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A CONSTRUCTIVE METHOD TO GET
RIGHT-LEFT EQUIVALENCE FOR SMOOTH MAP
GERMS AND ITS APPLICATION TO DIVERGENT

DIAGRAMS

Takashi Nishimura®

Let f,g: (IR",0) — (IR?,0) be two C* map germs. We say that f and g are
right-left equivalent if there exist C* diffeomorphic map germs h : (IR",0) —
(IR™,0) and H : (IR?,0) — (IR?,0) such that the following diagram commutes:

(R",0) 4 (RP,0)
Rl H|
(R",0) & (R?,0).

This equivalence relation seems to be the most natural equivalence relation be-
cause this says that f coincides with g under suitable coordinate transformations
of the source and the target spaces.

In [N], the author proposed a method to construct C* diffeomorphic map
germs which give right-left equivalence for the given two C* map germs and
got several extensions of the known results concerning right-left equivalence.

A C> divergent diagram (fi, f2) : (IR?,0) — (IR",0) — (IR?,0) is a pair of
C* map germs f; : (R",0) — (IR?,0) and f, : (R",0) — (IR?,0). We often
identify a C* divergent diagram germ (fi, f2) : (IR?,0) «— (IR",0) — (IR?,0)
with the C* map germ f : (R",0) — (IR? x IR (0,0)) such that f(z) =
(fi(z), f2(z)) and we write as f = (f1, f2). Let f = (fi,f2), 9 = (91,92) :
(IR?,0) « (IR™,0) — (IR?,0) be two C* divergent diagrams. We say f and g
are equivalent as divergent diagrams if there exist C* diffeomorphic map germs

h:(R"0) — (IR",0), H, : (R?,0) — (IR?,0) and H, : (IR?,0) — (IR?0) such
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that the following diagram commutes:

(R°,0) < (R",0) - (IR%,0)
H | R H |

(IR?,0) <~ (R",0) -2 (IRY,0).
This equivalence relation also seems to be the most natural equivalence relation
for smooth divergent diagrams. However, this equivalence relation is known
to be too tight to expect theorems reflecting the principle "an infinitesimal
relation corresponding to this equivalence relation implies a geometric notion
corresponding to this equivalence relation” for general C> divergent diagrams
(for instance, see [D1, D2, Nal, Na2]). Thus, we introduce the following two

weaker equivalence relations.

Definition 0.1: Let f = (fi, f2), 9 = (g1,9:) : (IR",0) — (IR? x IR%,0) be
two C divergent diagrams. We say f and g are equivalent over varieties if
there exist C* diffeomorphic map germs A : (R®,0) — (IR™,0), H; : (IR”,0) —
(IR?,0) and H, : (IR?,0) — (IR%0) having the following two properties:

(0.1.1) the following diagram commutes:

(f71(0),0) 25 (me,(0,0))
h H |
(9:1(0),0) 2 (IRP,(0,0)).

(0.1.2) the following diagram also commutes:

(f;‘(?,m L, (mq,(ol,o»
(9:(0),0) 2 (IR, (0,0)).

Definition 0.2: [AGV] Let f = (fi, f2), g = (91,92) : (IR",0) — (IR? x IR%,0)
be two C* divergent diagrams. We say f and g are R*-equivalent if there exist
C diffeomorphic map germs k : (IR”,0) — (IR",0) and H : (IR? xIR?,(0,0)) —
(IR” x IR%, (0, 0)) having the following two properties:
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(0.2.1) the following diagram commutes:

(R*,0) L (R® x R, (0,0))
hl H|
(IR",0) - (IR® x IR%,(0,0)),

(0.2.2) H has the following form:

H(y,y') = (y + Hi(y'), Ha(¥")),
where y € IRP and 3’ € IRY.

In this paper, first we will review our method of [N] (in §1), and then we
will apply this method to C* divergent diagrams.

Main results in this paper are estimates of the order of determinacy of the
given C™ divergent diagrams with respect to equivalence over varieties and R*-
equivalence (theorems (2.1) and (2.2) in §2). §§3-6 will be devoted to the proof
of theorems (2.1) and (2.2).

1. Review of Our Method

We review how to get C> diffeomorphic map germs which gives the right-left

equivalence for the given two C* map germs.

