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AN INTRODUCTION TO THE THEORY OF
BILINEAR COMPLEXITY

M. A. Shokrollahi*

1. Introduction

In the course of these notes we shall investigate the problem, how many arith-
metic operations are necessary to compute a finite set of multivariate poly-
nomials over a field. One can assign different weights to different arithmetic
operations; if, for example, large integers are involved in the computation, then
it makes sense to give more weight to the multiplication of these numbers than
to the addition. This stems from the fact that the best known algorithms for the
multiplication of two numbers having n binary digits require O(nlognloglogn)
operations [8], whereas addition of two such numbers requires only O(n) arith-
metic operations. On the other side, if only computations with small rational
numbers are involved, one should assign the same weight to addition and mul-
tiplication/division.

Different weightings of arithmetic operations lead usually to different theo-
ries. If, e.g., one wants to obtain the minimal number of additions necessary to
compute a set of polynomials, one often uses different tools than those necessary
for the study of the number of multiplications, say. The situation changes even
more if one is interested in both of these numbers at the same time, i.e., if one is
interested in the minimum (weighted) number of additions and multiplications
necessary to compute a set of polynomials.

Before making things more precise, it is useful to clarify the problem we are

interested in with the aid of some examples.

"This material was presented at the XII Escola de Algebra, in Diamantina (Brazil) in
August 1992.
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Example 1.1. (Multiplication of polynomials of degree 1)

Here we are interested in an algorithm, which, given a pair of polynomials
P =p1T + po and ¢ = q1z + qo over a field K, computes (the coefficiets of) their
product pq =: f = foz? + fiz + fo where

f! = P1q,
fi = p1g0 + poqu,
fo = pogo.

Furthermore, this algorithm should use the minimum number of arithmetic
operations. Since the coefficients of the polynomials p and q are not determined
a priori and since the algorithm we are interested in should work for every set
of coefficients in K, we can regard the coefficients as indeterminates over K :
Because of notational reasons, we change the variables pi to z; and g; to y;. The

computational problem is now to compute the set of polynomials

fz = 11,
fi = 2190 + zoy1,
fo = ZoYo,

using the least number of arithmetic operations.

Example 1.2. (Multiplication of complez numbers)

In this case, the problem is to give an algorithm to compute the product of
two arbitrary complex numbers ¢; = ¢, + 1y, and ¢, = z, + 1y,. Denote their
product by c3 = f; +if;. Then

fi = 2123 — 1y,

fr=zy2 + zay1.
Again, we can regard the coefficients of ¢; and c; as indeterminates over the
field R of real numbers. The computation problem is to give an algorithm
to compute the polynomials fi, f; € R[z1,z32,y1,7,], which uses the minimum

number of arithmetic operations.

Example 1.3. (Multiplication of 2 x 2-matrices)
Given two arbitrary 2 x 2-matrices X = (z;;) and Y = (y;;) over a field

K, compute their product Z = XY = (z;) using the minimum number of
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arithmetic operations. Applying the rules for matrix multiplication, the prob-
lem consists of computing the following set of polynomials over K using the

minimum number of arithmetic operations:
Zij = Tayij + Ty, 4,5 € {1,2}.

The problems introduced in the examples above may be stated in the fol-

lowing unified way:

Let zy,...,z, be indeterminates over a field K. Further let DR A —
K[zy,...,2,]. It is required to give an optimal computation of
fi,--., fm under the assumption that the elements of KU{z,,...,z,}

can be computed without any cost.

2. Computation Sequences and Multiplicative Complexi-
ty

The problem at the end of the last section cannot be attacked yet, since it is
by no means precisely stated. It is, for instance, not clear what is meant by a
computation. In this section we shall make the concepts introduced intuitively
in the last section more precise.

The following definition will clarify the concept of the “computation of poly-

nomials”.

Definition 2.1. Let z,,...,z, be indeterminates over the field K. A finite set
(51902 58) i K (1,005 z,) is called a computation sequence of length r if for
all p < r we have

Ju,,v, € K+ZKz;+ EKg,: 9p = UpVp OT g, = u,[V,,v, # 0.

i<s o<lp

If f1,..., fi are polynomials in Klz,,...,z,] and (91,---,9-) is a computation

sequence such that

{fi,.. i} CK+Y Kz;+ Y Kg,,

i<s p<r



38 BILINEAR COMPLEXITY

then we say that (gi,...,g,) computes the set {fi,..., i} over K. A compu-
tation sequence (gi,...,9-) is called division-free if, with the above notations,

each g, is of the form g, = u,v,.

