

INDECOMPOSABLE BARIC ALGEBRAS*

Henrique Guzzo Junior (1)

Abstract

We introduce the concept of indecomposable baric algebras and prove a Krull-Schmidt theorem for algebras satisfying ascending and descending chain conditions.

1. Baric Algebras

Baric algebras play a central role in the theory of genetic algebras. They were introduced by I.M.H. Etherington [3], aiming for an algebraic treatment of Population Genetics. But the whole class of baric algebras is too large, some conditions (usually with a background in Genetics) must be imposed in order to obtain a workable mathematical object. With this in mind, several classes of baric algebras have been defined: train, Bernstein, special triangular, etc. But there are relevant examples in Genetics which do not give rise to baric algebras, see [5]. As a sample of the recent work in the field of genetic algebra, see [2], [6], [8], [9] and [10].

Let F be a field of characteristic not 2, A an algebra over F, not necessarily associative, commutative or finite dimensional. If $\omega: A \longrightarrow F$ is a nonzero homomorphism, then the ordered pair (A, ω) will be called a baric algebra over F and ω its weight function. For $x \in A$, $\omega(x)$ is called the weight of x. The set $N = \{x \in A \mid w(x) = 0\}$ is a two-sided ideal of A of codimension 1.

A baric homomorphism from (A, ω) to (A', ω') is a homomorphism of F-algebras $\varphi: A \longrightarrow A'$ such that $\omega' \circ \varphi = \omega$. In particular, $\varphi(\ker \omega) \subseteq \ker \omega'$.

^{*}This is an announcement of the results of the paper "Indecomposable baric algebras", by myself and R. Costa, to appear in Linear Algebra and its Applications.

If φ and φ' are baric homomorphisms, the same holds for $\varphi \circ \varphi'$ and for φ^{-1} , when φ is bijective.

Every baric algebra (A, ω) can be decomposed as $A = Fc \oplus N$, where c is any element of A with $\omega(c) = 1$: for $x \in A$, $x = \omega(x)c + (x - \omega(x)c)$ and $x - \omega(x)c \in \ker \omega$. From this, every left ideal of N, say J, such that $cJ \subseteq J$ is also a left ideal of A. Similarly for right ideals, with the condition $Jc \subseteq J$. The converse is also true. Many (but not all) baric algebras relevant in Genetics, have an idempotent e such that $\omega(e) = 1$. In this case, the subspace Fe is a commutative subalgebra of A. We will always assume the existence of an idempotent of weight 1. There is a natural method of obtaining such algebras. If N is any F-algebra, $\lambda: N \longrightarrow N$ and $\rho: N \longrightarrow N$ are F-linear mappings, define on the vector space $F \oplus N$ a multiplication and a weight function by

$$(\alpha, a)(\beta, b) = (\alpha\beta, ab + \alpha\lambda(b) + \beta\rho(a)); \qquad \omega(\alpha, a) = \alpha \tag{1}$$

where α , $\beta \in F$, a, $b \in N$. Clearly ω is a non-zero homomorphism, e = (1,0) is an idempotent of weight 1, $(1,0)(0,n) = (0,\lambda(n))$, $(0,n)(1,0) = (0,\rho(n))$, for all $n \in N$. We denote this algebra by $[N,\lambda,\rho]$. Every baric algebra (A,ω) with idempotent e of weight 1 is obtained by this method, taking $N = \ker \omega$, $\lambda = L_e$ and $\rho = R_e$, where L and R are left and right multiplication operators. For easy reference, we denote this class by Ω .

Proposition 1 Let N_1 and N_2 be F-algebras, $\lambda_i, \rho_i: N_i \longrightarrow N_i$ F-linear mappings.

- a) Suppose $\varphi: [N_1, \lambda_1, \rho_1] \longrightarrow [N_2, \lambda_2, \rho_2]$ is a baric homomorphism. Then there exist a homomorphism $\theta: N_1 \longrightarrow N_2$ and $c \in N_2$ such that
- $\mathbf{i)} \ \ c^2 + \lambda_2(c) + \rho_2(c) = c$
 - ii) The following diagrams are commutative:

b) Conversely, given a homomorphism θ: N₁ → N₂ and c ∈ N₂ such that
 i) and ii) hold, then φ: [N₁, λ₁, ρ_l] → [N₂, λ₂, ρ₂] defined by φ(α, a) = (α, αc + θ(a)) is a baric homomorphism.

Corollary With the above notations, φ is monomorphism (resp. epimorphism) if and only if θ is monomorphism (resp. epimorphism).