Let f,g : (R",0) — (IR?,0) be two C* map germs. We say f and g are
K-equivalent if there exist a C* diffeomorphic map germ h : (IR",0) — (IR™,0)
and a C* map germ M : (IR",0) — (GL(p,IR), M(0)) such that f(z) =
M(z)g(h(z)). K-equivalence is also an equivalence relation for C* map germs,
which was introduced by J.Mather([M1]). This K-equivalence relation is rel-
atively easier to treat than right-left equivalence. For instance, if both of f
and g are finitely determined with respect to K-equivalence, then f and g are
K-equivalent if, and only if, their local algebras &/ < f > and &,/ < g >

are isomorphic as IR-algebras; where £, is the IR-algebra of all C* function
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germs (IR®,0) —» IR and < f > and < g > are the ideals in &, generatetd by
component functions of f and g respectively (see [M2]).

Our method starts from judging whether or not f and g are K-equivalent.
Since K-equivalence is a weaker equivalence relation than right-left equivalence,
we see if f and g are not K-equivalent, then f and g are not right-left equivalent.

From now on in this chapter, we assume that f and g are K-equivalent.

Namely,

Assumption 1.1: Suppose that there exist C* diffeomorphic map germ s :
(IR*,0) — (IR",0) and a C*° map germ M : (IR"*,0) — (GL(p,IR), M(0)) such
that f(z) = M(z)g(s(z)).

Next, we consider the C*™ deformation F : (IR" x IR?,(0,0)) — (IR?,0) of f

having the following form:

F(z,A) = M(z)(g(s(z)) — )
= f(z) — M(z)\.

We concentrate on the case when F' has a triviality. Namely, our second
assumption is the following (1.2). We treat two kinds of p-dimensional euclidean
space IR”. When we are considering IR” as the target space, we write it IR}.

When we are considering IR as the parameter space, we write it IRS.

Assumption 1.2: Suppose that there exist - C* diffeomorphic map germs h :
(IR™ x IR, (0,0)) — (IR™ x IR}, (0,0)), H : (IRF x IRY, (0,0)) — (IRE x IR, (0,0))
and ¢ : (IR}, 0) — (IR%,0) such that the following diagram commutes:

(R" x %, (0,0)) % (R? x IR, (0,0)) % (IR, 0)

hl H| ¢l

(R" x %, (0,0)) L™ (R x %, (0,0)) =5 (IRZ,0).

Here, 7, is the canonical projection to the second element. From the commu-

tativity, we may write

h(z,)) = (h1(z,A),4(A)) and H(y,A) = (Hi(y, ), d())).
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Then, we set @y : (IR},0) — (IR},0) as

¢(A) = Hi(0,2).

The map germ ¢ is a pérameter map germ from the p'aramet.er space of the
deformation F : (IR™ x IR},(0,0)) — (IR,,0) to the parameter space of the
graph deformation of f. We also set ¢} : (R",0) — (IR*,0) as

$h(z) = ha(z, 9(s(2))).
Then we can get easily the following equality of map germs (see [N]).
f($h(z)) = du(g(s(=))).
Finally, we add one more assumption.

Assumption 1.3: Suppose that the map germ ¢ : (IR},0) — (IRE,0) is C*°

diffeomorphic.

Then we can prove that the map germ ¢}, : (IR*,0) — (IR",0) is also
C= diffeomorphic (see [N]). Thus, we see

Lemma 1.4: Under the assumptions (1.1), (1,2) and (1.3), f and g are right-
left equivalent.

By using our method, we can prove the following Gaffney type estimate of

the order of determinacy (see [N]).

Theorem 1.5: Let f : (IR",0) — (IR?,0) be a C*™ map germ. Suppose there

exist positive integers k and £ such that the following two inclusions hold:
mEER C tf(m.E]) + wf(m,EL)

and
miEE C tf(m.E]) + frmyEL.

Then f is (k + £ — 1)-determined with respect to right-left equivalence.
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Theorem (1.5) includes the following du Plessis-Wall’s estimate of the order

of determinacy.

Corollary 1.6: [([dP,W])] Let f : (IR*,0) — (IR?,0) be a C* map germ.

Suppose there ezists a positive integer k such that the following inclusion holds:
mEEP C tf(mE) + wf(myEP).
Then f is (2k — 1)-determined with resp;ct to right-left equivalence.

2. Estimates of the order of determinacy of a C*® diver-
gent diagram

Let f = (f1, f2) : (IR",0) — (IR? x IR%,(0,0)) be a C> divergent diagram. For
a positive integer k, we say f is k-determined with respect to equivalence over
varieties (resp. R*-equivalence) if for any C* divergent diagram g = (g1,9;) :
(R",0) — (IR? x IR?,(0,0)) such that j*g(0) = j*£(0) (*£(0) means the k-jet
of f at the origin), g is equivalent over varieties (resp. R*-equivalent) to f.
The letter y (resp. y') means a point of IRP (resp. IR?). For instance, &,
(resp. &) is the set of all C™ function germs (IR? x IRY,,(0,0)) — IR (resp.
(R}, 0) — IR).