The length of a computation sequence is a measure for the cost of this
sequence and hence may be used to define the concept of an optimal compu-
tation of a set of polynomials. But before going into details, let us say some
words about the problem of weighting arithmetic operations in the model of
computation induced by Definition 2.1. As is apparent from this definition, a

computation sequence (gi,...,9.) computes any finite set of polynomials in

K—l—zK:c,'-I-ZKgp.

i<s p<r

This means that scalar multiplications or K-linear combinations of polynomi-
als does not affect the cost of computation of these polynomials in the above
model. Only when two nonconstant polynomials in the above set are multi-
plied or divided, one needs a longer computation sequence. If we denote this
type of multiplications/divisions by essential multiplications/divisions' (as op-
posed to scalar multiplications, i.e., multiplications with elements of K), then
the length of a computation sequence equals the number of essential multi-
plications/divisions in this sequence. The weighting of arithmetic operations
is such that essential multiplications/divisions are weighted with 1 and scalar

multiplications are weighted with 0, as are additions and subtractions.

Definition 2.2. Let F := {f1,...,fi} C K[z,...,z,). A computation se-
quence of minimal length for F' is called an optimal computation for F. The
length of an optimal computation for F' is called the (non-scalar) complexity of
F and is denoted by Ly. /}(F). The length of an optimal division-free computa-
tion sequence for F is called the multiplicative complexity of F' and is denoted
by L.(F') or merely by L(F).

In the sequel, we shall denote essential multiplications by *.
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Note that we have suppressed the dependency of Ly.;y and L on the under-
lying field. See Example 2.6.

Example 2.3. (Multiplication of polynomials of degree 1)
We have already seen that computing the product of two polynomials of
degree one over K is equivalent to computing the set F = {fo, fi, f2} of poly-

nomials in K[z, z1,yo,y:] where
fo=zoy, fi =m0+ 2oy, fo=zy.

A possible computation.sequence for F is (91,...,94) where

g1 = Zo * Yo = fo,
g2 = Ty * Yo,
g3 = To * Y1,
ga =Ty %Y = fo.

Since f; = g, + g3, we have Li.py(F) < L(F) < 4.

Example 2.4. (Multiplication of complez numbers)

As we have seen, this problem is equivalent to compute the polynomials

fi=oza—yiys, fo =292+ 2ap
in R[z,23,91,9s). A possible computation sequence is (g1, ..., gs) where

91 = Ty * T3,
92 = Y1 *Ya,
g3 = Ty * Y,
g4 = T2 *Y1.

Since f; = g1 — g» and f, = g3 + g4, we have L{fi, f2}) <4

Example 2.5. (Multiplication of 2 x 2-matrices)

The problem is to compute the polynomials
fii = zay; + zayey, 1,7 € {1,2},
in K(z;,yi; | 1,5 € {1,2}]. A possible computation sequence is given by
Gijk 1= Tik * Ykj, 1,7,k € {1,2}.

Since fii= gij1 + gij2, we have L(f.] I 1,j € {1,2}) <8.
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Example 2.6. Usually, the complexity of a set of polynomials depends heavily
on the field K. Consider for instance the polynomial f := z? + z2 € R[z;, 7).
Let us compute the length Lg(f) of an optimal division-free computation se-
quence for f over R. We claim that Lg(f) > 2. Suppose not; then Lr(f) <1
and since f ¢ R + Rz; + Rz, we have Lr(f) = 1. Hence, there exist
a;,b;,c; € R,1=1,2,3 such that

:L‘f + :c§ = (a1 + biz1 + c1z2)(a2 + b2y + caz2) + a3 + bazy + caz,
Comparing coefficients we get
blbz = C1Cy = 1, blcz + C]bz =0.

This implies that (b;c;)? + 1 = 0, which is impossible (over R). Hence Lr(f) >

2. On the other hand, the computation sequence
g1 =21 % T1,g2 1= T2 * Ty

clearly computes f, i.e., Lr(f) = 2. What about Lg(f)? Note that over C
we have f = (z; + iz;)(z1 — izz), hence Lo(f) = 1. This result may also
be extended to any field: If K contains a primitive fourth root of unity, then
Lk(f) =1, otherwise Lx(f) = 2.

It may look strange that divisions may help when computing a set of poly-

nomials. The following example shows that this indeed may be the case.

Example 2.7. Consider the polynomial f = 23! over any field K. The follow-
ing computation sequence of length 7 computes f:

GUISTHT, Gr=gi1%T, gai=g1%0s, Gai=g3xg,

95 ‘= 9ga*gs, g6:=9s*gs, g7:=ge* g
since g7 = z®!. It can be shown that L(z®) = 7. On the other hand, computing
z%? by squaring z five times and then dividing z® by z gives a computation
sequence of length 6 for the computation of z3!. The division step thus gives a

better computation.
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We may ask how much divisions may help or even, whether there exist
_ classes of polynomials such that for their computation divisions do not help at
all?

This question has been answered by Strassen [10]. Before stating (a sim-

plified version of) his result, we need a definition.

