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Abstract

In this paper the normalizer property of an integral group ring of a
Frobenius group is investigated. Any element of the normalizer Ny, (G)
of G is determined by a finite normal subgroup (see [8]). Using this we
prove that the normalizer problem has a positive solution for Frobenius
groups in general. Several criteria for the normalizer problem to have a
positive solution are also given and we finish giving a short proof of a
result due to Farkas and Linnell.

Resumo

Investigamos o problema do normalizador para um grupo de Frobe-
nius G. Todo elemento de Ny, (G) é determinado por um subgrupo nor-
mal finito de G (veja [7]). Usando este fato, resolvemos por completo o
problema do normalizador para um grupo de Frobenius em geral. Damos
também varios critérios para que o referido problema tenha uma solugao
positiva e terminamos dando uma prova curtinha de um resultado devido
a Farkas e Linell.

1. Introduction

Let G be a group and ZG its integral group ring. Denote by U; = U, (ZG) the
group of normalized units of ZG. Until recently a long standing conjecture was
the following (Problem 43 in [19]): Nu, (G) = GZ(Uy), (NC)
i.e. the normalizer of G in UY; is (G, Z(Uy)), where Z(U,) is the centre of Uj.
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Coleman [1] showed that (NC) holds for all finite nilpotent groups. See also
[4], [6], [12], [13], [14] and [15] for other families of finite groups for which a
positive solution is known.

First Mazur [16] and then Jespers-Juriaans [7] and Hertweck [4, 5] proved
that the isomorphism problem is strongly related to the normalizer problem.

In [9] an important representation theorem is proved for central units. The
key observation to give an easy proof and also to generalize Mazur’s result was
to establish a link between this representation theorem and Mazur’s result. This
was done by Jespers and Juriaans in [7].

Any attempt to classify the groups for which the normalizer problem has
a positive solution would have to deal with infinite groups. So it is natural to
wonder if there also exists a representation theorem for normalizing units. One
such attempt is made in [17] by Mazur. However his theorem does not seem
strong enough to establish a positive solution for important families of groups.
In [8] (working independently from Mazur) a strong representation theorem
was proved (see the next section): if u € ZG is an normalizing element then
u = gw with g € G and (supp(w)) s a finite normal subgroup of G. This result
generalizes the one in [9] on central units and is indeed strong enough to give
a positive solution for the normalizer problem for many important families of
groups (note that in case G is finite these results are classical). For example it is
proved that the normalizing problem has a positive solution for locally nilpotent
groups, groups with no two torsion, F.C.-groups whose commutator subgroup is
a p-group (see also [17]) and torsion groups whose 2-elements form a subgroup.
This representation theorem was also used to prove that the group Outz(G) is
always torsion; in fact it is an elementary abelian two group whose rank is not
bigger than that of the torsion free rank of the centre of I, (ZG). In particular
if it is finitely generated then it is finite. For example this is the case when
the torsion subgroup of the fc-centre of G is finite. To prove these results it is
proved that the map f : My, (G)/G — Z(U)/Z(G) : uG — uwu*Z(G) is an
embedding. This actually means that the first group is generated by symmetric

units whose support contains one. Many other applications could be given but
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the focus, as it should be, was on the representation theorem.

This paper is a natural continuation of [8]. First we prove that the normal-
izer problem holds for Frobenius groups in general. A particular case of our
result (the case when G is a locally finite Frobenius group) was kept out of [8]
(this paper was submitted in November 1999 and on request of the editor we
concentrated on the representation theorem and only on some applications).
Second we prove some sufficient conditions for the normalizer problem to have
a positive solution which yield machinery to reach the final goal: is the (NC)
problem, in general, equivalent to the (NC) problem for finite groups? Until
now all our applications show that this should be the case. Third, we finish
this paper by giving an easy and elegant proof of a result due to Farkas and
Linnell which shows that not always a strong representation theorem is needed
to obtain extensions of known results.