Theorem 2.1: Let f = (fi, f2) : (IR*,0) — (IR x IR?,(0,0)) be a C*™ divergent
diagram. Suppose there ezist positive integers k and £ such that the following

two inclusions hold:

mkeP+e tf(m:E2) + w(fi, fz)(mué':'y, ®my&] )
and
mié‘f” C tf(m,g:) + (fl, fz)"m,,,,,vé';’ﬂ.
Then f is (k + £ — 1)-determined with respect to equivalence over varieties.

Theorem 2.2: Let f = (fi, f2) : (IR",0) — (IR xIR%,(0,0)) be a C* divergent

diagram. Suppose there ezist positive integers k and £ such that the following
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two inclusions hold:
MEEPS C tf(makR) + wfa(my E5F)

and

m €L C tf(maE]) + fymy E2F.

Then f is (k + £ — 1)-determined with respect to RY-equivalence.
Theorem (2.1) includes the following corollary (2.3).

Corollary 2.3: Let f = (fi, fz) : (IR*,0) — (IR? x IR%,(0,0)) be a C> diver-
gent diagram. Suppose there ezists a positive integer k such that the following

inclusion holds:
mEERY C tf(moED) + w(f1, f)(my& , @ my&l ).
Then f is (2k — 1)-determined with respect to equivalence over varieties.
Theorem (2.2) includes the following corollary (2.4).

Corollary 2.4: Let f = (fi, f2) : (IR*,0) — (IR x IR%,(0,0)) be a C*> diver-
gent diagram. Suppose there ezists a positive integer k such that the following

inclusion holds:

mAETH C tf(mal) + whi(my E5H).

Then f 1s (2k — 1)-determined with respect to Rt -equivalence.

Example 2.5: The following two examples are taken from [HIIY]. In both

examples, we are settingn =2, p=1 and ¢ = 2.

(251) . f = (f]_, fz) = ((Bl + 1)2,(1:1,123)).

Calculations show that

m2E C tf(mo€2)+ w(fu, fo)(myEyy & myEL,)
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and

m,:g: © tf(m:.-g,z,) + (fl; fz)*mu,y’gg'

Thus, by theorem (2.1), f = (f1, f2) is 2-determined with respect to equivalence

over varieties.

(25.2) f=(f1, f2) = (22 + P(21, 23 + 2122), (21, 25 + 7122)),

where ¢ : (R?,0) — (IR,0) is an arbitrary C® function germ. Calculations

show that

meE7 C tf(ma€l) + w(fi, fo)(myEyy ® myEL )
and_
| moE2 C tf(ma€2) + (i, o) myy €5

Thus, by theorem (2.1), f = (fi, f2) is 3-determined with respect to equivalence

over varieties.

3. Reduction of theorems (2.1) and (2.2)

Theorem (2.1) (resp. theorem (2.2)) derives from the following theorem (3.1)
(resp. theorem (3.2)).

Theorem 3.1: Let f = (fi, f2),9 = (g1,92)-: (R",0) — (IR” x IR%,(0,0)) be
two C divergent diagrams. Suppose there ezist a C* diffeomorphic map germ
s : (IR",0) — (IR™,0) and a C*™ map germ

M(z) = (my(z), ..., mpiq(2)) : (R",0) > (GL(p + ¢, R), Epsq)

such that f(z) = M(z)(g o s)(z). Suppose furthermore there ezists a positive
integer k such that

m;(z) — my(0) € mZEL*? C tf(m.E]) + w(fy, fo)(my €L, @ myEL)

foranyi (1<i<p+gq). Then f and g are equivalent over varieties.
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Theorem 3.2: Let f = (fi, f2),9 = (91,92) : (R",0) — (IR” x IR?,(0,0)) be
two C* divergent diagrams. Suppose there exist a C* diffeomorphic map germ
s:(R*,0) — (R",0) and a C* map germ

N(@) = (&) ., Bpsa(a)) : (R",0) = (GL(p + ¢, IR), Epec)
such that the following two properties hold:
(3.2.1) f(z) = N(z)(g o s)(=),
(3.2.2)  mny(z) is the co;tstant vector e;  for anyi (1 <i<p).