2. The Krull-Schmidt Theorem

Suppose (A, ω) is a baric algebra with idempotent e of weight 1, so $A = Fe \oplus N$ where $N = \ker \omega$. The additive group (N, +) can be endowed with a structure of Abelian M-group, see [7,chap V, Def.1]. The set M is formed by all right and left multiplications R_a and L_a , where a belongs to $A \cup F$ and $\psi : N \times M \to N$ definide by $\psi(n, T) = T(n)$. In this case, the M-subgroups of (N, +) are the two-sided ideals of the algebra A, contained in N. These are exactly the two-sided ideals of N which are invariant under L_e and R_e (in short, invariant). The M-endomorphisms of (N, +) are the mappings φ satisfying $\varphi(n+n') = \varphi(n)+\varphi(n')$, $\varphi(\alpha n) = \alpha \varphi(n)$, $\varphi(na) = \varphi(n)a$ and $\varphi(an) = a\varphi(n)$ where $n, n' \in N$, $\alpha \in F$ and $a \in A$. This set of conditions is equivalent to φ being F-linear, $\varphi(nn') = \varphi(n)n' = n\varphi(n')$ and $\varphi(en) = e\varphi(n)$, $\varphi(ne) = \varphi(n)e$.

According to [7, chap. V, §12] an Abelian M-group N is decomposable if there are two non trivial M-subgroups N_1 and N_2 of N such that $N = N_1 \oplus N_2$. In our context, this concept is translated to the following definition:

Definition 1 A baric algebra (A, ω) with an idempotent of weight 1 is decomposable if there are non trivial two-sided ideals N_1 and N_2 of A, both contained in $N = \ker \omega$, such that $N = N_1 \oplus N_2$. Otherwise, it is indecomposable.

Clearly all two dimensional algebras are indecomposable.

Theorem 1 For any member (A, ω) of Ω , the following conditions are equivalent:

- a) (A, ω) is decomposable.
- b) There exists a M-endomorphism θ of the M-group (N,+) such that $\theta^2 = \theta$, $\theta \neq 0$, id_N .
- c) There exists $\theta: N \longrightarrow N$, a homomorphism of F-algebras, such that $\theta^2 = \theta$, $\theta \neq 0$, id_N , $\theta(N)$ is two-sided ideal of N and for some idempotent e of weight 1 in A, $\theta(en) = e\theta(n)$, $\theta(ne) = \theta(n)e$ for all $n \in N$.
- d) There exists a baric endomorphism $\varphi: A \longrightarrow A$ such that $\varphi^2 = \varphi$, $\varphi \neq id_A$, $\varphi(N)$ is a nonzero two-sided ideal of N.

There is a natural method of obtaining decomposable algebras. Suppose (A_1, ω_1) and (A_2, ω_2) belong to Ω , with idempotents e_1 and e_2 resp, so $A_1 = Fe_1 \oplus N_1$ and $A_2 = Fe_2 \oplus N_2$. Consider $N = N_1 \oplus N_2$, endowed with the componentwise multiplication. Let $\lambda, \rho: N \longrightarrow N$ be the linear operators

$$\lambda(n_1, n_2) = (e_1 n_1, e_2 n_2), \quad \rho(n_1, n_2) = (n_1 e_1, n_2 e_2)$$

So in $[N, \lambda, \rho]$, according to (1), we have the multiplication:

$$(\alpha, n_1, n_2)(\alpha', n_1', n_2') = (\alpha\alpha', n_1n_1' + \alpha e_1n_1' + \alpha'n_1e_1, n_2n_2' + \alpha e_2n_2' + \alpha'n_2e_2)$$

Clearly N_1 and N_2 are two-sided ideals of $[N, \lambda, \rho]$. If A_1 and A_2 are at least two dimensional, $[N, \lambda, \rho]$ is decomposable. This algebra is called the join of (A_1, ω_1) and (A_2, ω_2) and is denoted $(A_1 \vee A_2, \omega_1 \vee \omega_2)$ or simply $A_1 \vee A_2$. The idempotent (1,0,0) is the join of e_1 and e_2 , denoted $e_1 \vee e_2$. It is not difficult to prove that this construction is independent of the idempotents e_1 and e_2 . If e'_1 and e'_2 are also idempotents in A_1 and A_2 then $e_i = e'_i + c_i$, where $c_i \in \ker \omega_i$. Take now $c = (c_1, c_2)$, $\theta = id_{N_1 \bigoplus N_2}$ and apply Prop.1. Conversely, every decomposable baric algebra can be obtained by this method, taking $A_1 = Fe \bigoplus N_1$ and $A_2 = Fe \bigoplus N_2$ if $N = N_1 \bigoplus N_2$.

H. GUZZO JUNIOR

29

The join $A_1 \vee A_2$ can be identified with a subalgebra of the usual direct sum $A_1 \oplus A_2 = Fe_1 \oplus Fe_2 \oplus N_1 \oplus N_2$. The element $e_1 + e_2$ is an idempotent, $F(e_1 + e_2) \oplus N_1 \oplus N_2$ is baric (send $e_1 + e_2$ to 1 and the elements of $N_1 \oplus N_2$ to 0). An isomorphism is $(\alpha, u, v) \in A_1 \vee A_2 \mapsto \alpha(e_1 + e_2) + u + v \in F(e_1 + e_2) \oplus N_1 \oplus N_2$.

