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TRANSVERSELY HOLOMORPHIC FOLIATIONS
AND CR STRUCTURES

Howard Jacobowitz *®

Abstract

This paper relates elliptic and CR structures by generalizing results
of Haefliger and Sundararaman.

1. Statement of results

We start with a bundle V' of complex tangent vectors on a manifold M,

VcCeTM.
Definition 1 V is involutive if [V, V] C V.

We mean this on the sheaf level: Let U be an open subset of M and denote

. Then V' is involutive if

by I'(U, V') the set of smooth sections of V'
X, Yel(U,V)=[X,Y]e (U, V).
Complex structures and CR structures are well-known examples. Involutive

structures are also known as formally integrable structures. The basic reference

for these structures is [14].
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Definition 2 (M, V) is an elliptic structure if V is involutive, V+V = CQTM

and d = rankcV NV is greater than zero.

Note that d is a constant over the manifold. When d = 0, (M, V) is a complex
structure (see Theorem A). So in our convention, a complex structure is not

elliptic.
Here is a simple and useful class of elliptic structures:

Let M be a complex manifold and 7 : B — M a fiber bundle over M. Let
T° be the global sub-bundle of C @ T*M generated by the local coordinates
{dz1,... ,dz,} and let W = 7*(T"°). Then V = W+ C C® TB is involutive.
In particular, the Hopf foliation provides an elliptic structure on S3. Note that
not all elliptic structures are locally trivial fiber bundles. This may be seen by

considering Seifert fibrations. See also [9].

We shall use the convention of writing an elliptic structure as (M4, V)
to mean that

rankcV =n+d, rankecV NV =d.

Let U C TM be defined by C® U = V NV. Note that [,U] C U and so
U defines a 2n-codimension foliation F', which we call the foliation associated
to the elliptic structure. We sometimes also refer to this foliation as the elliptic

foliation.

If we focus on the foliation F' rather than on the sub-bundle V' we are led
to the equivalent concept of a transversely holomorphic foliation. This is a

well-studied particular case of the structures introduced by Haefliger [4].

Definition 3 A co-dimension 2n foliation F' on M?"*t? is called transversely

holomorphic if there exists a covering M = U; U?, and local coordinate charts
®; : Ul — C* xR? such that the leaves of F are locally given by the sets {z = c}

and with transition functions Fj, = ®; 0 ®;' of the form

# = fir(2")

tj = g]-k(zk, Ek, tk)
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where fji. is holomorphic in an open neighborhood of ®x(U? N U*) and gj;, is
C* on (U N U*). We will often identify U with the open subset ®y(U*)

and speak of coordinates (2*,t) on U*.

The equivalence of elliptic structures and transversely holomorphic foliations
is a consequence of the Newlander-Nirenberg Theorem (see §2). In particular,

the components of z are annihilated by the local sections of V.

Besides elliptic structures, we also will be considering a second type of in-

volutive structure. Again let

VcCeTM.

Definition 4 (M,V) is a CR structure if V is involutive, V NV = {0} and
VoV£CRTM.

This last condition excludes complex structures.

Definition 5 Let (M,V) be a CR structure. A function F' defined on some
open set U C M is a CR function on U if Lf =0 forall L€V, g€ U.

The classic example is a real hypersurface in a complex manifold. The con-

struction is local, so let M?"~! C C*. Set
V=(CaTM)NT(C"). (1)
Here 7
T, (C") = linear span{%, . ,%}

Then, [V, V] C V,V NV = {0} and rankc V+V = 2n — 2 < 2n — 1. Thus
(M, V) is a CR structure. Note that the restriction of any holomorphic function
to M is clearly a CR function.

The definition of V' given in Equation 1 makes sense for any submanifold

Mk C Cr. Tt is clear that [V,V] C V and that VNV = {0}. So V is a
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CR structure whenever it has constant rank. This is a limitation on how M is
placed in C*, except for the case above where M is of codimension one. We
return to this in §2. Note that the restriction of any holomorphic function to

M* is again a CR function.