Suppose furthermore there ezists a positive integer k such that
n;(z) — n;y(0) € mEEPTY C tf(m.EL) + wfz(my,é'ﬁ,”)
for anyi (1<i<p+gq). Then f and g are R*-equivalent.

Proof that Theorem (3.1) implies Theorem (2.1): Let ;K(n;p,q) be the
set of all pairs of (s, M), where s : (IR",0) — (IR",0) is a C* diffeomorphic map
germ and M(z) = (my(z),...,mpq(x)) : (R™,0) = (GL(p + q,R), Epyq) s

a C* map germ with the following property.
each element of M(z) — M(0) is included in miitiE

The set ;K(n;p,q) becomes a group by the operation (s1, My) * (82, M3) =
(81 © 82, M1 M,), where s, 0 s, means the composition of 3; and s; and M; M,
means the product of matrices M; and M,. In fact, we may consider that
{K(n;p,q) is a subgroup of the group K introduced by J. Mather in [M1].

We want to study the orbit through a given C* divergent diagram f =
(f1, f2) : (IR*,0) — (IR? x IR7,(0,0)) by the action of the group {K(n;p,q). The
tangent space at f = (fi, f2) to this orbit is

(3.3) tf(m=ER) + (f1, fo) my,ymzF LY.
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Since (3.3) is an £;-module, by an ordinary argument (c.f. [W]) we may prove

easily
Lemma 3.4: Let f = (fi, f2) : (R",0) — (IR? x IR, (0,0)) be a C* divergent
diagram. Suppose there ezist positive integers k, £ such that

mEL C tf(ma€7) + (fi1, fo) myymEEnte.

Then f is £-determined with respect to the group k-1K(n;p, q).
Thus, by using of Mather’s lemma (lemma (3.1) of [M2]), we see

Lemma 3.5: Let f = (fi, f2) : (R",0) — (IR? x IRY,(0,0)) be a C* divergent

diagram. Suppose there ezist positive integers k, £ such that
mEL C tf(maE) + (fi, fo) myymEER*a.

Then f is (£ —1)-determined with respect to the group k-1K(n; p, q) if, and only
if, for any C* divergent diagram g = (g1, 9,) : (R™,0) — (IRP x IR%,(0,0)) with
it1g(0) = 71 £(0), the condition

m €LY C tg(moE) + (91, 92) My mEERHT 4 miHigrte
satisfies.
Now, we start to prove that theorem (3.1) implies theorem (2.1). By the
second condition in (2.1), we have
(3.6) m:+l€£+q c tf(m:g;‘) +(hs fZ)‘my.y’m:‘ggﬂ-

Let g = (g1,92) : (IR",0) — (IR x IR%(0,0)) be a C* divergent diagram with
3g(0) = j*'£(0). Then, since the difference (g — f) is included in m!E€P,
(3.6) implies

mMELYT C tg(mIED) + (g1, 92) My mEETHT 4 mitigRte,

Hence, by lemma (3.5), f is (k + £ — 1) -determined with respect to the group
k-1K(n;p,q). Thus, for any C'*> divergent diagram g = (g,,g2) : (R",0) —
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(IR? x IR?,(0,0)) with j¥+-1g(0) = j*+-1 £(0), there exist a C* diffeomorphic
map germ s : (IR",0) — (IR",0) and a C* map germ

M(:B) = (ml(z)i waey mP+q(m)) : (IR'"vO) = (GL(p +4q, IR): Ep+q)

such that the following two properties hold:

f(z) = M(z)(g 0 s)(=),
m;(z) —m;(0) € mEEPtY foranyi (1<i<p+q).
Therefore, by the first condition of theorem (2.1), theorem (3.1) induces that f

and g are equivalent over varieties. a

Proof that Theorem (3.2) implies theorem (2.2): First, we need several
preparations.

Let ;K(n;p, q) be the set of all pairs of (s, N), where s : (IR",0) — (IR",0)
is a C> diffeomorphic map germ and N(z) = (ny(z),...,np44(2)) : (IR",0) —
(GL(p+ q,IR), Epyq) is a C* map germ with the foﬂowing two properties.

each element of N(z) — N(0) is included in m:'E,,

n;(z) is the constant vector ¢; for any: (1<1<p).

The set ;K(n;p,q) becomes a group by the operation (s1, Ny) * (83, N3) = (35 0
33, N1 N;), where sy 0 s, means the composition of s; and s; and N; N, means
the product of matrices N; and N,. In fact, we may consider that ;)E(n;p, q) is
a subgroup of the group K introduced by J. Mather in [M1].