Proposition 2 Let F be a field, (A_i, ω_i) F-algebras in Ω , i = 1, 2, 3. We have the following baric isomorphisms:

(i)
$$(F \vee A_1, id_F \vee \omega_1) \cong (A_1, \omega_1)$$

(ii)
$$(A_1 \vee A_2, \omega_1 \vee \omega_2) \cong (A_2 \vee A_1, \omega_2 \vee \omega_1)$$

(iii)
$$((A_1 \lor A_2) \lor A_3, (\omega_1 \lor \omega_2) \lor \omega_3) \cong (A_1 \lor (A_2 \lor A_3), \omega_1 \lor (\omega_2 \lor \omega_3))$$

Condition (iii) allows us to define recursively the join $(A_1 \vee \ldots \vee A_n, \omega_1 \vee \ldots \vee \omega_n)$ of n members of Ω . When all A_i are finite dimensional, we have $\dim F(A_1 \vee \ldots \vee A_n) = \left(\sum_{i=1}^n \dim FA_i\right) - n + 1$.

Which algebras A in Ω can be obtained by joining a finite number of indecomposable algebras? As expected, some finiteness condition should be imposed on A.

Definition 2 A baric algebra (A, ω) , with $N = ker\omega$, satisfies d.c.c. if the M-group (N, +) satisfies d.c.c., as stated in [7, p.153].

This means that strictly descending chains of two-sided ideals of A, contained in N, must be finite.

Proposition 3 If (A, ω) is a baric algebra in Ω satisfying d.c.c, there exist m indecomposable baric subalgebras (A_i, ω_i) of (A, ω) such that $(A, \omega) = (A_1 \vee \ldots \vee A_m, \omega_1 \vee \ldots \vee \omega_m)$.

Proposition 4 Let (A, ω) and (A_i, ω_i) $(i = 1, \ldots, m)$ be members of Ω , $e \in A$ idempotent of weight 1 and suppose there is a baric isomorphism $(A, \omega) \cong (A_1 \vee \ldots \vee A_m, \omega_1 \vee \ldots \vee \omega_m)$. Then there exist two-sided ideals N_1, \ldots, N_m of A, contained in $N = \ker \omega$, such that:

- a) $N = N_1 \oplus \ldots \oplus N_m$
- b) The baric subalgebra $Fe \oplus N_i$ is isomorphic to (A_i, ω_i)

Definition 3 A baric algebra (A, ω) , with $N = \ker \omega$, satisfies the ascending chain condition a.c.c. if the M-group (N, +) satisfies a.c.c., as stated in [7, p.154]

Theorem 2 (Krull-Schmidt) Suppose $(A, \omega) \in \Omega$ satisfies both d.c.c. and a.c.c. and let $(A_1, \omega_1), \ldots, (A_n, \omega_n), (B_1, \gamma_1), \ldots, (B_m, \gamma_m)$ be indecomposable members of Ω such that

$$(A, \omega) \cong (A_1 \vee \ldots \vee A_n, \omega_1 \vee \ldots \vee \omega_n)$$

 $(A, \omega) \cong (B_1 \vee \ldots \vee B_m, \gamma_1 \vee \ldots \vee \gamma_m)$

Then n=m and for some permutation $i\mapsto i'$ of indices, we have $(A_i,\omega_i)\cong (B_{i'},\gamma_{i'})$ for all $i=1,\ldots,n$.

References

- [1] V.M. Abraham, A note on train algebras, Proc. Edinburgh Math. Soc. 2(20) (1976), 53-58.
- [2] R. Costa, On train algebras of rank 3, Linear Algebra and its Applications, 148: 1-12 (1991).
- [3] I.M.H. Etherington, Genetic Algebras, Proc. Roy. Soc. Edinburgh, 59(1939), 242-258.

H. GUZZO JUNIOR 31

[4] H. Gonshor, Special train algebras arising in Genetics, Proc. Edinb. Math. Soc. 2(12) (1960), 41-53.

- [5] Ph. Holgate, Three Aspects of Genetic Algebra, XI School of Algebra, São Paulo, 1990.
- [6] Ph. Holgate, I. Hentzel and L. A. Peresi, On $k^{\rm th}$ -order Bernstein algebras and stability at the k+1 generation in polyploids, J. Math. Appl. Med. Bio., 7: 33-40 (1990).
- [7] N. Jacobson, Lectures in Abstract Algebra, vol.I, Van Nostrand, 1966.
- [8] A. Micali and M. Ouattara, Dupliquée d'une algèbre et le théorème d'Etherington, Linear Algebra and its Applications 153: 193-207 (1991).
- [9] M. Ouattara, Sur les algèbres de Bernstein qui sont des T-algèbres, Linear Algebra and its Applications, 148(1991), 171-178.
- [10] S. Walcher, Algebras which satisfy a train equation for the first three plenary powers, Arch. Math. vol.56, 547-551 (1991).
- [11] A. Wörz, Algebras in Genetics, Lecture Notes in Biomathematics, vol.36, 1980.

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 20570 CEP 01452-990 - São Paulo, Brazil E-mail: guzzo@ime.usp.br