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Abstract

This paper is concerned with a detailed exposition on the Car-
leman inequality for a parabolic equation. Specifically, it represents
only a part of the work of A. V. Fursikov & O. Yu Imanovilov [7]
for the particular model p; — Ap + f(p) = h of the heat equation.
Moreover, we study the null controllability employing fixe points for

multi-valued mapping.

1 Introduction

Let us consider the nonlinear parabolic state equation:
pe(z,t) — Ap(z,t) + 9(p(2,1)) = Xwulz,t) in Q,
p(z,t) =0 on X, (1.1)
p(z,0) =po(xz) in Q.

We represent by € a connect open set of R” with C? boundary I' = 9. For
T > 0, real number, we consider the cylinder Q = Q x (0,7T) of R*!, with lateral
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boundary ¥ =T x (0,7). The points of Q are represented by x = (z1,..., %),
z; € R, i =1,...,n and those of @ are represented by (z,t), with z € Q and
0 <t <T. By w we consider a subset of €2, that is, w C 2. The real functions
p = p(z,t), u = u(x,t) defined on @Q are the state and the control respectively. All
the derivatives are in the sense of the theory of distributions of Laurent-Schwartz.
By p: we represent the partial derivative dp/0t and A is the Laplace operator,
that is, 02/0x3 + 02 /0x2 + - - - + 0%/0x2 . With po(z) we denote the initial data
of the initial boundary value problem (1.1): x,, is the characteristic function of
w.
The function g: R — R, is C1(R), globally Lipschitz, that is

l9(p1) — g(p2)| < M|p1 — po| for all pi, po € R and g(0) = 0.

LINEARIZED SYSTEM

We define f: R — R by

fe)=1| P
g (0) if p=0.

Ip| >0,

We define, employing the function f, a linearized system associated with (1.1)
given by
pt(xv t) - Ap(m, t) + f(ﬁ(mv t))p(xa t) = Xw U(JJ, t) n Q,
p(z,t) =0 on X, (1.2)
p(z,0) = po(z) in .

DEFINITIONS

(i) The system (1.2) is said to be approzimately controllable in L*(SY), at time
T > 0, if for each € > 0, given py € L?(Q) and pr(z) € L*(Q), there exists a
controlu € L*(Q.,), Qu = wx (0,T), such that the corresponding solution p(z,t)
of (1.2) satisfies
lp(z,T) _PT(CE)‘H(Q) <E.
By L*(Q) we represent the Lebesgue space of square integrable functions on

with the inner product and norm:

(u,v)2(0) :/Qu(x)v(m) dr and |u|iz(9) Z/Qu(a:)2 dz,
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where u and v are real valued functions =

(ii) The system (1.2) is said to be null controllable at time T > 0, if for each
po € L2(Q), there exists a control u € L*(Q.,) such that the solution p of (1.2)
satisfies p(x,T)=0 a.e.in Q n

We consider a real function a(x,t) uniformly bounded in the sense

la(z, )| oo () < M.

In the sequel a(z,t) = f(p(x,t)). Thus, we are concerned, initially, with the
adjoint system of (1.2) which is given by

wi(x,t) + Aw(z, t) — alz, t)w(z,t) = f1(z,t) in Q,
w(z,t) =0 on X, (1.3)

w(z, T) =wr in €,

with wy € L2(Q) and f1 € L?(Q).

In the next section we prove the Carleman inequality for the adjoint system
(1.3), following the method of Fursikov-Imanovilov [6]. In this methodology it is

fundamental the following result:

Lemma 1.1: Let wg C w C Q a nonempty open subset. Then, there ezists a
function 1 € C%(Q), Q closure of 2, such that

Y(x) >0 for all x € Q,
=0 forallz €T,
[Vip(z)| > 0 for z € Q — wp.

The proof of this Lemma can be found in Fursikov-Imanovilov [7]. From Lemma

1.1 we introduce the weight functions

st M - M(@) _ G213l L
r,t) = ——— an alx,t) = ————— .
B(t) B(t)

with B(t) = ¢(T —t), 0 <t <T, XA > 0 a real parameter and

|[¥]] = max [¢(x)].

zeQ

From (1.4) we verify that

eV

Vo=A——=Vy=X oV =Va n (1.5)

B(t)
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2 Carleman inequality

All this paragraph is dedicated to prove the inequality of Carleman for solution
w of the adjoint system (1.3). In the method of Fursikov-Imanovilov [7] is crucial
the results of Lemma 1.1. The main result is contained in the following theorem.

Theorem 2.1. Let v, ¢, a be the functions defined above. Then, there exist

positive constants Ao, so and C' such that
/ {(sqﬁ)_1(|wt|2 + |Aw]?) + Xs¢|Vw|* + M (s¢)3|w|*| e*** dedt <
Q
C/ e | f1|? dadt + C’/ eZ N\ (5¢)3|w|? dxdt,
Q Qu

for all s > sg and X\ > Xo, where s = 51(Q,w)(T +T?), Mg = M(Q,w), C =
C(Qw), w=w(x,t) is solution of the adjoint system (1.8), | - | is the absolute

value of real numbers and sy is a suitable constant.

Remark 2.1. Setting p(x,t) = (s¢)'e**@Dw(x,t), we get
/ [<s¢>f—1(|wt|2 T 1Aw[) + X2 (56) [Tl + X(56) 4 w]? | e dudt <
Q
C/ (sp)ee** | f1|? dadt + C/ 50\ (5¢) T3 |w|? dxdt,
Q Qu
for all ¢ € Z. A look at the proof of Theorem 2.1 shows that the proof of this

remark can be carried out in exactly the same way.

The above inequality is called Carleman Inequality. The proof of Theorem
2.1 is very much technical. It will be done by steps, following Fursikov-Imanovilov
[7].

Step 1. We consider a convenient change of variables to introduce in the ad-

sha(z.t) Tn fact, setting

joint system (1.3) by the regularization function, that is, e
wla,t) = @D pla1) o pla,t) = e w(a, 1)
we obtain

w(x,t) = —sap e p+e U p,. (2.1)
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Besides that,

ow da —s« —sa ap

= - e
61‘,‘ iy 8Z‘i ¢ p + 81‘1 ’
0w 0% , [ 0a\? O Op 0%p
72:_872675(1])4-8 efsap_2s P —|—€78a72~
0x; O0x; Ox; Ox; Ox; 0x;

Thus, we obtain
Aw = —sAae **p+ 3| Val? e **p — 25 ** Va - Vp + e Ap.
From (1.5) we also have
Aa =V - (Va) = A\Ve¢ - Vi + A\pA) = A2 ¢| V| + A\pAp,
and |Val|? = A\2¢?|V|2. Therefore, we find

Aw = —s(\*9|VY|* + MpAy)e™**p+ (2:2)
A7 V|2 e p — 2sApe > Vip - Vp + e ** Ap.

From (2.1) and (2.2) and the system (1.3) we obtain

e ¥ py — e % (scup) + e (—25¢V ¢ - Vp + s N2¢* | Vo[> p — (2.3)
SA2B| VY2 p+ Ap — sApAYp) = f1 + a(t)e > p.

We also have that

p(z,0) = e* @D (z,0) =0 in €, (2.4)
because
M) _ G2Al[9]|
a(a:,t) = % <0 and esa(m,O) = lim esa(r,t) =0.
A(t) =0+

By similar argument, we obtain
p(x,T) = e @Dz, T) =0 in Q.

Then, from (2.3) and (2.4) we re-write the state equation (1.3), in the new vari-
ables, given by
Pt — azsp — 2sA¢V - Vp + s*A2¢°|Vip|* p —
SN*G|VY[>p+ Ap — sA¢Ayp = e** fi +a(t)p in Q,
p(z,t)=0 on X,
p(z,0) =p(z,T)=0 in Q.