Definition 2.8. Let z,,...,z, be indeterminates over the field K. A compu-
tation sequence (gy,...,g,) in K(z,,... 1 &,) 18 called quadratic if
» s
ViSrHu;,v;GZK:c.-: gi = uwv;.
=1

In this case we shall also write ((uy,v,),... s (e ) for{gs, - . -5 80)-

Theorem 2.9. (Strassen) Let K be an infinite field and F be a finite set of
quadratic polynomials in K|z, ..., z,). Then there ezists a quadratic computa-
tion sequence of length Ly. ;}(F) which computes F. In particular, Ly, j(F) =
L(F).

The reader may verify that the algorithms given so far for the multiplication
of polynomials, multiplication of complex numbers and multiplication of 2 x 2-

matrices, are all quadratic.

Example 2.10. Let us compute the multiplicative complexity of a single qua-
dratic polynomial, or equivalently, a quadratic form over a field K of charac-
teristic not equal to 2.

Let f be a quadratic form in n variables. It is well known (see the article of

T. Smith in this volume) that
f~zizo+- + T2p-1%2p + h(2T2pt1, ..., Tn)

where ~ is the usual equivalence of quadratic forms and h is the anisotropic
part of f. It is easily seen that the multiplicative complexity is constant on

equivalence classes of quadratic forms (this is left as an exercise), hence the



42 BILINEAR COMPLEXITY

above decomposition shows that L(f) < p+ (2n — p) = n — p, since b ~
Q2p4183,4y + *++ + anz? for suitable azpy1,...,an in K.

Now we want to prove that L(f) > n' — p which will show L(f) =n —p. To
this end, let a quadratic computation sequence ((u1,v1),. .., (u,,v,)) of length
r for f be given. Then f(z) = Z,T:l ui(z)vi(z). Let {uy = -+ = u, = 0} denote
the set of common zeros of uy, ..., u,. The dimension of this set is at least n—r,
since uj,...,u, are linear forms. Since this set clearly lies in the set of zeros of
f and the latter has dimension p by assumption, we obtain p > n — r, which
implies the assertion.

As a consequence we obtain L(z1z3 + -+ + Z2,-122,) = n and L(zi+.--+

z2) = [n]/2 over the field C of complex numbers.

We may still ask for simpler algorithms for computing quadratic polynomi-
als. To obtain these, we have to restrict ourselves to a subclass of quadratic

polynomials.

Definition 2.11. Let K be a field and zy,...,2,,v1,...,ym be indeterminates
over K. A polynomial p € K(zy,...,%.,¥1,...,Ym] is called bilinear (with
respect to z := (z1,...,2,) and y := (y1,...,Ym)) if

p(z,y) = Y aijziyj,
i

for some a;; € K.

Bilinear polynomials may be computed by simpler computation sequences

than quadratic ones.

Definition 2.12. Let K be a field and zy,...,2,,41,...,Ym be indetermi-
nates over K. A quadratic computation sequence ((u1,v1),...,(ur,v,)) in
K(zy,...,240,y1,...,Ym] is called bilinear if for all i = 1,.. ., the u;, resp. v;

are linear homogeneous in x,,...,z,, resp. Y1,...,Ym.
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For any finite set F' of bilinear polynomials over K there exists a bilin-
ear computation sequence which computes F: clearly, there exists by Theo-
rem 2.9 a quadratic computation sequence ((U, W1),...,(Ug, Vp)) for the com-
putation of F. Hence F C Y%, KU;V;. Now let for every i = 1,...,r
Ui =ui+ul, V; = v; + v} where u;, v; are linear homogeneous in z,...,z,
and u;, v; are linear homogeneous in vy, ...,y Then, since F' is a set of bi-
linear polynomials, we have F C i, Kuw; + YL, Kulv;. This shows that
((w1,1),. .., (uq, vg), (13, v1), = (ug,vq)) is a bilinear computation sequence for

F. The following definition thus makes sense.

Definition 2.13. Let F be a finite set of bilinear polynomials over K. The
minimum length of a bilinear computation sequence for F is called the bilinear

complexity (or rank) of F and is denoted by R(F).

Clearly, L(F) < R(F) for a set F of bilinear polynomials, since bilinear
computation sequences form a subset of quadratic computation sequences. But

the foregoing argumentation also shows the following.
Lemma 2.14. Let F be a finite set of bilinear polynomials over K. Then
L(F) < R(F) < 2L(F).
We finish this section with a couple of examples.

Example 2.15. (Multiplication of polynomials of degree 1)
We want to give an upper estimate for R = R(fo, f1, f2) where

fo==2oyo, f1=2zwo+ oy, fo=zy1.

The trivial algorithm leads to R < 4, as was shown before (It is easy to check
that the trivial algorithm is bilinear). The following computation sequence
shows that R < 3:

g1 = Zo * Yo = fo,

92 = (2o + 1) * (yo + y1),

g3 =T1 %Y1 = f.