We shall use the convention of writing a CR structure as (M?**4 V) to
mean that

rankcV = n.
So for a real hypersurface in C**! we write (M?"+! V).

We return to the Hopf foliation of S C C?. The CR structure is given by
Vo={LeCRTC|ss: Lz; =0, Lz, =0, L|z|* =0}
and the elliptic structure is given by
V={LeCQRTC|g : zoLzy — z1Lz, =0, L|z|> = 0}.

SO Vi) a V.

Definition 6 An elliptic structure (M***4, V) dominates a CR structure (M*"+* V;)
if Vo C V.

Recall that our convention is
rankcV = n + d and rankcVy = n.
Lemma 1 [f the elliptic structure (M*"*? V) dominates the CR structure

(M4 V4), then
V=Wae(CaTF)

where F' is the foliation associated to V.
Corollary 1 If the elliptic structures (M***4, Vi) and (M*"+, Vy) both domi-

nate the CR structure (M*"+% Vy) and if these elliptic structures have the same

foliation then Vi = V;.
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Mendoza and Treves (personal communication) noticed that many interest-
ing elliptic structures dominate CR structures. We first show that a concept
introduced by Haefliger and Sundararaman essentially gives a necessary and suf-
ficient condition for a given elliptic structure to dominate some C* CR structure.

We then define CR foliations and explain their connection to this question.

First we note that an elliptic structure is always equivalent to a C'* elliptic
structure. (Or, what is the same thing, a transversely holomorphic foliation
is always equivalent to a C* transversely holomorphic foliation.) See the next

section for this and for other well-known results that we will be using.

In particular, the leaves of the associated foliation are C' immersed mani-
folds in M. Thus they may be complexified to yield a manifold M’ of dimension
2n+2d containing M, and locally unique in a neighborhood of M. This manifold
is foliated by leaves which have the structure of complex manifolds of dimension
d. Tt is natural to ask if M’ has a complex structure in which this foliation is

holomorphic. This motivates the following definition.

Definition 7 [5] A transversely holomorphic foliation F on M** is complex-
ifiable if there exists a complex manifold AA{, dimeM = n+d, with a holomorphic

foliation F by leaves of complex dimension d and a C¥ embedding
&:M— M
such that
1. For each leafz in M there is a leaf L in M such that
LO®(M) = d(L).
Further ®(L) is totally real in L.

2. If [ is holomorphic near some point ®(p) € M and constant on the leaves,

then f o ® is a holomorphic function of z* whenever p € UF.

The definition of totally real is recalled in the next section. We have added

to the definition of [5] the requirement that ® is C*. This is natural, in light
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of the preceding discussion and avoids the distraction of an extra argument to

reduce to this case.

When M is a C'* manifold, we say that a CR structure is C'* if there exists
an C* atlas for M, compatible with the original C'*® atlas, in which Vg is a C'¥
bundle.

Theorem 1 An elliptic structure (M?"+? V') dominates some C* CR structure

(M4 Vi) if and only if (M**? V) is complexifiable.

This result is essentially due to [5]. In §3 we sketch a new proof based
on CR structures. Further, it is asserted in [5] that there exist transversely
holomorphic foliations that are not complexifiable. However there is a gap in
their argument. So the existence of noncomplexifiable transversely holomorphic

foliations, while highly likely, remains open.

Conversely, we ask when is a given CR structure dominated by an elliptic
structure. The Newlander-Nirenberg Theorem implies that if there do not exist
“enough” CR functions then the CR structure cannot be dominated by an
elliptic structure. To avoid such local obstructions, we restrict our attention to
C“ CR structures. Then we can always find, locally, an elliptic V' with V5 C V.
For now there exist, in the neighborhood of any given point, CR functions

Sfis--o fata such that
dfi Ao Adfga Ndf AL NS #0

(see §2 ) with the CR structure given by Vo = {dfi,... ,dfnsra}*. Soset V =
{dfi,... ,df,}*. Then, near the given point, V is an elliptic structure and
VoCV.

Thus the existence of V' is a global question. Here is one formulation of the

topology involved.