(2.5)
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Let us consider the following notation.
U(t)p = —2sA*¢|Vy|> p — 2506V - Vp,
V(t)p = —Ap — s*N¢°|VY[* p — sX*¢| VY [* p + aysp, (2:6)
Z(t)p = sA¢AY p + a(t)p.

With the notation (2.6) we re-write the equation (2.5);, as follows

pe+U@)p = V(t)p = e fL + Z({t)p. (2.7)
Note that
& Lvoppds= [ oppds+ [ voppds+ [ iopps

The two first integrals can be written as 2 / (V(t)p)pt dx. Substituting p;, which
Q
is given by (2.7), we obtain

d

T (V(t)p)pdx =
Q (2.8)
2 / (V(Op) (e f1 + Z(t)p — U(t)p + V(£)p)da + / (Vi(t)p)p da.
Q Q

Integrating (2.8) from 0 to 7" and observing that p(0) = p(z,0) and p(T) =

p(z,T) are zero on €2, we obtain
0= 2/ (V(t)p)? dzdt + 2/ (V(t)p)(e** f1 + Z(t)p)dxdt + (2.9)
Q Q

/Q (%(t)p)pdxdt+2(— /Q (V(t)p)(U(t)p)dxdt).

Analysis of the terms of (2.9). Denoting by X the last integral of (2.9),

we have
X=— / V() (U (D)) dadt = (2.10)
Q

—— [ Gp+ NPT+ NIV~ ausp)
Q
- (25029| V|2 p + 25AV - Vp)dadt.

Remark 2.2. From the definition of ¢ and «, we obtain

B't) )| _ 1T —2t
|¢el = ’BQG)GW( | = (@)

0P < C ¢, (2.11)
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where the constant C' depends on T, A, |||| and Q.

Ap(x) _ 2M||y 2\ (x
| = B (@) _ 2| < \T 2t| [2V(®) — 2MIWII 220 () <C¢
B(t) e (@) B(t)
(2.12)
_ﬁ//52+26|T ol
g | = o (@) _ e%wn‘ < (2.13)
2 2 3\ (x
L |28 28T — 2| (P vt — e2rvl]
= B(t)e3 (@) 33
|26 2T 2| [N N
62)\1/’( x) eM[’( x) - ’
Note, the constant depends on X\, T and €.
B(t) e (@) _ 2Nl | o2Xy(x) )
— L = -2 <C
™0 =B | = |20 S| Sy <04
(2.14)
From (2.12)—(2.14) of Remark 2.2 we return to (2.9) and set
X1 = (Vt(t)p)pdxdt‘ = (2.15)
Q

T
\ [ [an - s @o00 o = X696l + sp)pdxdt‘ <
0 Q

1 (Ta
5/ = VPl 72 dt+01/Q()\252¢3+5)\2¢2+s¢3)|p|2da:dt,
0

where C7 depends on ) and T. Note that the integral of the derivative of
[Vpl72(q) is zero. We also get from (2.9) that

X, = ’/ (e f1 + Z()p )dmdt‘ < (2.16)
/|2 Saf1|dxdt—|—/ 20V (8)p) Z(t)p] dedt <

2/ |V(t)p|2dxdt+/ 628“|f1|2dmdt+/ | Z(t)p)|? dat.
Q Q Q

From the definition of Z(t)p, we obtain
/ \Z(O)p]2 dadt = / ISAGAD p+ a(t)p|? dudt
Q Q

< C/ (2X2¢? + M) |p|* dxdt. (2.17)
Q
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Thus, from (2.9), (2.15), (2.16) and (2.17), we have
2X+2/Q WV ()p]2 dadt <
C /Q (N2s2¢° + sA?¢? + 5¢°)|p|* dwdt+
2/@|V(t)p|2dxdt+/Qe2m|f1|2dxdt+c/Q(52A2¢2+M)p|2dxdt.

Then, we obtain

X < C/ [N (5% + s%¢°) + s¢® + 1] |p|*dzdt + %/ e | f1|> dedt.  (2.18)
Q Q

Step 2. In this step we calculate X by another process. In fact, we have
X=- /Q(V(t)p)(U(t)p) dxdt.
Otherwise
X = _/ (Ap+ $*X2¢* VY|P p + (2.19)
Q
SN2 G| V|* — ausp) (25A%0| V> p+ 2sAp VY - Vp) dadt =
2/ (s\2¢|VY|? p) Ap dadt — 2/ N1 | V|t p? dwvdt —
Q Q
2 / s2\1Q? V|t p? dadt — 2 / (sApVY - Vp)Ap dadt —
Q Q
2/ (s X3¢% VY|V - Vpp + s*X2¢% VY|PV - Vpp)dadt +
Q
2/ (2 N2 pay VY| p + s> Ao, V) - Vp)p dadt.
Q
Now we employ the notation
My = -2 [ (sN0[Vu P p)Ap o
Q
My = — 2/ s*N3 | V|t p? dadt — 2/ sZN1? | V|t p? dadt;
Q Q
My =— 2/ (sA\oV - Vp)Ap dadt;
Q

My =— 2/ (3 X303 | V|2 Vo - Vpp + 2 X3¢% V|2 Vo - Vpp) dadt;
Q

M =2 </ (2 X2p| VY| p + 52 A, V) - vp> pdxdt.
Q
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Thus,
X =M + My + Mz + My + Ms .

The next steps are to calculate the integrals M; for i = 1,--- 5. In fact, applying

Green’s formula to M; and observing that p = 0 on X, we obtain
M, = 2/@((5A2¢)v¢|2p)Apdxdt = (2.20)
2/QSA2v(¢|w2p) - Vpdzdt = 2/(23A3¢|v¢|2pw - Vpdxdt +
2/st2¢v(|v¢2) -Vppdzdt + 2/QSA2¢V¢|2 |Vp|? dzdt.

As ¢(z,t) = @ /B(t), then Vé = A\¢Ve. From this and Cauchy-Schwartz
inequality, we obtain

’2/ SA3¢|V¢|2pV¢~Vpdxdt‘ < (2.21)
Q

1
4/ s)\4¢|V1/J|4p2da:dt+Z/ sA2o| V|2 |Vp|? dadt.
Q Q

‘2/ sA? oV (V) -Vppd;cdt’ - (222
Q
‘2/ sA?¢2|Vy| (VIVY)) 'Vppdxdt‘ <

Q

1
16/ 5¢>A2|V(|V¢|)|2p2dwdt+1/ sA2p|Vop|? |Vp|? dxdt.
Q Q

Remark 2.3. As ¢(z,t) = @ /B(t) with € C2(Q), then we have |Vi|* < C
and |V(|V1/}\)|2 < C, where C is a positive constant depending only of Q.
Thus, from Remark 2.3, (2.21) and (2.22) we transform (2.20) as follows.

M, > %/ sA2p|Vap|? |Vp|? dedt — 0/ s + N2 |p|? dzxdt. (2.23)
Q Q
Applying Green’s formula in M3, we get

Ms = 2/@3/\V(¢V1/) -Vp) - Vpdadt — 2/ (sA\@oV - Vp)Vp - ndX.
by
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19)
Observe that Vp-n = a—p, where n is the exterior unit vector normal to ¥. After
n

same calculus, it implies
M; = 2/ 5A2¢(V¢ . Vp)2 dxdt + 2/ SANOVz 0 Py Py dxdt +
Q Q

2/ AP, Paiz; Po; dwdt — 2 / (sApV - Vp)Vp - ndX.
Q by

Setting
Nl = 2/ SAQS?;Z):C, pxiacj p:Cj dﬂ]‘dt,
Q

1
and observing that pg,s; p.; = 5 ((pmj)Q) , we obtain

1 2
Ny =2 /Q Aova, 5 ((p2,) )w dxdt.
Auxiliary Computations. By Gauss Lemma, we obtain

/Qai (sA0us, (pa,)”) dodt = /E ASYa, (p2,) i d'S.