Since fi = g, — g1 — g, the g; constitute a bilinear computation sequence for

{fo, f1, f2} of length 3.
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Example 2.16. (Multiplication of complez numbers)
Again, let
fi =2z — 91y, ‘ f2 = z1y2 + 22
be the bilinear polynomials corresponding to the multiplication of complex num-
bers. The computation sequence
g1 =z * (22 + ¥2)

g2 = y2 * (1 4+ y1)
gs = 22 % (y1 — 1)

computes { f1, f2}, since fi = g1 — g2 and f2 = g1 + gs. Hence R({fi,f2}) <3.

Example 2.17. (Multiplication of 2 x 2-matrices)

Let again f;; denote the bilinear polynomials corresponding to the multipli-
cation of 2 X 2-matrices. We have already seen that R({f;; | 1,7 =1,2}) < 8.
Consider the following computation sequence:

g1 = (T11 + T22) * (Y11 + ¥22) 92 = (Z21 + 22) * Y

g3 = 11 * (Y12 — Y22) ga = T2z * (—Y11 + ¥21)

gs = (Z11 + T12) * y22 g6 = (—211 + T21) * (Y11 + ¥12)
g7 = (T12 — T22) * (Y21 + ¥22)-

Since
fu=g1+91—9gs+9r fiz=9g3+9s

fr=g2+94 fr2=91— g2+ g3+ ge,
this sequence computes f;; over any field (even over any ring!). The corre-

sponding bilinear algorithm is known as Strassen’s matrix multiplication algo-
rithm [9]. The major point of this algorithm is that it is valid over any ring.
Hence one may interpret z;; and y;; as matrices over a field K and use the
algorithm recursively. This gives an algorithm for multiplying n X n-matrices
which uses asymptotically O(n'°827) = O(n?#°7%) multiplications (which is

better than the naive algorithm which needs O(n?) multiplications).

In the examples above we have only given upper bounds for the bilinear
complexities of the corresponding bilinear polynomials. The major problem is
now to give good or even matching lower bounds for these quantities. This will

be done in the next sections.
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3. Rank of Bilinear Mappings

Bilinear polynomials in (s + !) indeterminates over a field K can be viewed as

bilinear forms of the vector space K’ x K. Indeed, if

p(e1,...,Z0y Y1, 0) = Za.-,-:c,-yi
i
is a bilinear polynomial over K, then for the pair (e,...,e,) and
(€1,...,€) of natural bases of K*, resp. K, p induces a bilinear form ¢p de-
fined by ¢y(e;,€}) := a;;. Analogously, linear homogeneous polynomials in m
indeterminates may be viewed as linear forms of K™.

A sequence (z,...,2,) of bilinear polynomials (with respect to z,...,z,
and y1,...,y) over K induces a bilinear mapping of &: K* x K' — K™ by
requiring that the kth coordinate of & be equal to the bilinear form induced
by z,. In this way, bilinear polynomials induce bilinear mappings. It is also
possible to speak about bilinear algorithms for bilinear mappings. The next

definition makes this concept precise.

Definition 3.1. Let U,V, and W be finite dimensional vector spaces over the
field K and :U x V — W be a bilinear mapping. Denote by U*, resp. V*, the
dual spaces of U, resp. V. The bilinear complexity or rank R(®) of & is the
minimal number r such that there exist Uy, ..., € U*, vy,...,v, € V*, and

wy,...,w, € W, such that

VeeUyeV: &(z,y)= Zu,(:r iy

The proof of many results on the rank of bilinear mappings become more

transparent if one uses the terminology of tensors and tensor product.

Definition 3.2. A tensor product (U ® V,7) of U and V consists of a vector
space U @ V over K and a bilinear map 7:U x V — U @ V such that

(1) The K-span of the image of T equals U ® V,
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(2) (Universal mapping property) For every vector space W and every bilinear
map ®:U x V — W there erists a linear map ¢:U @ V — W such that
® = ¢r. '

While the uniqueness of the tensor product (up to isomorphism) follows
directly from the definition, the proof of the existence involves a certain con-
struction which can be read in any book on multilinear algebra or algebra (see,

e.g., [7]). It can be proved easily that the tensor product is associative, i.e.,
UQV)WxUR(VW)~UQVRW.

for K-spaces U, V, and W.
Let U, V,and W be K-spaces. The connection between the K-space Bil(U x

V,W) and tensor products is given by the following isomorphism.

Lemma 3.3. Bil(U XV, W)~ U*Q®@V*® W, where U* and V* denote the dual
spaces of U and V.

Proof. (Sketch) It can be proved that the homomorphism h:U* ® V* ®
W — Bil(U x V,W) defined by v* @ v* ® w — ((a,b) — u*(a)v*(b)w) is an

isomorphism [7]. O

To & € Bil(U x V, W) corresponds a unique tensor ¢t € U*®V*®W according
to Theorem 3.3. Further, if ®(a,b) = <, u,(a)v,(b)w, for all (a,b) € U x V,
we have in view of the above isomorphism & = Yp<r Up @ Vp @ w,. If we call an
element u@ v w € U* @ V* ® W a triad, we obtain that the rank of a bilinear
mapping & is the minimum number 7 such that the tensor corresponding to &
can be represented as a sum of = triads. One can thus also speak of the rank
of a tensor in U* ® V* ® W. The rank of the bilinear mapping ® is sometimes
also called the tensor rank of ®. In the sequel we shall make frequent implicit

use of the above isomorphism and mix up tensors and bilinear mappings.