Let (M*"+? V;) be a CR structure and let F be a foliation by leaves of
dimension d. Define the sub-bundle H C TM by

CoH=VoaV.
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Note that rankp H = 2n.

Definition 8 (M V,, F) is a CR foliation if for each p € M
1. T,F & H,=T,M and

2. there exists a neighborhood U of p and CR functions fi,..., f, such that
dfi A ... Ndfy Ndf, ... Ndf, #0

and
{acU: f(q) = f(p)}

is the connected component containing p of the intersection of U with the leaf

through p.

We say that a CR structure (M, V) admits a CR foliation if there is some
foliation I such that (M, Vp, I') is a CR foliation. We also call /' a CR foliation,

when the CR structure is understood.

The existence of the foliation F' places a restriction on the CR structure

(M, Vp). This is a global restriction; clearly such a foliation always exists locally.

It is known that every orientable 3-manifold admits a CR structure but most
such manifolds do not admit CR foliations. (The first fact follows from [8] and
[7] and the second from [2] and [3]). So the global restriction is quite strong.

Theorem 2 A C* CR structure (M*"+t* Vg) is dominated by some elliptic
structure (M*"+4 V) if and only if (M*"*?,Vy) admits a CR foliation.

Remark. The elliptic structure is complexifiable (by Theorem 1).

Proof of Theorem 2. Assume (M, V;) is dominated by some elliptic structure
(M,V). We claim that the foliation F' of the elliptic structure is a CR foliation.
From Lemma 1 we have

V=V%a(CTF).
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Since V+V = C®TM while VEJ@VO:(D@H, we see that
CeTM=(CeH)®(CTF).

Thus
TM=H&TEF.

Further, for any p € M, there exist coordinates (z1,... , 24, t1,... ,14) such that
F={z=c¢} near p.

Here we use the equivalence of elliptic structures and transversely holomorphic
foliations. Since Vo C V, the functions zy,...,z, are CR functions. Clearly,

also

day Ao . Ndzy NdzZa N ... Ndz,; # 0.
Thus (M, V, F) is a CR foliation.
Conversely, assume that (M, Vp, F') is a CR foliation. Define
V=Wae(CaTF).

Then rankcV = n +d, rankcV N V=dand V+V =C®TM. Thus V is an

elliptic structure provided it is involutive.

Finally, near any point p € M we have CR functions fi,..., f, such that
df Ndf #0 and {f = ¢} gives F . Thus

Vo C {df}* and TF C {df}*.

Hence V' C {df}* and by a dimension count V' = {df}* . Tt follows that V is

involutive and hence is an elliptic structure that dominates V4.

2. Preliminaries

First we recall the definition and some basic properties of almost complex struc-

tures.
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Definition 9 Let X be an even dimensional manifold and J : TX — TX, a

bundle map. (X, J) is an almost complex structure if J* = —1I.

The eigenvalues of J are 7. Extend J by complex linearity to J: C® TX —
C®TX and let T 0) be the ¢ eigenvector space and T{o,1) the —i eigenvector
space. These bundles are each of rank equal to %dimX. Note that

T(0,1)|p ={Z7e€CeTM,: Z=w+iJw, weTM,}.

One could alternatively define an almost complex structure by focusing on V' =

T(O,l):

Definition 10 (X,V) is an almost complex structure if V is a sub-bundle of
CROTX with VoV =CoTX.

We recover J by showing the map of TX — TX given by Rv — Jv for v € V
is well defined. We use R and & for the real and imaginary parts of functions,

vectors, etc.

Definition 11 An almost complex structure (X, V') is called integrable if V' is

involutive.

The Newlander-Nirenberg Theorem establishes that a manifold with an inte-

grable almost complex structure is complex.

Theorem A. [10] Let V € C® TX be an involutive bundle with V & V =
C®TX. Then X admils a complex structure with V = Ty1(X).