0
Applying the derivative T we find
L

2
/ SADUy, 0 (5}7) dxdt + / SAD, WV, (pz ,)2 dxdt +

/ SA(W;«IL (pa:j)2 dxdt = / 5)‘¢wwl (pz]-)Qni dx.
Q by

Inserting the above equality in the integral Ny, it yields

Ny = —/ $AQz, Y, (pwj)dedt - / APV, (pwj)dedt
Q Q

+ /E SAG (pa,)” o, mi dX.

Since ¢(z,t) = (@) /B(t) then ¢,, = Adthy,. Thus, sAdy, ¥, = sAG(¥s,).
Therefore, we obtain

Ny =— / 8)\2¢)(wzi)2(pm‘)2 dxdt — / 8)\(151%717 (pf‘)Q dxdt
Q j Q J

+ /E SAD (P, )* W, i A
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Thus,
N = — / sA2p| Vo |? |Vp|? dedt — / SAGAY|Vp|? dxdt
Q Q
0
+/ sAqsi/’ |Vp|? dE.
b)) 8n
Inserting this identity in M3, we obtain
Ms = 2/ sAN2p(V - Vp)? dadt + 2/ AP, 2, D, P, dxdt — (2.24)
Q Q
2/ sA@(Vip - Vp) Vp - nd¥ — / s\2¢|Vy|? |Vp|? dadt —
by Q
2 N o 2
s¢AY|Vp|® dedt + | sh¢ — |Vp|® dX.
Q b)) 311
Remark 2.4. The two surface integrals of (2.24) satisfy
T aw T
/ /3A¢—|Vp|2dth§0 and 72/ /sA¢(V¢~Vp)Vp~ndEZO.
0o Jr on 0 Jr

In fact, since 1 satisfies the conditions of Lemma 1.1, that is, 1 € C%(Q); ¢ =0
on I' =90 and ¥ > 0 in 2, thus, by definition

oY Y@ +kn)—Y@) . Yz +kn)
on o) = klaof k o kli%lf k

<0,

because ¥(z) =0on T and ¢(z) > 0forz € Q. f z € T, k < 0, then x + kn € Q,

15]
where n exterior unit normal to I'. Thus, 5‘£ <0onI and
n

/ s)\qz’) \Vp|2 dx <0. (2.25)
For the second surface integral, Vi) = n g—w and g—w < 0 on I, then
n

/w(aw : )dE /qu (817) A >0 m  (2.26)

Thus, using (2.25) in (2.24), we obtain

Mz — N, < 2/ sAN2p(V - Vp)? dadt— (2.27)
Q

[ X 0IT0PR Vb dadt +2 [ 5N6tia b, doit — [ 5000 |VpP dadt,
Q Q Q
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where Ny = —2/ sAPVY - VpVp - ndX.
b

|Ms — Ny g/ s)\2¢|V1/)\2\Vp\2dxdt+C/ s\¢|Vp|? dxdt, (2.28)
Q Q

where we have used that |Aw)| and [¢);,,,| are bounded in €, due to hypétese on
¥ of Lemma 1.1. Thus, from (2.28), we obtain

Ms — Ny > —/QSA2|vw2vp2dxdt - C/QSAQSVdexdt
and consequently
M3 Z/625A2¢|V¢|2|Vp|2da:dtC’/Qs)\gb|Vp|2dxdt. (2.29)
Thus, from (2.23) and (2.29), we have
My + M3 > ;/Qs/\zqu |Vp|? dedt — (2.30)
C/Qs</>()\4+)\2)|Vp|2d:vdt—C/Qs)\¢Vp2d:vdt.

where C' > 0 is a constant that depends on €.

Now, we are working with M,. In fact,

My = —2/ (s X3¢%|V|? Vb - Vpp + s°A%¢%| VY| Vo - Vpp)dedt = (2.31)
Q
—/(33A3¢3|w|2va2+52A3¢2|w|2w-vp2)dxdt:
Q
/ (SABV - (BIVOP VO + 273V - (62 Ve[2 Vi) [pf?)dudt =
Q
3/(33A4¢3|w|4|p|2)dxdt+/ X33V - (|VY|> V) |p|? dadt+
Q Q
2 / SNGVY| pPe + / SNEV - (VY Vi) [pf? dudt.
Q Q

Note that ‘v (|w\2 vw) ] < Cand VP = 362V = 3¢2(A\dVe) = 3AGPVp.

1
Thus, \¢>Vi) = = V¢?. Also we have V¢? = 20V¢ = 20¢>Vp. Therefore, we
modify (2.31) to find

M42/ M (B556° + 25262) |Vl p]? dwdt
Q

—c/ (A3s3¢ + N352¢%) |p|? dadt. (2.32)
Q
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Thus, form (2.32) and the definition of M5, we obtain
Moy + My > / 3N | Vap|*|p|? dadt
Q
—C / (AB36P + A26262) o2 durdt. (2.33)
Q
Finally, we will modify My. From (2.11) and (2.14), we obtain
M = 2/ 2 X2 pa | VU |?|p|? dadt +/ 2 Ao, Vip - V(p?) dadt =
Q Q
2/ 2 X2 pa| VY |*|p|? dadt — / $2A\V (¢ Vab) |p|? ddt.
Q Q
Applying Gauss Lemma in the second integral and as p =0 on X, we get
M;s = 2/ s2\2pay | V| |p|? dedt — / s2\2pay | V|2 |p|? dedt —
Q Q
/ s*Apa (M| Vo ?) |p|? dadt — / s*Apa; A|p|* dwdt.
Q Q
Hence, we obtain
|Ms| < C (/ s X2 |V |?[p|? dadt +/ s*A¢° | Ap|[p|? da:dt) .
Q Q

Thus,
Ms > —C/ (52X + 52 \)¢*p? dadl. (2.34)
Q

From (2.18), (2.19), (2.30), (2.33) and (2.34) we have

%/ 5A2¢|V1/J\2|Vp|2dxdt+/ SN | Vo[ p|? dedt < (2.35)
Q Q

C/ sqﬁ()\4+)\2)|p|2dxdt+0/ sAG|Vp|? drdt+
Q Q

C/(A353¢3+/\352¢2)\p|2dxdt+0/(52)\2+s2)\)¢3|p\2dzdt+
Q Q

C/ (N2(s2¢? 4 s%¢?) +s¢3+1)|p|2dmdt+/ e | f1]? dadt <
Q Q

C/(sA¢\Vp\2+62”‘\f1|2)dxdt+/ H3(s2N + $3N\3 1) |p|? dadt.
Q Q

Since A > Ao > 1, s > s59(A\) > 1 and C < |¢|, we have

S¢)()\4+A2)|p|2 S A482¢3‘p|2 and )\383¢2p2 S )\353¢3|p|2.
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Besides, since |V| > 0 in 99, then |Vi)| > 0 in the compact set QU (€ — wp).
Therefore, there exists v > 0 such that 0 < v < |V| for all z € QU (2 — wp)
and for all z € Q — wy. About the open sets w and wg look at the Lemma 1.1.
With this in mind we get from (2.35), that

/ (v*s3\ 9P p? + v2sA29|Vp|?)dadt < (2.36)
Q_Qwo
c(/ g2 |f1|2d:cdt+/ (MG Vp|2 + (s3A3 + 8224 + 1)¢3p2)dxdt).
Q Q
Hence,
/ (* X1 p? + sA2¢|Vp|?) dadt < (2.37)
Q_Qu)0
c(/ 6250‘|f1|2dxdt+/ [sAG|VP|? + (5323 + 22 + 1)¢%p?] dxdt).
Q Q

For A > Ao and s > so(A) sufficiently large we get from (2.37) that

1
3 / (3 X1°p? + s\2¢|Vp|?)dzdt < (2.38)
Q_Qwo

C(/ e2w|f1|2dxdt+/ (8A¢\Vp\2+83>\3¢3p2)dxdt),
Q wo

for s such that s2\* < s3A\3 (for example A\ = s). Therefore,

/ (3X1p3p? + s\2¢|Vp|?)dadt < / (83X p3p? + sA\2¢|Vp|?)dxdt +  (2.39)
Q

“o

20( / 250 | £, |2 daedt + / (5¢A|Vp|2+33/\3¢>3p2)dxdt> <
Q

wo

(1+20)(/ e2w|f1|2dxdt+/ (s3>\3¢3p2+8)\¢\Vp\2))da:dtS
Q

«wo

Cl(/Qe2sa|f1|2d:cdt+/Q (33/\4¢3p2+s/\2¢|vp|2)dxdt).