Example 3.4. Here we want to show that the rank of a bilinear mapping is

a generalization of the concept of the rank of a linear map. Let U and V be
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K-spaces. If ¢ € Bil(U x V, K), then for a € U the mapping ¢, which assigns
. to b € V the value @o(b) := ¢(a,d) is a linear form on V,ie., ¢, € V*. Then
Bil(U x V, K) ~ Hom(U, V*) under the isomorphism ¢ (hg: a — ¢,). We
claim that R(¢) = rk(hg), which shows that the rank of a bilinear map is a
generalization of the concept of rank of a linear map.

Suppose that ¢ = 2 p<r Up ® v, Where u, € U*, and v, € V*. Then for any

a € U we have

ho(a) = ¢a € 3 u,(a)v,,

p<r

hence tk (hy) < r. Thus tk (hg) < R(4).

On the other hand, let tk (hg) = 7 and vy, ..., v, be a basis of the image of
hg. Then, for any a € U there exist u;(a),...,u.(a) € K such that hy(a) =
X p<r up(a)vp. For the linear forms u, thus defined we obtain by the definition
of hy: ¢ = 2 p<r Up ® Vp, which shows that R(¢) < tk (hg). All in all we obtain
R($) = rk (h).

In the rest of this section we shall develop a simple but powerful tool for
proving lower or upper bounds for the bilinear complexity of a bilinear mapping,
by reducing it to the bilinear complexity of some other bilinear mapping. We
have first to recall some basic facts.

Suppose that U;, Vi, i = 1,2, are finite dimensional K-spaces and f €
Hom(Uy,Us), g € Hom(V4, V3). Let (Ui ® V;,7), i = 1,2 be the tensor product
of U; and V;. Then 7(f x g) is a bilinear mapping from U; x V; to U, @ V4,
hence there exists a unique homomorphism h from U; @ V; to U, ® V, such that
h(uy @ vy) = f(u1) ® g(v1). We denote this homomorphism by f ® g.

Let U and V be K-spaces and ¢ € Hom(U, V). Then @*:V* — U* defined
by ¢*(A) := Ap is a homomorphism.

Lemma 3.5. Let U;, V;, W;, i = 1,2, be finite dimensional K-spaces and ¢ €
Ul ® V" ® Wy. Suppose that ¢* € Hom(Uy, U;), ¥* € Hom(Vy",Vy), and
n € Hom(Wy, Ws). Then R((¢" ® %" ®1)(¢)) < R(4).
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Proof. Let ¢ =% ,¢, u,®v,Qw,, where r = R(¢), u, € Uy, v, € V", and w, €

Wi and ¥ := (" @4 ®7)(¢). Then ¥ = 5pc, ¢*(u,) ®%(v,) ®7(1w,). Noting
that ¢*(u,) € U;, ¥*(v,) € V;', and q(w,) € W, we obtain a representation of
¥ as the sum of R(¢) triads which implies that R(¥) < R(¢). O

The following lemma shows how this reduction technique can be used.

Lemma 3.6. Let U;, V;, W;, i = 1,2, be finite dimensional K -spaces and ¢; €
Bil(U; x Vi, W;), i = 1,2. Further let ¢ € Hom(Uy,Us), ¥ € Hom(V4,V2), and
n € Hom(W;, W) be such that the following diagram commutes:

Uy, x W S, %4
bbb
U x Va 25 W,
Then we have:
(1) If ¢ and 3 are surjective, then R(¢2) < R(¢:).

(2) If m is injective, then R(¢1) < R(¢,).

Proof. Let ¢; =3 uff)®v‘(,")®w£"), 1=1,2, where uf,‘) e Uy, 'vf,") € V;, and
wf,‘) € W;, and 7; := R(¢:). The condition that the above diagram commutes

translates to

Z uE,l) ® vl(,l) ® n(wf,l)) = Z uf,z)cp ® v£2)¢ ® wf,z).

p<ry p<r2

It is easily seen that the above condition is equivalent to
(id @ id ®1)(d1) = (¢" ® ¥ ® id)(¢). (1)

(1) The surjectivity of ¢ and 9 implies the existence of ¢~! € Hom(U,, Uy),
¥~! € Hom(V;, Vi) such that pp~! = idy, and ¥3~! = idy,. Application of
((¢™)* ® (¥)* ® id ) to Equation (1) yields
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(™) @ @) ®1)(d1) = ¢a.