In other words, there exist an open covering M = |JU’ and local coordinates

4 s . ]
(z1,...,2.) on U7 such that

. { 0 5, }
i = linear spani —

0z, 9z,

v

and on the overlap U9 N U* the map 2/ — 2* is biholomorphic.
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A version of the Newlander-Nirenberg Theorem ([11] or [14], page 291) ap-

plies to elliptic structures.

Theorem B. An elliptic structure (M*"*? V') admits a co-dimension 2n trans-
versely holomorphic foliation F with CQ TF =V NV and, in local coordinates

for the transversely holomorphic foliation, V = {dzi,... ,dz,}*.

The converse is trivial: If F' is a transversely holomorphic foliation then the
locally defined bundles linear span{ 0z, .. .05, 04y, - . . , O, } fit together to give
a global elliptic V.

In the definition of a transversely holomorphic foliation, we required that

gi; € C*. In fact, every transversely holomorphic foliation is of class C“.

Theorem C. [5] Let M be a C™ manifold and let F be a transversely holomor-
phic foliation. There exists a C* structure on M compatible with the given C'*
structure, a covering M = \JU? and local coordinate charts ®; : UY — C* x R?

with transition functions Fj, = ®; 0 ®;' of the form
2 = fu(e)
H = gjk(zke Eka ['k)
where fj1, is holomorphic in an open neighborhood of (U’ NU*) and g;1, is C*

on (U NU*).

Now let M be a ' manifold and V a C* sub-bundle of C®@ TM. If V
is elliptic then there exists a C'* structure on M, compatible with the original
O™ structure, in which V' becomes a C* bundle. Such a result does not hold,
for example, for CR structures. There exist C'* CR structures which cannot be
given by a C* bundle V. In fact, C CR structures have the following property
which is definitely not common to most C'*> CR structures. See [12] for the first

counter-examples.

Theorem D. [1] Any C¥ CR structure is locally realizable.
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More explicitly, this theorem asserts the following: Let Vo be a C¥ CR
structure on M?"*¢, Then for each point p € M there exists some neighborhood

U of p and CR functions fi,..., fn,91,...94 on U such that

dfi Ao ANdfu ANy Ao AN Adgy AL N dgg # 0 at p.

Thus a C'* CR structure which admits a C structure must have “many” CR
functions. However, there do exist €' CR structures with “few” CR functions
[12] or even no CR functions, except the constants [13], [6]. These C'* CR
structures cannot be made C* and the ones with too “few” CR functions cannot

be dominated by elliptic structures.

We have seen that whenever there is an induced CR structure on M™ C CV,
then the restriction to M of a holomorphic function gives a CR function. In

the C'“ case the converse is also true.

Theorem E. Let M™ C CN be a CR submanifold, p a point of M, and g a
CR function in some M -neighborhood of p. If M and g are real analytic, then
there exists a function h holomorphic in a CN -neighborhood of p such that h

restricted to M coincides with g.

We have also seen that if M is a real hypersurface in CV, then
Vo= (C®TM)N T (CY)

always defines a CR structure and, more generally, that if M” C CV then
(M, Vo) is a CR structure provided rankcVy is a constant. Here is a useful
condition guaranteeing this. First, let J : R? — R?N be some complex struc-
ture on the vector space R?Y. This just means that J? = —I. Each real plane

P" C R*N contains a maximal complex sub-plane Pg given by
Pc=PNnJP.

The dimension of Pg is upper semi-continuous — it cannot increase under small
perturbations. Further, for n > N the minimal and generic complex dimension

is n — N, while for n < N this minimal dimension is zero.
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For any M"™ C CV, let
H=TMnNJTM.

(It is easy to see that this is equivalent to our previous definition of H.)

Definition 12 Ifn > N and rankg H = 2(n— N), then M is said to be generic.
Ifn < N and H = {0} then M is said to be totally real.

Finally, the maximal complex plane H is related to the induced CR structure
Vo in a very natural way: If {L;,..., L,} is a basis for }; at some point p € M,
then {RL,,SLy,... ,RL,,SL,} is a basis for H at that point. Hence when M
is generic, V is of constant rank and so defines a CR structure.