Finally it is interesting to notice that verification of (NC) is nearly always
group theoretical in nature except for a group constructed by Marciniack and
Roggenkamp for which Y. Li proved that (NC) holds (see [13, 15]). However,
for infinite groups, ring theory is needed because our representation theorem is

a ring theoretical result.

2. The Results

First we recall some results from [8]. The finite conjugacy centre of a group G
is denoted by A(G) and its torsion subgroup by A*(G).

We recall two essential and easy to prove properties of the normalizer (for
proofs we refer to [19, Proposition 9.4 and Proposition 9.5]). Recall that by *
we denote the Z-linear involution on the group ring ZG defined by ¢g* = g1,
where g € G.

Proposition 2.1 Let G be an arbitrary group and u € U,.

1. w € Ny, (G) if and only if u*u € Z(ZG).
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2. (Krempa) If u € Ny, (G) then v®> € GZ(ZG), i.e. the automorphism on

G determined by conjugation by u? is inner in G.

Another easy to prove lemma is the following (see also Lemma 3.4 in [15]).

Note that this result is proved in [8] but we include a proof.

Lemma 2.2 Let G be an arbitrary group and u € Ny (G). If u™ € G for some

positive integer n, then u € G.

Proof. Since u € Ny, (G) we know that u*u = uu*. Because u" € G we thus
get (u*u)" = (u™)*u™ = g~'g = 1. Hence u*u is a periodic central unit and thus
u'u € Z(G). Write u =), u,g with each uy € G. So the coefficient of 1 of
wuis Yo uj # 0. It follows that u*u =1 and thus u € G.

For an element u =Y _. u,g (each u, € R) in a group ring RG over a ring

ca
R we denote by supp(u) ’zhe support of u, that is, the set {g € G | u, # 0}.
In [9] it is shown that central units in ZG, for G a finitely generated nilpotent
group, have a presentation of the form gv with g € G and v € U(ZT(QG)), with
T(Q) the torsion subgroup of G. As mentioned in [7] this result remains valid
for groups G in which the torsion elements form a subgroup T(G) and G/T(G)

is an ordered group and hence it holds for all groups in general.

Lemma 2.3 ([8]) Let G be a group and let R be a ring with a unit. If u €
Nu(RG)(G) then
o : G — Sym(supp(u)) : g — gy

is a group homomorphism, where

og(h) = ghu g 'u.
If, moreover, 1 € supp(u), then

Ker 0 = Cg(supp(u)),

the centralizer of supp(u) in G. Hence G/Cq(supp(u)) is embedded in Sym(supp(u))
and so supp(u) C A(G).
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We next recall the main theorem of [8]. For completeness’ sake we include

a proof.

Theorem 2.4 Let G be a group and u € Ny, (G). Then there exists a finite
normal subgroup N of G so that

U= gw

for some g € G andw € ZN. Moreover, w induces an automorphism ¢ of order
a divisor of 2|N|. If N has has odd order then ¢ is inner on G.

Proof. Let X = supp(u). To prove the result we may assume that 1 € X.
Hence, because of the representation lemma of [8] , X C A(G). Hence X has
only finitely many conjugates in G and thus X C H, with H a finitely generated
normal subgroup of G contained in A(G). In particular, H is a finitely generated
F.C.-group. Hence N = T'(H) is a finite invariant subgroup of H and H/N is
free abelian and thus ordered. Since u € U;(ZH) the lemma mentioned above
implies that u = hw for some h € H and w € ZN. As N is normal in G this

shows the desired presentation for u. For the second part see [8].

The following result also appeared in [8] but, for completeness’ sake, we also

include a proof.

Theorem 2.5 Let G be a finite group and suppose that F', the Fitting subgroup
of G, has odd order. Let m be the set of prime divisors of |F'|. If G is w-separable
then any automorphism ¢ of G which induces the identity on F has odd order.
In particular if ¢ is induced by a unit in N'(U(G)) then ¢ is inner.