Now Lemma 3.5 implies that R(¢,) < R(¢).
(2) The injectivity of 5 implies that there exists 77! € Hom(W,, W;) such
that n7'9 = id w,. Application of (id ® id ® 77') to Equation (1) yields

$1=(p"@Y" ®77")(2).
Hence Lemma 3.5 implies that R(¢;) < R(¢2). O

We shall use the above methods in the next chapter.

4. Lower Bounds for some Computational Problems

As was said before, the aim of (algebraic) complexity theory is to give in some
way the minimum number of operations necessary to compute (algebraic) quan-
tities. Hence, one tries to make assertions about all possible algorithms for the
problem to solve.

To determine the exact minimum number of operations necessary to com-
pute an algebraic problem, one has—in some way—to estimate from below this
number and at the same time to find a matching upper bound, i.e., to give an
algorithm (or prove the existence of an algorithm) which uses this number of
arithmetic operations. So the problem is divided into two parts: Proving lower
bounds and finding (matching) upper bounds. The second problem is usually
connected to the design of algorithms and is generally considered to be eas-
ier than the first, for which only a few general techniques are known. Proving
(nontrivial) lower bounds for algebraic computation problems is one of the most
challenging topics in complexity theory.

Below we shall discuss some bilinear problems and give nontrivial lower
bounds for their bilinear complexity. Since we have not developed the tools for
proving most of these bounds, we shall content ourselves to the proofs of the

most simple lower bounds.
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Let K be a field and D be a finite division algebra over K. We consider the
bilinear mapping p: D x D — D defined by p(a,b) := ab, i.e., we consider the

multiplication in D, where D is regardéd as a vector space over K.

Definition 4.1. The multiplicative complezity, resp. rank of the bilinear map-
ping p as above is called the multiplicative complexity, resp. rank of D/K and
is denoted by L(D/K), resp. R(D/K) or merely L(D), resp. R(D) if K is clear
from the contexzt.

We identify g with the tensor in D* ® D* ® D under the isomorphism given in
Theorem 3.3. Suppose that there exists a bilinear algorithm of length r for p.
We can thus represent p as a sum of = triads:
p= Zu;@vi®w;,
i=1

where u;,v; € D* and w; € D. Let ¢ be a nonzero element of K. Then
p(z,D)=zD C Eu,-(:v)v,-(D)w,-.
i=1

Denote the dimension of D over K by n. There exists a nonzero  in L such
that ui(z) = -+ = up_1(z) = 0. For this ¢ we have zD C ¥I_, ui(z)vi(D)w; C
i, Kw;. Since D is a division algebra and z is nonzero, zD = D and hence
the K-dimension of zD is n, we see that r —n + 1 > n, hence r > 2n — 1. We
have thus proved the following:

Theorem 4.2. Let K be a field and D be a division algebra of degree n of K.
Then we have R(D/K) > 2n — 1.

In order to compare the order of difficulty, we shall give here a proof for

L(D/K) > 2n — 1, too.

Theorem 4.3. Let K be a field and D be a division algebra of degree n of K.
Then we have L(D/K) > 2n — 1.
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Proof. Let ® denote the multiplication in D. For p=1...,rlet u,v, €
(D ® D), w, € D be such that ®(a,b) = ab = =1 Up(a, b)v,(a, b)w, for all
a,b € D. We may suppose that r = L(D), i.e., we consider a minimal algorithm
for the multiplication in D.

First, we prove that + > n. To this end, note that In® = D and that
Im® C 37, Kw,, hence r > n. Now assume that r <2n—1. Let W :=
Yoot Kw,. After interchanging some u, with some v,, we obtain p withn—1 <
P < r such that

© Un...,Vp are linearly independent on 0 @ D,
© Up41y--+;Un,Upy1, ..., U are linearly dependent on v,,, ... yUpon 0 D.

Since p+ 1 — n < n, there exists 0 # y € D such that v,(0,y) = .- =

vp(0,y) = 0. The conditions above imply that v,(0,y) = --+ = v,(0,) = 0, and
Up41(0,y) = -+ = 4, (0,y) = 0.
Let a € D be arbitrary and let b € D be such that Un(a,b) = -+ = vy(a,b) =

0. Then we obtain

ay = a(b+y)—ab

r r

= > uy(a,b+ Y)vo(a,b+ y)w, — > u,(a, b)v,(a, b)w,
p=1 p=1

: = Z(u,,(O,y) vp(a, b) +("’p(a’b)+”’p(0) Y)) 'U,,(O,y))w,,

P=1 = =0

for p>p  for :nSﬂSp for p>n
n-1
€ W= Z Kuw,.
p=1
This implies that Dy C W # D, which is a contradiction since D is assumed

to be a division algebra. O

What is R(D/K) for a finite dimensional division algebra D over K7 Let
us first discuss the case where D is a simple field extension of K. The question
of upper bounds for the rank R(D/K) is very much related to the rank of

polynomial multiplication. To be more precise, for a natural number ! let K[z],
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denote the K-space of polynomials of degree less than [ over K. Let Q’,'("' €
Bil(K[z]; X K[z]m, K[z]i4m-1) be the polynomial multiplication map. Then
R(D/K) is related to R(®%"). This is the context of the following lemmas.