“o

Therefore, we have
/ (3\13p? + s\2¢|Vp|?) dadt < (2.40)
Q

Cl(/ e2m|f1|2dxdt+/ (53)\4¢3p2+8A2¢|Vp|2)dxdt).
Q

wo
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Step 3. (Return to original variables)
As p = e**w, then Vp = s Vae**w + e**Vw, and it implies
|Vp|? < 25225« |Val? lw|? + 2¢2** |[Vw|? and |[Va|?> < A2¢?|Vy|?. Thus, we
obtain
|Vp|2 < Ce?**(s*X2¢?% |w]? + |Vw|?). (2.41)

Besides, we also have
Vp =sVap + e** Vw, (2.42)

and so
|Vp|2 = SQ\Va|2p2 + 25 |Vw|2 + 2s5e**(Va - Vw)p.

Using (2.41) and (2.42) in (2.40), we have
/ [e2* A3 p3|w|? + sA?¢(s%|Val|* p* +
Q
e |[Vw|? + 2se**(Va - Vw)p)]dzdt < C’[ (sA2pCe** (2 N2 ¢*|w|* + |Vwl|?) +
Quo

e $3\1p3 | w|?)dxdt + / e | f1]? dmdt} <
Q

c[/ (€25 SSMAg3|w|? + €25 s)\QQS\Vw\Q)dxdt—i-/ 625"‘|f1|2dxdt]
Q

«o

Re-write this inequality in a convenient form, we have
/ e 3\ @3 |w|? dadt + / $3\2¢|Val? p? dzdt + (2.43)
Q Q
/ sA2¢ e |[Vw|? dadt + 2 / $2X2pe*(Va - Vw)pdrdt <
Q Q
C/ 3\ 25 w|? dadt + C/ sA\2¢ 5| Vw|? dxdt
Qwo Q“’O
—I—C/ e | 112 dadt.
Q
From (2.43) if

N3 =C s3\1p3 25 |w|? dadt + C sA2¢ €| Vw|? dwdt
Qwo Q“’O

+ / e | f1|? dadt,
Q
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then we can see directly
/Q s3\2¢|Val? p? dedt < N3 . (2.44)
Moreover,
‘2/@32)\%5650‘ Vo Vw|pdxdt‘ < (2.45)
2/ $3\2¢|Val|? p? dadt + L / sA2p e*Y| Vw|? drdt.
Q 2 Jq
Thus, from (2.43), (2.44), (2.45), we obtain
/(92(53)\4¢362m|w2 + s\ 2pe? | Vw|?)dzdt < (2.46)
N3 + N3 + 2N3 + ;/QSA% e |Vw|? dadt.
Hence,
/Q (s°Atg e |w|? + sA?¢e**|Vw|?) dzdt < (2.47)
C[/ (PN 32 w2 + sA%pe2 | Vw|?) dudt +/ e2sa |f1|2da:dt} n
Qug Q
Step 4. (Carleman Estimates: Conclusion of the proof of Theorem
2.1)

Let us consider the square of both sides of the state equation (1.3);. After,
multiply both sides by (s¢) ™! e2*@ and integrate on @, we obtain

/ ¢ (s) " (Juwe + |Aw]?) dadt = (2.48)
Q
[ o0y P dude+ [ (s6) (0 dade +
Q Q
2/ e (s¢) ! f1a(t)w dedt — 2/ e>%(5¢) ! wiAw dadt.
Q Q
Now we will examine each term of (2.48). First, note that

(s¢)™' < C and (sp)~' < C(s9)>. (2.49)

From this and (2.49), we obtain

‘/ e*(sp) ! |f1|2dxdt‘ < C/ e | f1|? dadt; (2.50)
Q Q
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‘/ (s6) " e w|? |a(t)|? dzdt‘ < MC’l/ e §3¢3|w|? dadt. (2.51)
Q Q
As a(0) = a(T) = —oo, then €252(0) = ¢252(T) — (. Thus, by Gauss Lemma, we
get
2/ e (s¢) "t wiAw dadt = (2.52)
Q

— 2/ V(e**(s¢) tw,) - Vw dzdt =
Q
- 2/ 25 Va e***(s¢) ! w; Vw dzdt +
Q
+2/ e s 1p72V ¢ - Vw wy d:cdt—/ e*(sp) ! 4 |Vw|? dedt =
— 4/ Xe?5 %, Vi) - Vw dedt + 2/ e**(5¢) " Nw, V) - Vw dadt +
Q Q
/ (2sa; €25 (s¢) 7! — % 57 p T2y | Vw|? dxdt <
Q
c/ €20V | [V |wt\dxdt+0/ €2 (56) Vw2 dedt < (C < s¢)
Q Q
C/ e*(s¢)|Vw|? dadt + 1/ e (s¢) ™t |wy|* dxdt.
Q 2 Jq
Substituting (2.49), (2.50), (2.51) and (2.52) in (2.48), we obtain
1
/ €250 (5) 1 (2 w2 + |Aw|2> dudt < (2.53)
Q
C[/ 628a|f1|2dxdt+/ e2s s3¢3|w\2dxdt+/ 2% 56|Vl dudt| <
Q Q Q
C [/ e f1|? dwdt + / e s3¢3w|? dadt +
Q

wo

/ e 5| Vw|? dxdt} .
wo
1
Note that Q, and — |w;| comes from (2.47) and (2.52), (2.48) respectively.

Let us consider a function x € C§°(€2) such that x = 1 in @y, closure of wy,
and x = 0 on Q — w. Multiplying the adjoint system (1.3) by e?*¢ y s¢pw and
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integrating on @, we obtain

/ e*** x s wwy dzdt + / e?*% y spw Aw dxdt — (2.54)
Q Q
/ e x spa(t)w? dedt = / e x s¢ f1 dadt.