Proof. Let g € G and z € F. Then g 'zg = ¢(¢g7'xg) = ¢(9) 'z¢(g). Hence
#(g)g~* centralizes F. But since F is m-separable we have that it contains its

centralizer in G. Hence for all g € G, ¢(g9) = ¥(g)g with ¢¥(g9) € Z(F). Let
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n = exp(F) then ¢™(g) = ¢¥(g)"g = g. So the order of ¢ divides n and hence is
odd. Krempa’s result gives the final part.

Note that all we needed is a self centralizing normal subgroup of odd order.
This result should be compared with one of Gross [3]. Also note that in case ¢ is
induced by a normalizing unit then ¢ = ¢, for some g € F, where ¢,4(z) = g~'zg
for all z € G.

As a consequence we shall show that (NC) holds for Frobenius groups G. In
first instance we show this result first for locally finite Frobenius groups. The
main reason being that its proof is more illustrating. In case G is also finite,
this result was proved by Polcino-Thierry in [18]. Even in this case our proof is
much shorter.

Before proceeding with the proof we first make some observations on the
F.C.-centre of a Frobenius group. Let G be a Frobenius group and H a Frobenius
complement of G, i.e., H is disjoint from all its conjugates in G. If H is such
a Frobenius complement of G we denote by K = (G \ J HY) U{1}. This is
a normal subset of G which need not be a subgroup. nye% has infinite order
then K must also be infinite and hence the F.C.-centre of G is trivial. So if the
F.C.-centre of G is non-trivial then H must be finite.

If G is a locally finite Frobenius group then a Frobenius kernel does exist
and all complements are conjugate in G. Moreover K is this kernel and it is
nilpotent (in the finite case this was proved by Thompson). We refer the reader

to [11] for these results.

Theorem 2.6 Let G be a locally finite Frobenius group. Then the normalizer

problem has a positive solution for G.

Proof. Because of a theorem of [8], we may suppose that the 2-elements of G
do not form a normal subgroup. Let u € Ny, (G). Let g € G and w € Uy (ZN),
with IV a finite normal subgroup, so that v = gw. If N is trivial, then u € G,
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as desired. So suppose N is not trivial, in particular A(G) is not trivial. Hence
by the previous remarks, the Frobenius complement H is finite. Since N is a
normal subgroup it is contained in the Frobenius kernel K of G. If |N| is odd,
then by Theorem 2.4 w and hence u induce an inner automorphism on G. If
|N| is even then K has 2-torsion. Since K is nilpotent, it follows that G has
a normal Sylow 2-subgroup; a contradiction. This finishes the proof if G is
infinite.

So we are left to deal with G a finite Frobenius group of even order. A
well known result on Frobenius groups implies that the Frobenius kernel K
is the Fitting subgroup Fit(G) of G. Since G does not have a normal Sylow
2-subgroup we get that the Frobenius kernel K is a nilpotent group of odd
order. Hence it is well known that K is abelian. Let ¢ be induced by a unit
u of U; (@) normalizing G. We shall modify ¢ so that it is the identity on
K. First, recall that Coleman’s result states that Ny, ) (P) = Ng(P)Cy,)(P)
for any p-subgroup P of G, where p is a prime number. Hence for a prime
divisor p of |K|, if P is a Sylow p-subgroup of K then there exists g, € G
so that é(y) = g, 'yg, for all y € P. So conjugation by g, 'u acts trivially
on P; and we thus may assume that ¢ acts trivially on P. Suppose that ¢
is another prime divisor of |K| and let @ be a Sylow g-subgroup of K. Fix
1 # z € P. For a given y € ) we then have ¢(zy) = ¢(z)9(y) = zd(y). As
d(zy) — vy = v (zy)u — 2y = [u™}, zyu] € [ZG, ZG] and because ¢(zy) € G
we obtain (see [19, Lemma 7.2]) that there exists g € G (dependent on zy) so
that z¢(y) = ¢(zy) = ¢ 'ryg = (¢7'xg)(97'yg). As N is the direct product
of its Sylow subgroups we obtain z = g~'zg and ¢(y) = g lyg. Because G is
a finite Frobenius group the first equality implies that ¢ € K. Hence ¢(y) = y
and thus ¢ is the identity on any Sylow subgroup of K, and thus also on K
itself. Since Fit(G) is the Frobenius kernel of G it follows that G is w-separable,
where 7 is the set of prime divisors of |K| and so we can apply Theorem 2.5.