Lemma 4.4. Let D be a simple field extension of degree n of the field K. Then
R(D/K) < R(®¥").

Proof. Let p(z) be a monic irreducible polynomial of degree n over K such that
D ~ K|[z]/(p(z)) and & be the residue class mapping K|[z] — K[z]/(p(z)) ~ D.

We obtain the following commutative diagram

Kzl % Mol 2, Kdls

1&1 1!:1 ln;
D x D % D

where v is the multiplication in D, & is the restriction of k to K|z],, and k2
is the restriction of & to K[z]s,_1. Now, since k; is surjective, Lemma 3.6(1)

implies that R(D/K) = R(v) < R(3%"). O

Lemma 4.5. Let [ and m be positive integers and K be a field such that |K| >
l+m—2. Then R(®)<l+m—1.

Proof. Let ay,...,a14m—2 be pairwise different elements of K. For k > 1 we
define v: K[z — K™ ! by w(f) := (f(1),- .., f(tsm=-2), f(c0)), where
f(o0) stands for the coefficient of z*~! of f. It is clear that ~ is injective if and
only if k¥ <!+ m — 1 and bijective if and only if k =l + m — 1. Now consider
the following commutative diagram

I,m

Klgh x Klolm % Kz)ipm

|» [ -

Kl+m—l X Kl+m—1 [ Kl+m-1
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where p is component-wise multiplication. Since 4i4m_; is bijective,we obtain

R(3}™) < R(p) <1+ m —1 by Lemma 3.6 (2). o

As a corollary we obtain from Theorem 4.2, Lemma 4.4, and Lemma 4.5 the

following.

Corollary 4.6. Let D be a simple field eztension of K of degree n and |K| >
2n — 2. Then R(D/K) =2n — 1.

Applying this corollary to the case K = R and D = C, we see that the
bilinear algorithm for multiplication of complex numbers introduced in Example
2.16 is optimal (in the sense of bilinear complexity) and that R(C/R) = 3. Also,
application of Lemma 4.5 to the multiplication of polynomials of degree less or
equal to one shows that the bilinear algorithm introduced in Example 2.15 is
optimal and that R(®%’) = 3 for any field K.

We state without proof a theorem of Baur on the rank of central division

algebras over a field K.

Theorem 4.7. Let D be a central K-division algebra of dimension n. Then
R(D) > 2n — 2 + \/n.

If D = H is the algebra of real quaternions, we obtain R(H) > 8. In fact,
R(H) = 8.

Th‘e leading problem of bilinear complexity is that of matrix multiplication.
Here one wants to compute the rank of the bilinear mapping which assigns
to every two square matrices their product. More precisely, if n is a positive
integer, we define L(K™™), resp. R(K™ ") as the multiplicative complexity,
resp. rank of the multiplication map in K™*". Concerning lower bounds for
R(K™™) we have the following.

Theorem 4.8. For any field K we have R(K™*") > 2n% — 1.

Proof. The following proof has been taken from [2]. During this proof we
denote by A the ring K™*". We shall need the following facts about A.
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(i) Any minimal left (right) ideal of A has K-dimension n.

(i) Any maximal left (right) ideal of A has K-dimension n? — n.

(iii) No right ideal R # 0 of A is contained in a left ideal L # A of A.

The proofs of these assertions are left as an exercise.
Suppose that r := R(K™") < 2n* —1. For p=1,...,r let u,,v, € A*, and
w, € A be such that

Va,be A: ab= zr: u,(a)vp(b)w,. (2)

Observe first that 3°7_, Ku, = A*. Otherwise, there exists 0 # a € A such
that u,(a) = 0 for all 1 < p < r. This implies ab = 0 for all b € A in view

of Equation (2). Hence a = 0, a contradiction. We may assume w.l.o.g. that

U1,...,Un are linearly independent (note that A has dimension n? over K).
Since r < 2n? — 1, ¥7_» Kv, # A". Hence, there exists 0 # b € A such that
Vp2(b) = --+ = v,(b) = 0. By Equation (2) we have then Ab C Z:z:;l Kw,.

Thus, Abis a proper left ideal of A, hence it is contained in a maximal left ideal
L of A. We may assume that E:,‘;ll Kw, C Ab. By the same argumentation
as above, vy,...,v, generate A*, hence we may assume that v,,...,v,2_; are
linearly independent over L, since L has K-dimension n* — n by (ii) (note that
after this choice, uy,...,u,2 need not be linearly independent anymore, but we
don’t need this in the sequel). This implies that for any y € A there exists
¢ € L such that

vn(c) = vn(y),. .., ve(c) = v, (y).