We want to study the orbit through a given C* divergent diagram f =
(f1, f2) : (R™,0) — (IR” x IR, (0, 0)) by the action of the group ;K(n;p,q). The
tangent space at f = (f1, f2) to this orbit is

(3.7 tf(m-E) + fymymit1grta,

Since (3.7) is an &€;-module, by an ordinary argument (c.f. [W]) we may prove

easily
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Lemma 3.8: Let f = (fi, f2) : (IR*,0) — (IR? x IR?,(0,0)) be a C* divergent

diagram. Suppose there erist positive integers k, £ such that

me €L C tf(moE7) + frmym €.

Then f is £-determined with respect to the group k_lﬁ(n;p, q)
Thus, by using of Mather’s lemma (lemma (3.1) of [M2]), we see

Lemma 3.9: Let f = (f1, f;) : (R",0) — (IR? x IR%,(0,0)) be a C> divergent
diagram. Suppose there exist positive integers k,£ such that

miER C tf(moED) + fymymEERta.
Then f is (£ — 1)-determined with respect to the group k_lﬁ(n;p, q) if, and only
tf, for any C* divergent diagram g = (g1, 9) : (IR*,0) — (IR? x IR?, (0, 0)) with
3 1g(0) = j4-1 £(0), the condition

m €LY C tg(maEy) + gymymi€RtT 4 mitiERte

satisfies.

Now, we start to prove that theorem (3.2) implies theorem (2.2). By the

second condition in (2.2), we have
(3.10) mEHER C tf(mIED) + fymymkERte,
Let ¢ = (g1,92) : (IR*,0) — (IR? x IR%,(0,0)) be a C* divergent diagram
with j*+=1g(0) = j**+¢-1 £(0). Then, since the difference (g — f) is included in
mEtEP+te (3.10) implies

mEHERT C tg(m2Er) + gimymEERH 4 mbHHIgR
Hence, by lemma (3.9), f is (k + £ — 1) -determined with respect to the group
k_lﬁ(n;p,q). Thus, for any C* divergent diagram g : (IR",0) — (IRP x
IR?,(0,0)) with j¥+-1g(0) = j*+¢-1 f(0), there exist a C* diffeomorphic map
germ s : (IR",0) — (IR",0) and a C* map germ

N(z) = (my(z),.. -y Npig(2)) : (R",0) — (GL(p + g, R), Epyq)
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such that the following three properties hold:
f(z) = N(z)(g 0 5)(z),

n;(z) is the constant vector e; for anyi (1<1i <p),
ni(z) — n;(0) € mkEP*? foranyi (1<i<p+yq).
Therefore, by the first condition of theorem (2.2), theorem (3.2) induces that f

and g are R*-equivalent. O

4. Algebraic Lemmata Concerning Mixed Homomor-
phisms

In this chapter, we prove two algebraic lemmata (lemma (4.2) and lemma (4.4))
concerning mixed homomorphisms in the sense of J. Mather ([M1]). We need
Malgrange’s preparation theorem ([Mg]) in this chapter.

Let f = (f1, f2) : (IR*,0) — (IR® x IR%(0,0)) be a C*™ divergent diagram
and let

M(z) = (my(z),.. -y Mpiq(z)) : (R™,0) — (GL(p + ¢, R), Eptq)

be a C* map germ. Let & = (®;,%,) : (R™ x IR§ x IR}, (0,0,0)) — (RP x
R}/, (0,0)) be the C* deformation of f having the following form:

" (2] =48] - w2 ]

Lemma 4.2: Suppose there ezists a positive integer k such that
m;(z) — m;(0) € mZEP*? C tf(m.EL) + w(fy, fo)(myEl, ® myEL )
foranyi (1<i<p+q). Then my(z) — m;(0) is included in
t8o(m.E7 5 ) + w(By, By, ma, T )My AEp s n ® My MEL 5 3)

foranyi (1<i<p+q).

Among deformations of type (4.1), we give the following deformations (type
(4.3)) special treatment. Let

N(z) = (n1(z),... yNpiq(2)) : (R, 0) — (GL(p + ¢,R), E,1,)
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be a C* map germ such that n;(z) is a constant vector e; for anyt (1<:<
p). Let ¥ = (¥;,¥,) : (R™ x IR} x R}, (0,0,0)) — (IR? x IR}/, (0,0)) be the
C* deformation of f having the following form:

e ] = [18]-r@[ 2]

[ filz) = A= Ny(z) ] ,

(4.3)

fa(z) — Na(2)X'

where we set
E, Ni(z)
N(z) = [ 0 NzEE) } .