Q Q

Analysis of the terms of (2.54). We have

1 d
/ > x spww; dedt = ~ / (e*5y 5¢) — w? dadt = (2.55)
1 1
- 5/ (e***s¢)¢|w|? dadt < 5/ X(250; €35 8¢ + €25 ¢y )w? dwdt <
C e Bp3w? dadt, for s> s > 1.
Qu
Applying the Green’s formula and observing that w = 0 on X, we get

/ e x 5¢|Vw|* dedt = (2.56)
Q

—/ €25y sopwAw dzdt —/ swV (e***x¢)Vw.
Q Q
On the other hand,

‘/ swV(e***x¢) - Vw dxdt‘ = (2.57)
Q

‘ / sw |:X(28v04 2% 4 X V) + e2sa¢Vx} (Vw)dwdt‘ <

1
C’e/ spe***w? dedt + 2—8/ % sp|Vw|* dedt +
Qu

w

1
2C4

Now adding (2.47) with (2.53), we get

/ €250 (5) 1 (; Jee|2 + |Aw|2) dwdt + (2.58)
Q

/ e (5¢) ! |Awl|? dxdt.
Q

[ (@ a0l + 2o s o [Vuf?) dadt <
Q

C[/ e 3\ 3 Jwl|? dadt +
wo

/ %5 sA2p|Vw|? dxdt + / e | f1|2dxdt}
Q

«o
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From (2.56), we obtain

/ %5 s\ p|Vw|? dedt < / eZ% x s\ 2P| Vw|? dedt < (2.59)
Qug Q

‘/ e x(s¢)w Aw dmdt‘ + Ce/ e*%(s¢)> w? dadt +
Q Q

«“o

1
Z / e**%(5¢)|Vw|? dedt <
wo
1
— / e (s¢) " Aw|? dadt + Cs/ e $3\1¢? |w|? dadt+
2C1 Jo., .

1
7/ e*** s\?¢|Vw|? dxdt.
€

w

Finally, from (2.58), (2.59) and choosing & > 0, such that C>(\)/e = 1/2 (to
bring the term in |[Vw|? to the left-hand side), we get

/ [(s¢)_1(|wt|2 + [Aw|?) + 2P |w]? + 8/\2¢|Vw|2} e* drdt <
Q

C{/ e 32)\4¢2|w|2dxdt+/ 6250‘|f12d:1:dt},
Qu Q

where w = w(x,t) is weak solutions of the adjoint system (1.3). It was proved

by Fursikov-Imanovilov [7], see also Fursikov [6].

3 Observability inequality

In the present section we will prove the observability inequality for weak solu-
tions of the adjoint system (1.3). Observe that it is a consequence of the Carleman
Inequality proved in Section 2.

Theorem 3.1. Suppose «, ¢ as in Theorem 2.1. Then, for A > Ao > 0 and
s> s(A) > 1, we have

/\w(x,0)|2dx§c/ 625"‘|f1|2d:cdt+/ e 3wl dedt,  (3.1)
Q Q

w

where C' is a positive constant that depends only of Q0 and T'.
This inequality is called Observability Inequality for the adjoint system (1.3).

Proof. Multiply both sides of (1.3); by w and integrate on 2, we obtain

1d

——— [ w? dacdt+/ |Vw|2dx:/wf1 dxdt—/ a(z, t)w? de. (3.2)
2.dt Jg Q Q Q
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Multiplying both sides of (3.2) by e*(™+D* and observing that |a(t)| () < M

a.e. in [0, T, we obtain

d 62(M+1)t
_ % (62(M+1)t/ w? d,]jdt) < T/ f12 dz. (33)
Q Q

Integrating (3.3) from 0 to ¢, we get:

S(MADE ) t s e2(M+1)y )
|w(z, O)|L2 <e [w(t)[72(0) + St Qfl(ac,y) dz ) dy. (3.4)

Setting
0(t) = sup {G_QSQ(E’t); z €},

we have

Q(t) < 8(25 e2>\””/’”)/5(t) 7 (3.5)
21|l
since —a < - Then e~ < g(t) and
B(t)

1< 0(t) e?s®h), (i)
We know that ¢(z,t) = M@ /B(t), B(t) = (T —t), 0 <t < T, for z € Q.

1 _
The function v as in Lemma 1.1. Thus, g <C,for0<t<T,z €L, or

1<C¢*(x,t), 0<t<T, z€Q. (ii)

If 1 < s?, then by (3.5), (i) and (ii) we obtain from (3.4), that

trq
(e 00y < Cr [ utePdescr [ (5 [ AP dy
Q 0 Q
t
<o) [ P +ot) [ ( / era(f”’“lfﬂx,y)Ide) dy.
Q 0 Q
Thus,

1 t
—|w(x,0)|2§0/62m |w(x,t)|2dl’+0/ (/ e2m|f1(as,y)|2dx)d
6(t) Q 0 Q

(3.6)

From (3.5), we obtain

25 2M W 1
O<kr<e B < —, 0<t<T.

o(t)
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Now, we fixe t; < to in (0,7T") and integrate (3.6) on (t1,t2) with respect to ¢, to
get
25 e2A19]]

ta
0l 0)ffagey [T dr < (37)

t1

ta
C < / e?sa(@t) |w(:r,t)|2dx) dt+
Q

t1

ta t
e [T ([ nwnrar) a] ar
t1 0 Q

In the Appendix, established to follow, we prove

T t T
L[ [ e neopaaasc [ [ ineopd.
QJO 0 0 Q

) as e 2A]
inf e & > Crp,
t€[0,T

Since

from (3.7) and from the Appendix above cited, we obtain

T
|w(x,0)|%2(m < C/ / > \w(w, t)|* dedt+ (3.8)
0o Jo

T
2
0/0 /Q|f1(x,t)| dwdt.

By (ii), 1 < C ¢3(z,t), for x € Q and 0 < t < T. Then, we have from (3.8):

T T
[(z,0)22(0 < C / / ¢ §w(a, t)? dedt + C / / |Fu(a,y)? dady.
0 Q 0 Q
(3.9)

By Carleman inequality we obtain:

/ e 33w (x, t)|* dedt <
Q
C/ e2se |f1(x,y)|2 dxdy + / e2se (;53|w(:c,t)|2 dxdt.
Q w
Then,

/6230‘ &3 |w(x,t)]? da:dtSC'/ e $3|w(w, t)|* dedt+
Q Qu

C/ e | f1(x, t)|* dadt.
Q
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Substituting the last inequality in (3.9) we obtain the Observability Inequality
for the weak solution of the adjoint state (1.3). Note that C > 0 is a constant
that depends on Q2 and 7' m

4 Null controllability: Linear State Equation

We consider the linear state equation:
pe(x,t) = Ap(x,t) + alz, )p(x, t) = xou(z,t) n Q,
p(z,t) =0 on X, (4.1)
p(z,0) =po(x) in Q.
When we have x,u € L%(Q), po € L*(Q), the weak solution p of (4.1) has the
following regularity, see Brezis [3],
p€ H'(0,T; H1(Q)) N L*(0,T; Hy()).
Thus, p € C°([0, T]; L*(€2)). The null controllability for (4.1) consist in to obtain
a control u € L?(Q), such that

p(z, T)=0 a.e. in Q.

Observe that a(t) is bounded in @ and |a|p~ () < M, as in Section 1.
We have the following regularity

p € WH0,T; Hy (), H ' ()
={pe L*(0,T; H)(Q),p; € L*(0,T; H ()} C C°([0,T]; L*(2)).

Theorem 4.1. For py € L?(Q), there exists a control u € L*(Q) such that the
weak solution p = p(x,t) of the state equation (4.1) satisfies p(x,T) =0 in €.

Proof. The proof of Theorem 4.1 is done by a variational method and an appli-
cation of the observability inequality, cf. Section 3. The control u picked up in
L?(Q,e=25% ¢=3) satisfies the inequality.

/ e 25 32 dadt < C’/ P da. (4.2)
Q

w

Note that e=2%® ¢=3 > (. For each € > 0, we define the functional

1
Ns(p,u):/ e 28 ¢_3u2dxdt+g/p(x,T)2dx, (4.3)
Q Q
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for u € L*(Q,e 2 ¢3) and p is the weak solution of (4.1), with pg € L?(9).
Observe that N¢(p,u) is lower semi-continuous, strictly convex and coercive in
L?(Q). Then, the variational problem

min N, (p, u),

has a unique solution u. € L*(Q).

We suppose that u. € L?(Q) is the minimizer of N.(p,u). Thus, by mean of
the state equation (4.1) we find the weak solution p, . The next step consists to
prove the convergence

limu. = and limp. =p.
e—0 e—0

Then, we have to prove that p is the weak solution of (4.1) corresponding to the
control u and that
p(z,T)=0 ae in Q.