Since r < 2n? — 1, there exists 0 # a € A such that u2(a) = -+ = u,(a) = 0.
Hence, Equation (2) implies
n-1
Vye A3ceL: ay—ac=qa(y—c)€d Kw,CL.
p=1

Thus we have ay € L for all y € A, hence aA C L, a contradiction to (iii). O

Lafon and Winograd have proved that even L(K™*") > 2n? — 1 over any
field K. Their proof is beyond the scope of these notes.
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Applying Theorem 4.8 to the case n = 2, we get R(K?*?) > 7. On the other
hand, Strassen’s algorithm introduced in Example 2.17 implies R(K?*?) <7
which shows that R(K?*?) = 7 and that Strassen’s algorithm for multiplication
of 2 X 2-matrices is optimal. For values of n different from 2, it is not known
whether Theorem 4.8 is sharp.

. The asymptotic bilinear complexity of matrix multiplication is characterized
by the so-called ezponent of matriz multiplication, usually denoted by wg, which
is defined as

wg = inf{j | R(K™*") = O(n")}.
Note that by Lemma 2.14 we have R(K™") > L(K™") > R(K™")/2, hence
R(K™™) and L(K™™) are asymptotically equal. It is known that wg at most
depends on the characteristic of K [6].

Although the model of bilinear complexity neglects operations in the field of
scalars, one can show that the number of all arithmetic operations for multipli-
cation of n X n-matrices is of the same order of magnitude as R(K™*"), i.e., if
we denote by Mk (n) the minimum number of arithmetic operations necessary
to multiply two n x n-matrices over K, then Mg (n) = O(R(K™™)) (see for
instance [6, p. 57-58]). Hence wx = inf{y | Mk(n) = O(n")}.

The trivial algorithm for multiplying matrices implies that wg < 3 over any
field K. Recursion applied to Strassen’s algorithm for 2 X 2-matrix multiplica-
tion shows that wg < log, 7 for any field. The present world record for wg is
held by' Coppersmith and Winograd [4] who have shown that wg < 2.38 over
any field K; Theorem 4.8 implies that wx > 2 over any field K.

The complexity of many problems in linear algebra, like inversion of non-
singular matrices or solving systems of linear equations is directly related to
the complexity of matrix multiplication. Knowing the latter is therefore of
fundamental interest.

We can now generalize the problems introduced in this section in the follow-
ing way: Let K be a field and A be a finite dimensional associative algebra over
K,ie., Ais a finite dimensional vector space over K endowed with a multipli-

cation which is bilinear and associative. We consider bilinear map from A x A
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to A which assigns to every pair of elements in A their product, and ask for the
multiplicative complexity L(A/K) or the rank R(A/K) of this bilinear map.
(We may also write L(A4) or R(A) if K is known from the context.) There is a

general lower bound for this quantity which is due to Alder and Strassen [1]:

Theorem 4.9. (Alder-Strassen) Let A be a finite dimensional associative

algebra over K. Then
L(A/K) > 2dimg(A) - t,
where t is the number of mazimal two-sided ideals of A.

The proof of this theorem is beyond the scope of these notes. Let us apply
Theorem 4.9 to the problems stated before: If A is a division algebra of dimen-
sion n over K, then the only maximal two-sided ideal of A is the zero ideal,
hence L(A/K) > 2n — 1, in accordance with Theorem 4.2.

Let A be the ring of n x n-matrices over K. It is an easy exercise to prove
that the only maximal two-sided ideal of A is the zero ideal. Since the dimension
of A over K is n*, we obtain L(K™"/K) > 2n%— 1 which is the result of Lafon
and Winograd.

Another application of Theorem 4.9 is as follows:

Let G be a finite group. The group ring C{G] of G is defined to be the ring
of all complex valued functions on G. For all elements ¢ € G we identify o
with the characteristic function of {¢}. Then it is clear that every element f €
C[G] has a unique representation as f = ¥,¢g a,0 where a, € C. Extending
the multiplication of G by linearity C[G] becomes C-algebra of dimension |G|,
where |G| denotes the number of elements in G. By Wedderburn’s theorem,
the number of maximal two-sided ideals of C[G] equals the number k(G) of
conjugacy classes of G, hence, L(C[G]/C) > 2|G| — k(G).

5. Final Remarks

These notes are meant to serve as a first introduction to the complexity theory

of bilinear problems. We have tried to introduce the common language used
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and the general settings of the problems discussed there. There are several
_connections between this theory and other branches of algebra, like algebraic
geometry, coding theory, or algebraic curves, to name a few. Since we have
tried to keep the notes elementary, it was even impossible to prove some of the
results stated in the last section.

Nevertheless, we hope that the reader has become interested to know more
about this mathematical discipline. A good book to start with is [6]. The survey
articles (5, 11] give a very good insight into the different topics of algebraic
complexity theory and provide a detailed list of published material about this
subject.
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