Lemma 4.4: Suppose there ezists a positive integer k such that
ni(z) — 0(0) € mEERYT C tf(m.ED) + wfo(my €l
foranyi (1<i<p+gq). Then ni(z) — ny(0) is included in
tWa(ma€y y ) + w( W2, mar)(my yELTT)
foranyi (1<i<p+yq).
Proof of Lemma (4.2): Since we assumed
A C Lf(ma2) + w(fy, fo)(my €Dy @ myEL),

by Malgrange’s preparation theorem ([Mg]) we have

miELN, C tf(mzE7 5 1)

(4.5
: ) + W(fl,fz,WA,WAI)(myg;yl'A'A: @mylg;y:)”\l)-

Weset @ = (,,%,): (R" x IR§ x IR}, (0,0,0)) — (IRE x IR%,(0,0)) as

] - [ [8 2]

13- wo-wo 3]

(z
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Since we assumed
m;(z) — my(0) € mkerte

for any i (1 < i < p), the difference
Be A X) - (o) = (u(a) - )| }
= =3 Mmi(e) = mi(0)) = 32 Xlmpr(z) - mp1s(0)

is included in
(m, m) maamEER R,
& k cpta

(@ (‘ply ¢27WA1 WX’) My,y' AT z,AA"

Hence, we can approximate (4.5) as follows.
mkePt F
E: /\qx C t@z(mtg_;)‘,x)
5. & q
(4-6) + w(@l, @2, ™ WAI)(myg:'yl')"Al @ mU’gy,y’,A,)\’)
5 @ k cpt
+ (D1, 2y ma, ma) My a Mg ETN
We set
ELN [£@ (Mol ),

image of w(®;, @2, T, ) (MyEp s 3 @ My €5 5 1)

by the canonical projection to C,

= me
Then, by (4.6) we have

W »Q

(47) B C A + ((31, éz,ﬂ')‘,ﬂ'”)*my’yl‘,\’xB .

Since

dlmIRB/(‘I’l,‘bz,‘lr,\,ﬂ',\l) My y 2, AIB
= dlmIRm"SP”/m (tf(mER) + (f1, f2) My EEFY) < o0,

by Malgrange’s preparation theorem ([Mg]) we see that B is finitely generated
Eyy' A y-module via (@1, ®,,7, ™). Hence, by Nakayama’s lemma (4.7) implies

(4.8) BCA.

From the form

2] [aam ]|

oM
S
N

we see
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(4.9) t‘i’z(nggz\,x) + w(‘f’l, ‘T’z, LY ""f\')(mu“";,y’,x.x ® mU'g:.y’.z\.A’)
&l t@:(ng:'AvAl) + w(@l, ®,, ), 7r,\:)(my',\8;y,‘&,\, ® m,,:,,\:é':m,lx'x).

(4.8) and (4.9) yields
m;(z) — m;(0)
€ m:(g::;?,\l
C 1®a(ma7 s x) + w(P1, Ba, o, o) (My A NED 5 30 © My p ET, 5 1)

foranyi (1<i<p+q). ]

Proof of Lemma (4.4): Since we assumed
mEEERS C Lf(maED) + wa(my €57),
by Malgrange’s preparation theorem ([Mg]) we have
(4.10) mAEES C bf(matly) + wl o, ) (my €251,

Weset ¥ =(¥,,%,): (R" x R, (0,0,0)) — (R? x IRZ,(0,0)) as

[e] = [eedR ] +vo 3]
| 19w -wop[ 2]
Since we assumed
n;(z) — n;(0) € mkherta
for any i (1 <i < p+q), the difference

(V@)= N©) |

= X1 X(npyi(2) — npyi(0))

B(z, \) — f(=z)

is included in
kgp+q
=~z )\

TyMAMm,
c ( ¥y, P, WA')‘mv,y'.A'm

ksP‘l-q

&z N\
Hence, we can approximate (4.10) as follows.
mrELI C tU,(m, o)+ w(‘I’z,w,\l)(mylfp,Tf,)

(4.11 - "
J + (¥4, ¥, ”A’).mu,v’.a\’m:g:j\"'-
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We set _
¢ = e [t¥(maEL ),
A = image of w(¥,mx)(m,ELT
by the canonical projection to C,
B = mtC.
Then, by (4.11) we have
(4.12) B C A+ (¥, ¥, mx) myy v B .

Since
d]m]R B/(if’l, \‘I."z, 1r,\:)*m,,'yl‘,\:B
= dimp mzELH /mi(tf(maEL) + (f1, f2) My E249) < oo,
by Malgrange’s preparation theorem ([Mg]) we see that B is finitely generated

&y x-module via (¥, ¥, 7). Hence, by Nakayama’s lemma (4.12) implies
(4.13) BcCA.