To further explain generic and totally real and to present some results used

in §3, we have the following result.

Lemma 2 For M?"t? C C'*, the following are equivalent
1. M is generic at p.

2. After a complex rotation at p, M is given locally by

with (z,w) € C* ¢t € RLF : C* x R — C? where for each fized = the
submanifold {(z, w) : w = F(z, Z,1)} is totally real.

3. Proof of Theorem 1

We fix an open covering of M and local coordinates as in the definition of

transversely holomorphic foliations.

Theorem 3 (M, I) is complezifiable if and only if there exists a real analytic
global vector-valued one-form w : TM — TF such that w|rp is the identity and
in U7
a
W= w,® 3
2 g,
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with

dw, 20 mod{w,... ,wa,dz1,... ,dz,}.

Remark. This is essentially the result of Haefliger and Sundararaman. We have
only added the observation that the relation between J and w can be made more

explicit than is done in [5] and so we end up with a global real-valued w.

We now prove Theorem 1 from Theorem 3.

Proof of Theorem 1. Let (M, F') be complexifiable. Then we havew : TM —

TF. Define an involutive structure on U* by
7k __ k k  k k.l
Var = dars: oo 508500500 505 1

The elliptic structure on U* is given by V = {dzF,... ,dz*¥}+. So VF C V.
Lemma 3 V} is a C* CR structure on U* and VF = V§ on U0 UY.

Proof: From the fact that w|rp is the identity, we see that the 2n + d-form
wAdzA\dZ is never zero. Hence V{¥ has constant rank (equal to n) and Vg“ﬂVTf“ =

{0}. Further, from
dw =0 mod{w,dz}

we see that [Vo, Vo] C Vo. Thus V{ is also a CR structure. Further, recall that
the original elliptic structure could always be taken to be C“. Thus V{ is also
a C¥ structure. That VJ = Vi on U* N U7 follows from the facts that w is

globally well-defined and the transition functions 2/ = H;(z*) are holomorphic.

For the converse, let the elliptic structure (M, V) dominate a CR structure
(M, Vo). To show that (M, V') is complexifiable, we show how to construct the

one-form w.

We start with a general observation. Let F' be a foliation of co-dimension

2n on a manifold M of dimension 2n + d and let H be a distribution on M of
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2n—planes transverse to F'. Then there exists a unique 1-form w : TM — T'F
such that

wt =H

w|rr = identity.

Now if (M, V) dominates (M, Vy), then H C TM defined by CQ H = Vy& Vg
is transverse to F'. So we have such a form w : TM — T'F. Using the usual local

coordinates (z,t) for the elliptic structure in some U, we write w = Y w, ® %.

Since w annihilates H, it also annihilates V4. Further, since Vo C V, dz also
annihilates V5. Thus from

wAdz AdZ#0

we conclude

Vo ={dz1,... ,dzn,w1,... ,wa}t
in U*. From [Vo, Vo] C Vj it follows that

dw, 20 mod{dz,w}.

We then apply Theorem 3 to derive that (M, V') is complexifiable.

It is possible to prove Theorem 1 without recourse to Theorem 3. First, if
the elliptic structure (M?"+4 V') is complexifiable, then the fact that the leaves
of F' are totally real implies that M is a generic submanifold of M and hence
has an induced CR structure. Conversely, if (M**+4 ;) is a C¥ CR structure
with Vo C V/, then the local realizability result, Theorem D, may be used to
construct a compatible global complex structure on M. We want to provide a

few details about this approach.

First assume (M, F) is complexifiable and let ® : M?*t¢ — M be the
complexification. Thus Misa complex manifold of complex dimension n + d
and is holomorphically foliated by leaves of complex dimension d. For each leaf
L of the elliptic foliation F' on M, there is a leaf L of the holomorphic foliation
[ on M such that

®(L) C L.
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In particular, for each p € M, there exists some open neighborhood U of p in M
and some open neighborhood U of d(p) in M and some holomorphic function
bl U/ = C* such that each component of LN U is of the form f~'(c) and each
component of LN U is of the form (f o ®)7'(c). Recall that ® is a C* map.