Lemma 4.1. We have that
Ue = 2Py, we  a.e. in Q,
with
we € H'(0, T3 H™'(Q)) N L*(0,T; Hy (),
s the weak solution of the parabolic problem
wet + Awe —a()we =0 in  Q,
w, =0 on X, (4.4)

we(x,T):—ép(ac,T) in Q,

being p(x,t) the weak solution of (4.1), that is
pe—Ap+a(t)p = xous in Q,
p=0 on X, (4.5)
p(x,0) =po(x) in £,
po € L3(Q), u € L*(Q).
Proof. We write p = p+ p with p and p weak solutions of the systems
pe—Ap+a(t)p=0 in Q,
p=0 on X, (4.6)
p(z,0) =p(z) in Q,
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and
pr—Ap+a(t)p=xou in Q,

p=0 on X, (4.7)
p(z,0) =0 in Q.
We observe that in (4.7) we have a linear dependence of the solution p from

the control u, which we denote by:
Lu=7p(z,T). (4.8)
Note that L: L?(Q) — L*(9) is linear and bounded, because p belongs to

C°([0,T]; L*(Q)). Thus, we re-write N.(p,u) = Je(u), with

Jo(u) = /Q e 25 732 dadt + % /Q (P(T) + Lu)* dx. (4.9)

The stationary value u. € L?(Q), for the functional J.(u), defined by (4.9), is

that in which the Gateaux derivative is null in all direction @ € L?(Q). It means,
J(u)-w=0 foral ©e€L*Q),

that is,

=0 forall @eL*Q).
A=0

d ~
= Je(ue + \0)

Now, we will do the computation with the weight e=2** ¢~3 in the functional J,

observing that p(T) = p(T) + p(T) = p(T) + Lu. In fact, we obtain
d

= Je(ue + A0)

~ 2 ~
= 2/ e 25 3y, wdrdt + = / pe(T)Lw dx,
A=0 Q € Ja

for all @ € L?(Q).
By the condition of u. to be stationary point of J.(u), we must have

2
2/ e™25% =3y dwdt + g/ pe(T)z(T) dx =0, (4.10)
Q Q

for all @ € L*(Q) and 2 weak solution of

2zt —Az+a(t)z =x,w in Q,
z=0 on X, (4.11)
2(0)=0 in Q.

Observe that z = L& and L is a bounded linear function of & € L?(Q).
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Remark 4.1. As@ € L?(Q) and z(x,t) = Lo(x,t), then z € C°([0,T]; L2(Q)).
Thus, makes sense z(x,T) = Lo(xz,T) =
Multiply (4.11) by w. and integrate in Q. We obtain:

/ (—wer — Aw, + a(t)we)z dzdt (4.12)
Q

+ / z2(Twe(T) dx — / z2(0)w(0) dz = / XwW W, dxdt.
Q Q Q
Therefore, if w. is the weak solution of the problem:
wer + Awe, —a(t)w. =0 in Q,
we=0 on 3, (4.13)
1
we(x,T) = —gps(:c,T) in Q.

We obtain, from (4.11), (4.12) and (4.13):

1 —
- 7/ p(z,T)z :/ XowW we dzdt, (4.14)
€ Ja Q

because z(x,0) =0 in Q by (4.11). From (4.10) we modify (4.14) obtaining

/ e 2% 03w, W dedt = / XoW We dxdt,
Q Q

or

/ (6725& ¢ 3 ue — xwwg)fu dxdt =0,
Q

for all @ € L?(Q). It implies that

2sx ¢3

Ue =€ Xw We, a.e in @,

with w. weak solution of (4.13), i.e., (4.4). This proves Lemma 4.1 =

Now, we will return to the proof of Theorem 4.1. In fact, the first step, still
technic, is to obtain as application of Lemma 4.1 estimates for u. and p. to get
convergence in order to obtain our objective, which is p(z,T) = 0. To this, we
multiply both sides of (4.13) by p.(z,t) and integrate in Q.

The second one, we multiply both sides of the system (4.15) below by w, and
integrate in Q.

Pet — Apa + a(t)pe = XwWe 628a¢3 il’l Qv
pe=0 on X, (4.15)
pe(x,0) =po(z) in Q.
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Adding both results, we obtain:

/ e @3 w? dadt = / pe()we(t) dx
Q

w

T

0

—%/Q(pg(x,T))2 dx—/gpg(x,())wg(x,O) dz.

After computations we obtain:

w

/ po(x)we(z,0) dx
Q

< |pO|L2(Q)‘w€(xa0)|L2(Q)
R

1
/ 25 qbgwgdxdt—kg/pg(x,T)zdx:—/po(x)wg(x,O) dx
Q Q

(i)

(i)

By inequality of observability for w.(z,0), cf. Theorem 3.1, Section 3, we obtain

from (ii)

<

R

po(x)we(z,0) dx
Q

1 1/2
C|p0|L2(Q) (/ 25 3 w?(x, t) dedt + - /pg(:v,T)2 da:) <

w

1 1
|p0|L2 () + = </ 62504 ¢3 wg dxdt + g / pg(x,T)Q dl‘) )
Qu Q

By (i), (ii) and (4.16), we have

1
/ e 3 w? dadt + g/pg(x,T)2 dz <
Q

w

2

1 1
o |Po|iz(m + 5 (/ e ¢ w? drdt + = / pe (2, T)? dx> .
Qu €Ja
c? 1
From this last inequality (A < el Ipol? + 3 A), we obtain

1
/ e2sa ¢3 w? dxdt + - / p(l‘, T)2 dx < C|p0|%2(ﬂ) = constant.
Q

w

Thus from (4.17), we get

/ps(x T)*dx < Ce.
From (4.18), we have

pe(z,T) — 0 strongly L*(Q) as & — 0.

(4.16)

(4.17)

(4.18)
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From (4.17), we obtain

/ e ¢3 w2 drdt < constant.

w

By Lemma 4.1,

U = e 3y, w. ae. in Q,

or

/ ug dxdt < C’o/ €25 3 xuw wf dxdt < C.
Q Q

Thus, we have
ue —u  weaky in  L*(Q).

From (4.15), we obtain
p. —p weakly HY(0,T; H 1 (Q))NL*0,T; H}(Q)),

then
pe —p strongly C°([0,T]; L*(%)).

From (4.18), we obtain
pe(z,T) = 0 strongly L*(),
whence there exists a subsequence of p.(x,T) such that
pe(z,T) -0 ae in Q.
From (4.19), we have
pe(x,t) = p(x,t) ae. in Q,
for 0 <t <T. Then

pe(z,T) = p(x,T) ae in Q.

199

(4.19)

(4.20)

By (4.20) we have p(z,T) = 0 a.e. in . Observe that u. = w. e2** ¢* in the
system (4.15). Thus, when & — 0 in (4.15) we obtain a control u € L?(Q) and a

function

pe€ HY0,T; H1(Q)) N L*(0,T; HY ()
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solution, in weak sense, of

pt—Ap+a(t)p=xou in Q,
p=0 on X,
p(.’L’7O) = Po in Q?

such that
p(z,T)=0 ae in Q.

This conclusion proves Theorem 4.1 m

5 Null controllability: Nonlinear State Equation
We now investigate null controllability for nonlinear state equation:

pe — Ap+g(p) = xou in Q,
p=0 on X, (5.1)

p(z,0) =po(x) in Q.
We suppose g: R — R, globally Lipschitz and ¢(0) = 0. It means,
lg(p1) — g(p2)| < M|py —pa| forall pj,ps € R and M constant.