From the form
Uy(z,N) | _ [ €y(e, A, N) L B M) ] A
Yoz, N) | | oz, A, N) 0  Ny(0) A
we see
t0o(mally ) + w(Wa, o) (my 1)
C tWa(mel ) + w(¥s, ma, mar) (my W ELT) .
(4.13) and (4.14) yields

n;(:z:) — l'l.'(O)

k cp+q
€ ngw\/

C t¥.(maE3 ) + w( s, ma)(my 1 ERH)

(4.14)

foranyi (1<i<p+yq). O
5. Proof of Theorem (3.1)

Let ® = (®1,®,) : (IR” x IR} x IRY,,(0,0,0)) — (IRZ x Y, (0,0)) be the C=

deformation of f having the following form:

e - [18 ] me 3]
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Since

o0d 0d
- —m;(z) and W = —my(z)

forany i (1 <i<p)andanyj(1<j< q), by lemma (4.2) we can choose

germs of C* vector fields

& & € my&,y and

v =[] < 2
such that
(5.1) — 8 = &(®) — mio (81, 8,,my, mar),
(5.2) _g—;;, = €(®) — 1} 0 (21, B3, mx, m1),
(5.3) 7:(0,0,0,0) = £2(0,0,0) = e; ,
(5.4) 73(0,0,0,0) = %‘2’;(0,0,0) =ept; ,
(55) 7:,2(y,0,4,0) =0,
(5.6) 751(0,9',0,)') =0

for any 1 (1 <i<p)andanyj(1<j<yq).

By (5.1) and (5.2), integrating germs of C™ vector fields

&1+ 0/0My,...,& +8/0),,
& +0/0X,... €6+ a/0x,,
M+ 08/0Ai,...,m,+8/0),

and

M +0/0X,...,nl +8/0X,

yields €' diffeomorphic map germs

A7V (IR x IR x IR, (0,0,0)) — (R™ x RE x RY,, (0,0,0))
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and
H™': (IRP x R}, x IR} x IR, (0,0,0, 0)) — (IRF x IR}, x IR} x IR§,, (0,0,0,0))

such that the following diagram commutes:

(IR x IR} x IRY,, (0,0,0)) e (R™ x IR} x IR%,, (0,0,0))
(@ ma) | (fimaan) |
(RS x Ry, x RE x RY,(0,0,0,0) “5 (IRE x IRY, x IRE x IRY,, (0,0, 0, 0))
AN l AN l
(IR§ X IR'?\’:(O’O))‘ == (IR§ X IR:I\” (0:0))'

We consider the inverse map germ H of H-! and
¢IH = (¢IH,1)¢,H,2) : (]R§ X IR':(”(O!O)) =2 (IR:; X IR;:,(O,U))

associated with H.

Let ©i(t;(y,y’)) (resp. O5(t (y,¥'))) be the integral curve of 7: (resp.
7;) starting from (y,y’) and of time ¢. Then we can get the image ¢} (A, \)
BN 20 == (g Ny Mo s A;) by ¢ as the unique solution of the integral

equation
(5.7) ©1(Ay;...; Op(Ap; O1(A;. . . O (A Bl Xy wies 5y XLy o o[ -

By differentiating (5.7) with respect to \; and Aj, we get

- B(Ousa(Aersi- 10,00 O (X 5003 (3, ) )
+ (d@l)(y,y/) i (d@;)(y'y/) i (d@;)(y,yl)a(ﬁ'}{(/\, AN =0

for any i (1 <i <p) and

(5.9) "_;'(G;H(’\.,Hl; BER 9:1('\;; ¢IH(’\: A ) ) ,
+ (d@l)(y,yf) . (d@’l)(y_y/) _— (d@;)(y,y:)aqﬁ},(/\, /\’)/3/\]» =0

forany j (1<j<g).
Taking values at (A,)’) = (0,0) in (5.8) and (5.9), we get

%51(0,0) = —(0,0,0,0)
e (by (5.3))
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for any i (1 <1 < p) and

’

8¢
—8—)‘?(0,0)

-5(0,0,0,0)
epri  (by (54))
for any j (1 < j < g). Thus, @)y is C= diffeomorphic. Therefore, by lemma
(1.4), f =(f1, fz) and g = (g1, 92) are right-left equivalent.
Furthermore, by (5.5) and (5.7) we see