Hence the finite case follows.
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Note that the proof of the finite case also works for Coleman automorphisms
which are defined in [15].

Theorem 2.7 Let G be a Frobenius group. Then the normalizer problem has

a positive solution for G.

Proof. Let u € ZG be a normalizing unit and denote by ¢ the automorphism
it induces on G. Our representation theorem tells us that we may suppose that
supp(u) generates a finite normal subgroup N, say, of even order. Let H be a
Frobenius complement. We saw above that H must be finite and hence NH is
a finite Frobenius group with H as a Frobenius complement. Since N is normal
it must be the Frobenius kernel and hence is nilpotent. Now modify u, with
an element of N (see [8] Proposition 2.1), such that it acts as the identity on
N. Now use theorem 2.6 to conclude that v acts as an inner automorphism
on NH. But since it acts as the identity on N and N is the Frobenius kernel
of NH it follows that we may modify u, with an element of N, so that it acts
trivially on NH, i.e., u is central in NH and still we have that supp(u) C N.
Now let g € G be any element. Then, since the support of u is contained in N,
it is clear that [u, g] € N and so g~'ug € Z(NH). Since u is a central element
of Z(NH) it follows that g~lug is also a central element of Z(NH) and thus
[u, g] is a central element of the finite Frobenius group NH. Hence [u,g] = 1

and thus u is a central element of ZG which completes the proof.

We recall a definition from [10].

Definition: Let F be a family of groups and G an arbitrary group. We say
that G is an F-group if for every normal torsion free subgroup N of G we have
that G/N € F.

We shall also say that a group G satisfies the strong normalizer problem if
for any normalizing element u € ZG there exists g € (supp(u)) such that ug is
a central element.

In [8] it is proved that nilpotent groups satisfy the strong normalizer prob-

lem. However it is not clear if this problem is equivalent to the original one.
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Corollary 2.8 The strong normalizer problem has a positive solution for all
groups if and only if it has a positive solution for the class of finitely generated

groups.

Proof. Let G be any group and let v be a normalizing unit. From our represen-
tation theorem we know that we may suppose that the support of u generates a
finite normal subgroup N, say, of G. Let M be the centralizer of N in G. Then
M has finite index and so we may choose {g1, -, ¢g,} a finite transversal for
M in G. Let H be the group generated by N and this tranversal. Then H is
finitely generated and hence it follows that v = hw where h € N and w € ZN
is a central unit of ZH. Now w commutes with all elements of M and all the

gis and so w commutes with all g € G, i.e., w is a central unit.

Lemma 2.9 Let G be a group with a torsion free subgroup H of finite index.
If G/H satisfies the strong normalizer problem then G satisfies the normalizer
problem. In particular if G is an F-group then the normalizer problem has a
positive solution for G provided the strong normalizer problem holds for every

member of F.

Proof. Let u € Ny, (G). Corollary 2.8 tells us that we may suppose that G is
finitely generated and we may suppose that supp(u) generates a finite normal
subgroup N, say. Denote by {g1,---,9,} a set of generators of G. Working
modulo N it is clear that [u, g;] € N for all 4.