We define the function f: R — R as follows:

9w lp| >0,
p

fp) =
We introduce the Hilbert space
W0, T; Hy (), H™(Q)) = {p € L*(0,T; Hy (), pr € L*(0, T H1(2))},
with the norm
[Ipl3s = ||p||iz(0,T;Hg(Q)) + Hpt”%2(0,T;H*1(Q)) :
We have

W0, T Hy (), H~' () € €°([0,T); L*(Q)) € L*(Q).
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We consider the subset B of L?(Q) defined by
B = {be W0, T; HE(), H-1(Q)); [blws < My},
For p € B, pg € L*(Q), u € L*(Q), we consider the linear state equation

pe—Ap+ f(P)p=xwu in Q,
p=0 on X, (5.2)

p(x,0) =po(x) in Q.

Observe that (5.2) is a linearization of (5.1). Also note that a(z,t) = f(p(x,t))
with p € B a ball of W!. We have |a(z,t)| < M. Thus, for p € W', for T > 0,
there exists u € L?(Q, e=2%% ¢—3) such that the weak solution p of (5.2) is satisfies
p(z,T) =0 in £, that is, we have null controllability for (5.2).

Theorem 5.1.  Suppose g: R — R, globally Lipschitz and g(0) = 0, py €
L*(Q)) and T > 0. There exists u € L*(Q,e 2 ¢=3) and p € W(0,T; H} (),
H=1(Q)), weak solution of (5.1) such that p(z,T) =0 in Q.

Proof. We apply fixed point method as is usually done. As we will work with
multi-valued mapping we need a infinity dimensional version of Shizuo Kakutani
fixe point theorem. Among many generalization we employ Glicksberg [9] version,
see also Browder [4], which is the following.

“Let B be a mon-empty convex, compact subset of a locally convex topological
vector space X and ® a mapping which takes p € B into a non-empty subset
®(p) of X, such that is convex, compact and has closed graphic. Then the set of
fixe point of ® is non-empty and compact.””

In our case we have X = L?(Q) and
B = {beW(0,T; Hy(Q), H ' (Q)); |lbllw: < M} € C°(10,T); L*(9) € L*(Q),

the constant M; > 0 is obtained in (5.6). Observe that B is a convex set of
L?(Q). Let us prove that B is a compact set of L?(Q). In fact, let (bn)en
be a sequence of b, € B. Then [[bl|y: < M, that is, (bn), .y is bounded in
L?(0,T; HY(Q)) and d(;’t" is bounded in L?(0,T; H=*(2)). By the theorem of
compacticity of Aubin [1], it follows

b, — b strongly in L*(Q).
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We define the mapping ® in B as follows: for p € B, we set

d(p) = {p € WH0,T; Hy (), H()), weak solution of (5.2) for

u € L*(Q,e *“¢3) with / e 25 32 dadt
Q

SC/p%dm such that p(z,T) =0 in Q}
Q

Remark 5.1. Observe that forp € B, a(x,t) = f(p(x,t)) is bounded by definition
of f, because g is Lipschitz and g(0) = 0. Thus for u € L*(Q,e 2% ¢73),
po € L%(Q) there exists p € W(0,T; H(Q), H=Y(Q)) solution of (5.2) such that
p(x,T) =0, cf. Section 4. Thus, when p € B, ®(p) is not empty in L*(Q) =

Thus, when v € L2(Q,e 25 ¢=3), po € L?(Q), p € B, ®(p) is a subset of
L?(Q), that is, ® is a multi-valued mapping. A fixe point of ®(p) is a vector
D € B such that p € ®(p). Thus, this fixed point P is solution of (5.2) with
p(z,T) = 0, that is, P is solution of (5.1) with p(z,T) = 0, which implies null
controllability for (5.1).

Thus, ®: B — 28 and we prove that it has a fixed point. We must prove, see
Glicksberg [9], that ®(p) is non-empty, ®(B) C B and ® is closed.

(i) ®(p) is non-empty for p € B, already proved.

(ii) @®(B) C B. In fact, for all p € B if p € ®(p), by definiton ®(p), p is weak
solution of (5.2). Multiplying both sides of (5.2); by p and integrate in Q, we get

d

p |p(t)‘iz(g) + \|p(t)||Hg(Q) < M|p(t)|%2(§2) + |Xw|L2(Q) ulz2(q) -

Integrating on [0,t), we have

T
O+ [ 101yt < olEscoy + el

1 t

By Gronwall inequality, it yields

T
1
|p(t)|2L2(Q) +/0 ||p(t)”§15(§z) dt < (‘po‘iz(g) + G |p0|%2(9)) Mt = 0y
(5.3)
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We also have, for all v € Hg () with |[v]| 1) < 1, that

|(pt,v)| = [{(+Ap — f(P)p + xwu,v)| < (5.4)
@m0l a2 @) + M) 2@ l[vllz2@) + [ulz2@lv®)|r2@) <
1/2 1/2
(1Pl @) + M C3* Cs + V2 Ipol 12 ) Cs ) 1ol ey

where C3 is the constant of immersion of H}(Q) into L?(2). Thus, we obtain
Oy < 1O lsgeen + C,
with Cy = M G5 Cs + €y [pol 12 ) Cs- Tt follows that
||pt|‘i2(0,T;H*1(Q)) < 2||P||%2(0,T;H5(Q)) +2C5T = 2C; + 2C4T. (5.5)

From (5.3) and (5.5), we obtain

T T
| 10y dt+ [ 1Ol 0y < 2. (5.6)
Thus,
pllws < My, with My = 2Cs + 2C2 T/,
Therefore, if p € B then ®(p) C B. Thus, ®: B — 25,

(iii) ®(p) is closed in L?(Q). In fact, let p be in B fixed and p,, € ®(p) such
that
pn — p strongly in  L*(Q).

By definition of ®(p), we have
Pt — App + f(D)Pn = Xoun in Q,
pn=0 on 3 (57)
pn(0)=po in €,

with

/ e~ 20342 (2, t) dadt < C / po (@) da,
Q Q

which implies \Un|%2(Q) < C|p0|%2(ﬂ) . Thus, we extract a subsequence of (u,)
such that

neN?

which will also be denote by (un), o

up, —u  weakly in  L*(Q). (5.8)
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By the same argument to obtain (5.6) from (5.4) and (5.5), we get

2 2 2
||p7l||L2(O,T;Hé(Q)) + Hpnt”LQ(O’T;Hfl(Q)) < M1 . (59)

From (5.9) we extract a subsequence (pn),, oy, such that

p, —p weakly L*(0,T; H&(Q))v
Pt — pr weakly L2(0,T;H 1(Q)), (5.10)
pn —p strongly L*(Q).

The last convergence has been obtained compactness theorem, cf Aubin [1]. From
(5.10) we pass to the limits in (5.7), as n — 0o, to obtain

pt—Ap+ f(P)p = xwu in Q,
p=0 on X. (5.11)
p(z,0) =po(x) in €,

and

/ 6—2504 ¢—3 u2($7t) dxdt < C/ pU(x)Q d.
0 Q

Thus, p € ®(p) and ®(p) is closed. Therefore, since B is compact of L?(Q) and
®(p) C B is closed, it implies that ®(p) is a compact of L?(Q).

(iv) @ has the closed graph in L?(Q) x L?(Q).

Remark 5.2. Let X be a locally convex topological vector space and B C X and
the mapping
. B> X

which for each p € B corresponds a non void convex set ®(p) of X.
We say that @ is closed if its graph

U @ 2®)
pEB

is a closed subset of the Cartesian product X x X.

In terms of direct sets it may be stated as follows:
ze > x in X, y.€P(x:) and y.—y. Then ye d(x).