Il

(5.10) $2(2,0)=0,

and by (5.6) and (5.7) we see

(5.11) Sraa0,3) = 0.
(5.10) and (5.11) shows that

t; maps IR} x {0} (resp. {0} x IR}/)

(5.12) to IRY x {0} (resp. {0} x TRy)-

Thus, by (5.12) we see that f = (f1, f2) and g = (91,92) are in fact equivalent

over varieties. m]

6. Proof of Theorem (3.2)

Let ¥ = (¥, T,) : (R x I3 x RY, (0,0,0)) — (BE x R}, (0,0)) be the C*

deformation of f having the following form:

[sie2)- 48] -mo3].

ov v
; = —ny(z) = —e; and 55 = —npj(z)

foranyi (1 <i<p)andanyj(1<j< q), by lemma (4.4) we can choose

Since

germs of C™ vector fields

Py

El’v gj € mfg:,A,A’v and
g p+4

Mi, Mj € gu.y’,A.A’

such that
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(6.1) 8% = —fi o (¥1, Y2, ma, ),
(6.2) — o = E(¥) — ;0 (U1, ¥y, ma, ),
(6.3) My, 9", A, X) = e,

(6.4) 73(0,0,0,0) = %P;‘_(QO,O) = ep4j,
(6.5) T(y,9', A, )') depends only on y', '

for any i (1 <i<p)andanyj(1<j<gq).
By (6.1) and (6.2), integrating germs of C* vector fields
& +0/0M,..., & +0/0N,
& +0/0X,....& + /0N,
Ta+0/0Ms. 7o + 0/
and

7+ 0/0X,,..., 7, + 8/OX,

q

yields C* diffeomorphic map germs
h7!: (IR™ x IR} x IRY, (0,0,0)) — (IR™ x IR} x IR}, (0,0,0))
and
H™': (IR? x IR}, x IR} x IRY,,(0,0,0,0)) — (RY x R}, x R} x IRY,, (0,0,0,0))

such that the following diagram commutes:

bl
L

(R™ x IR% x R, (0,0,0)) Ll (R* x RZ x RY,, (0,0,0))
@ma) | _ (hmaa) |
(R? x IRY, x IRE x R, (0,0,0,0)) %5 (RE x RY, x IR x RY,, (0,0,0,0))
TAA l TN l
(]R,; X IRK:,(U,O))' = (]RK X IRK':(O’O))'

We consider the inverse map germ Hof H' and

b = (¥, 45,) (RS x IR, (0,0)) — (RE x IRZ, (0,0))
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associated with H.

Let O;(¢(y,y’')) (resp. é;-(t;(y, ¥'))) be the integral curve of 7; (resp.
7;)  starting from (y,y’) and of time ¢. Then we can get the image d)'ﬁ(/\,/\’)
of (A, A) = (A1,.., A5, A1, .-+, Ag) by ¢’I~{ as the unique solution of the integral
equation
(6.7) ©1(Ms-..; Op(Ap; O1(NG; s OLANG B5(A1s - o5 Aps ALy, AY)) ) = 0.
By differentiating (6.7) with respect to A; and A}, we get

(O (Mir; -5 Op(Aps O (Ms -5 O (N5 (A, X))

+ (d@l)(y,ur) e (d@’l)(,,,yl) w5 (d@;)(y,,,f)aq&’;{(,\, A0 =0
for any i (1 <1 <p)and

T(@a M5 B4 B34, X))

+ (d@l)(y'yl) ... (dO] )(u.y:) e (d@;)(,,_y:)ada'ﬁ(/\, /\’)/a/\; =0
for any j (1< j <gq).
Taking values at (A, A’) = (0,0) in (6.8) and (6.9), we get

B¢l
52(0,0) = —n(0,0,0,0)

e; (by (6.3))

(6.8)

(6.9)

for any i (1 <1 < p) and

8¢
’E\I';“(Or 0)

Il

-13(0,0,0,0)
= ©ptj (by (6.4))
for any j (1 < j < q). Thus, ¢;’f1 is C* diffeomorphic. Therefore, by lemma

(1.4), f = (f1, f2) and g = (g1, 92) are right-left equivalent.
Furthermore, by (6.5) and (6.7) we see

(6.10) ¢ ,(A A") depends only on X,
and by (6.3), (6.5) and (6.7) we see
(6.11) ¢Iii,1('\’ Ay=XA+ d)’ﬁ',l(o’ .

(6.10) and (6.11) shows that f = (fi,f2) and g = (g1,9:) are in fact R*-

equivalent. O
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