient. We use that, for umbilical

hypersurfaces,
L(f)=(7HRAS,
where k is the principal curvature; then, we follow the argument in [BCE].

The condition is necessary. We consider three cases.
CASE 1. Suppose M™*1(c) = R**!. We follow the proof in [ACR]. In terms of
H.=5/(}) ,
the second variation formula (29) becomes
A"(0) = /M —(r+1) = fL f + [(r + 1)e(r + 1) Hy 4z — ne(r) Hy Hopa] 2, (30)

where ¢(r) = (n —r)(}).

Choose as “test function” f, the first eigenfunction of L,: L.(f)+ A f =0,
A; being the first eigenvalue of L,. By hypothesis, S,4+1 = constant. Since M™
is compact, Sr41 > 0.

We will use that ([ACR], Corollary 1.2)

X Se(r)EGHERY (31)
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and equality holds when z(M™) is a sphere.
Suppose z is r-stable. Then, by (30) and (31), we get

/M [(r + D)e(r) B + (r + De(r + 1)Hyuz — ne(r) Hy Hopt]f2 > 0.

On the other hand, it can be proved that
HlHr+l 2 Hr+2 .
This applied to the integrand of (32) gives

r+2
[(r+ L)e(r)HH + (r+ 1)e(r + 1)Hpya — ne(r)hy Heyy
r+2
< (r 4+ De(r)(HA - HiHra0) <0,

because
r+2
r+

HyHeyy 2 HYfy

37

(32)

(33)
(34)

with equality at the umbilic points ([MR], Lemma 1). Therefore, ( 32) and (33)

implies that we must have equality everywhere, proving that z(M™) is a sphere.

CAsE II. Suppose z(M™) is containing an open hemisphere of S"t!(1) C R™*2,

Let U € R™*? be any constant vector and N an unit normal vector field to M™.

Consider the height functions
g=(N,U) and f=(s,U).

Then,
Lg=—(r+1)Srs1f —c(n—r)S,g

and, if S,4+; = constant,

er = _(Slsr+1 = (T + 2)SY‘+2)f - C(T‘ AT I)S,-+1g ’

Take No = [y NdM which is different from zero, and consider Up, Uy, . .

Uo = &y, fi = (N,Us) and g; = (=,Ui). Then

dM =0, i=1,....n+1.
M

Or) Un+l,
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Suppose z is r-stable. Then, by (29)

o
IN

n+1 .
-> /M fille fi + (51841 — (r + 2)Sr_+2)fi + (n —r)S, fildM
i=1

r+1 n+1

/M(r +1)3 Srpifigi — (n=r)S. > f}
i=1 =1

[+ DSeia(=fogo) = (n = )5, g8

/mgoLrgﬂ = —./M (PrnggO) < 0 3

IN

where the last equality comes from the ellipticity of L, . In particular, we
obtain:

Vg=0 = (z,Up) =go= constant ,

hence z(M™)is a geodesic sphere.

CasE III. Suppose M"H(c) = H™!(-1) C L™?. The proof in this case is

essentially the same as that of Case II, but we must start with T = [, zdM .

Remark 1. To prove the Euclidean case of Theorem 5.4 we could have used
Minkowski formula

n-—r
/M(msr + (2, N) Sr41)dM =0,

(see [MR]) to obtain the test function f = 2315, + Sr41 (z, N). But we would

have to compute both L,S,and L,S,;;. To see how hard it would be, it suffices
to consult the computation in [ACC] for L S;.

Remark 2. It is not known an unified proof of Theorem 5.4 which works for
Rrtl) §nt1(1) and H™H(-1).

Remark 3. In stability of closed hypersurfaces there is no loss of generality to
work with orthogonal variation (i.e., with (0X/8¢t)T = 0), by (5), (22) and (26).
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