Let 7 : ZG — Z(G/H) denote the natural homomorphism. Hence 7 is
injective on N and so the support of 7(u) is also a finite normal subgroup.
Since, by assumption, G/H satisfies the strong normalizer problem and because
f = m(u) normalizes G/H, we get that § = m(x)v, for some central element v

in Z(G/H) and x € N. We claim that z = uz™" is central in ZG. Indeed, for



126 E. JESPERS S. O. JURIAANS J. M. MIRANDA J. R. ROGERIO

any g € G,

(mr(u)m(@™), (g:))
(m(z)vm(a™"), 7(95))
= (U,ﬂ'(gi)) =1

(2 9:) = (m(2), 7(9:))

So (z,9;) € H. On the other hand, since z € N, we have that
(2,9i)) €N

Since N is periodic and H is torsion free we get that (2, ¢;) = 1 and hence indeed
z is central in ZG. Hence, u € G Z(U,), as desired.
O

Note that this result enables us to give an induction argument in some cases.
For example if G is a polycyclic-by-finite group then we may use induction on
the Hirsch length where possible.

Let u € ZG be a normalizing element whose support generates a finite
normal subgroup of G and suppose that the normalizer problem has a pos-
itive solution for N. Using Krempa’s result, it is easy to see that we may
modify u such that its support is still contained in N and it induces a deriva-
tion p : G — Oy(Z(N)) given by p(g9) = [u,g7!] (see the proof of theorem
2.1 of [8]). Denoting by M the centralizer of N in G we have that G/M is
a finite group and so p induces an element of H'(G/M,O5(Z(N))). So if
HYG/M,0,(Z(N))) = 0, e.g. if [G : M] is odd, then p is inner and hence

u induces an inner automorphism on G.

Corollary 2.10 Let G be a group such that the normalizer of finite normal
subgroups of G has odd index. Then the normalizer problem has a positive

solution for G.

So now we actually know what the obstruction is to achieve the main goal
mentioned in the introduction. From here we could try to establish a positive
solution for several other classes and families of groups but of course this would

not shed any light on things.
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In [2] D. Farkas and P. Linnell give a short proof of a result due to Marciniak
and Sehgal. We finish this paper giving an even shorter proof of the result of
Farkas and Linnell.

Theorem 2.11 ([2], Theorem 1) Let G be an arbitrary group and let U be a
subgroup of Uy (ZG). If U contains G and [U : G| is finite, then U = G.

Proof. It is easy to see that we may suppose that G is a finitely generated
F.C.-group (see [2] page 1). In particular G is a residually finite group. Now let
u € U then, since G is residually finite, there exists a normal subgroup N C G of
finite index in G such that the canonical homomorphism 7 : ZG — Z(G/N)
is injective on supp(u) (see [10]). Since [U : G] is finite it follows that «(U) is
finite. In this case it is well known that 7(U) = G/N (see [19]). It follows that
|supp(7(u))| = 1 and since 7 is injective on supp(u) it follows that |supp(u)| = 1
and thus u € G.

O

It is of course enough to suppose that U is torsion over G, i.e., for all u € U
there is an integer n, depending on u, such that u™ € G.

Note that if u € ZG is a central unit then its support generates a finitely
generated F.C.-group. So the same proof of the former theorem and a classical
result due to Berman-Higman, gives us the following: Let u € ZG be a torsion
central unit, then v € G. This result has been proved and reproved by many
authors but, as just mentioned, it follows directly from Berman-Higman’s clas-
sical theorem of the finite case. In [8] (see lemma 2.2 of the present paper) it is
proven that if u € ZG is a normalizing unit which is torsion over G then v € G.
Note that, using lemma 2.3, the same proof of theorem 2.11 and the known
finite case, we also obtain this result. What we want to stress here is that for
some results a representation theorem is not needed but for others it seems nec-
essary to have one. Note also that most results mentioned here remain valid for
group rings RG with R a G—adapted ring, that is, R is a commutative integral
domain of characteristic zero such that no rational prime p, say, dividing the

order of GG is invertible in R. We leave this for the reader to check.
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