This argument generalize the terminology for closed operator A with A a func-
tion with domain D(X) dense in X. In fact, we say that A: D(A) — X is a
closed operator, when

Tp, —x and Ax, —y,
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then © € D(A) and y = Ax. This means that the graph of A is closed in X x X
]

Let us prove (iv). In fact, let p,,, p, be such that

Pn — P Pn —p strongly L*(Q), (5.12)

and p, € ®(p,). We must prove that p € ®(p). In fact, from p, € ®(p,), it

follows that p,, is weak solution of:

Pt — Apn + f(Pn)Pn = XwlUn in Q,
pn=0 on X (5.13)
Pn(2,0) =po(z) in €,

and

/ =250 6342 (¢, 1) dadt < C / po(x)? dz.
0 Q

See definition of ®(p). By the same argument to obtain (5.9), applied to (5.13),
we obtain

1Pl 22 0,713 ) + WPt 0,111y < M- (5.14)
From (5.14) and the estimate for u,, in L?(Q), since e=25* ¢=3 > C, we obtain

subsequences (uy), oy and (pnt),, o such that
u, —u weakly L*(Q),
pn —p weakly L*(0,T;Hgy(S)), (5.15)
pnt = pr weakly L*(0,T; H™'(Q)).

From (5.12) we obtain subsequences (p,,),,cy» (Pn), ey Such that

D, =D ae in Q,

(5.16)
Pn —p ae. in Q.

By continuity of f: R — R we obtain f(p,,) — f(P) a.e. in @, then by (5.16), we
have
f®u)pn = f(P)p ae in Q. (5.17)

We also have

/ | f(B,,)pn|? dadt < M/ |pn|? dzdt < C M. (5.18)
Q Q
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Thus, by Lions [12]- Lemma 3 we obtain from (5.17) and (5.18), that

f@u)pn — f(P)p weakly L*(Q). (5.19)

Thus, passing to the limits in (5.13) as n — oo, we obtain:

pt—Ap+ f(P)p=xwu in Q,
p=0 on X (5.20)
p(z,0) =po(x) in €,

and

/ e ¢ 32 (z,t) dwdt < C/ po(x)? dx,
Q Q
what proves that p € ®(p).

Conclusion. The multi-valued mapping ®: B — 27 satisfies the conditions of
the infinity dimensional version of Shizuo Kakutani [10], cf. Glicksberg [9], thus
it has a fixe point, that is, there exists p € ®(p). It proves null controllability for

the nonlinear state equation (5.1). The proof of Theorem 5.1 is complete =

6 Approximate controllability
We consider the linear parabolic state system

pe— Ap+a(t)p = xou in Q,
p=0 on X, (6.1)
p(x,0) =po in Q.

As we have defined, in the Introduction, Section 1, (ii), we say that (6.1) is
approximate controllable in L?(Q), at time T > 0, if for each ¢ > 0, given
po € L?(Q) and pr € L2(R), there exists a control u € L*(Qy), Qu = w x (0,7T)
such that the corresponding solution of p(z,t) of (6.1) satisfies:

|p($,T) - pT(m)‘LZ(Q) <e. (6'2)

This concept of approximate controllability was introduced by J. L. Lions [11]
employing a theorem of continuation by Mizohata, see also Cara-Guerreiro [5],
Fabre-Puel-Zuazua [8], Zuazua [13].

In this section we prove the same result as an application of Carleman Inequal-

ities.
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Theorem 6.1. Fize T > 0 and given ¢ > 0 and po,pr € L*(QY). Then, there
exists a control u € L*(Q,) such that the solution p of the state equation (6.1)
satisfies (6.2).

Proof. As the system is linear we can suppose pg = 0. In fact, with py € L?(Q)

we solve the problem:

]/)\t*AZ/)\‘FCLﬁ:O in Q,
p=0 on X, (6.3)
i)\(O) = Po in Q.

Thus, if w = p — p, w is solution of (6.1) with w(0) = 0. Therefore, we consider

(6.1) but with pg = 0. To prove approximate controllability we define the set:
Ri(T) = {p(x,T);p solution of (6.1), with u € LQ(QW)} .

This set is called reacheble set and the index L means for linear problem. To
prove approximate controllability it is sufficient to prove that Ry (T) is dense in
L?(Q2). We will prove reasoning by contradiction.

Suppose Rp(T) is not dense in L?(2). Thus, there exists a non null vector
wr in the orthogonal complement Ry (T)* in L?(2). With wy we consider the
adjoint state:

w+ Aw—a(t)w=0 in Q,
w=0 on 3, (6.4)
w(z,T)=wr in Q.

Multiply (6.4) by p, solution of (6.1) with u € L?(Q,,) and integrate in Q. We
obtain:
/ (wy — Aw + a(t)w)pdzdt = 0.
Q

Then,

w(T)p(T)dz — /Qw(O)p(O)dx =0.

/Q(Pt — Ap + a(t)p)w dzdt + /

Q
Observe that p satisfies (6.1);, w(T') = wr and p(0) = pg = 0. Thus, we obtain:

—/ u(z, t)w(z,t) dxdt—l—/QwT(x)p(x,T) dx = 0.

w

To analyse the second integral above, observe that wr(z) belongs to the orthog-
onal Ry (T)* and p(x,T) belongs to Ry (T). Thus, the second integral is zero.
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We obtain

u(z,)w(z,t)dedt =0 for all u € L*(Q.),
Qu

what implies w(z,t) = 0 a.e. in @, . By Carleman Inequality, cf. Section 2, with
f =0, we obtain

/ (8303 w(x,t)?)e** ™ drdt < 0. (6.5)
Q

We have s3¢3 > C > 0, €2** > 0 in Q x (0,7). Then it implies w = 0 a.e. in
Q, by (6.5). We then have w(z,T) = wr(z) = 0, which is a contradiction. Thus
Ry (T) is dense in L?(Q2) m

7 APPENDIX

Observe that ¢ = eM?ll is constant for z € Q and

2s
e2a@t) < 75 | 0 <t <T.

/tt M (/Q s 1<x»y)|2dx> dy} dt <
/ [ ([ o) ay] i<
/OT [/Ot (/Q e 208 | £, (2, y) 2 |d:,:> dy}
/Q l/oT (./0 —HelPO | fu(a, )| Idy> dt] dz.

Now we will prove the following inequality.

/Q [/OT (/Oteﬂsw/ﬁ(t) |f1(x,y)|2dy> dt] dz < C/OT/Q |f1 (2, y)|? dady.

Analysis of the integral

T t
I :/ (/ e 2ee/BM) f1(w,y)l2dy> dt
0 0

In the integral I, we have

Then, we have

O<y<t and 0<t<T.
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Let us consider the change of variables in I, defined by the linear mapping

o(t,y) = (y,t), an involution, from R? into R2. It is given by

(at + by, ct + dy) = (y,1),

with a =0,b=1, c=1, d = 0. The matrix of ¢ is (1) (1)) with |deto| = 1.
Let us consider the domain K of R? defined by:
K={(t,y; 0<t<T,y<t}
and K = o(K) is defined by:
K={(y,t);0<y<T,y>t}

We have

T t T T
- ( / em/ﬁ“wfl(x,y)de) w- [ ( / e2w/ﬂ<y>|f1<x,t>|2dt> day.
0 0 0 Y

We have regularity for e=25¢/8(*)  Then:

T ¢ T T
/ (/ e 250/B() | f1(z,y)|? dy> dt < / (/ e 25%/By) |f1(x,t)] dt) dy
0 0 0 0
T T T
_ )2 d =2s0/BW) gy | = C )| dt,
(/ b t) (/ e y> | in@oia

with C' > 0 depending of 2 and T'. Integrating on €2, we have

T t T
/Q </0 (/0 e—25¢/B(t) |f1(x,t)|2dy>> dtdx < C’/O /Q|f1(x,t)|2 dedt m
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“Porque de feitos tais, por mais que diga,

Mais me hé de ficar ainda por dizer”

Camoes (Lusiadas-Canto III)
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