Lemma 4 ®(M) is a generic submanifold ofM and so
Vi = (CaT(®(M)))N To, M

is a C¥ CR structure on ®(M).

Remark. It follows that Vo = {X € C@T(M), ®.(X) € Vj} isa C¥ CR struc-
ture on M dominated by the elliptic structure V. Thus (M, F') complexifiable

implies V' dominates a C* CR structure.

Proof: Choosing local coordinates (z, () € C**¢ for M with the leaves of
P given by {z = ¢}, we get local coordinates (z, t) € C* x R? for M and
®: M — M becomes

For each fixed z, the set

{C eC: ¢ :f(z,E,t)}

is a totally real sub-manifold. Thus, as a consequence of Lemma 2, ®(M) is

generic.

Now we need to show, conversely, that if the elliptic structure (M2"+4 V)

dominates some C* CR structure (M*"+? 1;), then (M, F) is complexifiable.

Since F is C%, each leal may be complexified to yield a manifold M’,
dim M' = 2n + 2d, with a foliation F’. Each leaf of F’ is of dimension 2d
and has a complex structure. We claim that M’ admits a complex structure in
which F’ is a holomorphic foliation and such that the induced complex structure

on each leaf of F' agrees with this original complex structure.



190 H. JACOBOWITZ

We fix a covering of M, M = |J; U7, by sufficiently small open sets. The
foliation F' is given by {f? = c}, where ff, ..., fI are functions on U with
Lfi=0,LeV,and dff A...Adfs #0. Since Vo C V, each f] is also a CR

function.

Lemma 5 Assume that for each j there exist C* CR functions gi,. .. ,gé on
U’ such that
dfi ANdfi Adg® #0 on U’

and for each j and k there exist functions Fy; and Gy; holomorphic on
PP nUMed U nU cCt
such that

Ff  =EAp)
g =Gy, 9.

Let b9 be the holomorphic extension to M' of g. Then the local charts

{17} define a complex structure on M’ which is the desired complexification.

Remark. We use f’ to also denote the extension of f’ to an open subset of
M, defined by taking f’ constant on the leaves of F'.
Proof: We only need to show

dfi NP A dl N TR £ 0

everything else then follows. It suffices to do this for a point p € M. We

suppress the superscripts.

So assume that at some point p € M we have

df Ndf Adh Adh = 0. (2)
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Choose a basis Xi,...,Xy,,Th,...,T; for T,M such that
dgr(X;)=0fork=1,... ,dand j=1,...,2n
and such that each Tj is tangent to the leaf through p. Here we are using
df Ndf A dg # 0.

Note that also dhy(X;) = 0. Let J : T,L — T,L’ correspond to the complexifi-

cation of this leaf. Then

{X1,.. ., Xon, Ty oo Ty JThy .o J T4}
is a basis for T,M’. From (2) we have

((df AdF)(Xa Ao A X)) ((dh AdR)(TL A ... A JTy)) = 0.
Next, from df A df A dg # 0, we see that the first factor is not zero. Thus
(dh AdR)(Ty A ... A JTy) =0

from which it follows (since (T} + ¢JTy)h = 0) that

dh((Ty —iJTO)N ... AN (Ty—iJTy)) =0
and hence (again using (Tj + 1JTy)h = 0)

(dhi Ao oNdhg)(Th N .. ANTy) =0

and so also

But this contradicts df A df A dg # 0.

So to prove Theorem 1, we need to show that given f7 as described immedi-
ately before Lemma 5, there exist ¢/ satisfying the assumptions of this lemma.

We work in a fixed U7 and again drop the superscripts on f and g.
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Lemma 6 Let (U V}) be a C¥ CR structure and f : U — C* a CR map
with df A df # 0. Fiz some point p € U. If {q: f(q) = f(p)} is transverse to
H, then there exists a neighborhood Uy of p and a CR mapping g : Uy — C* for
which df N df Adg # 0. Further, g is real analytic provided f is.

Comparing this lemma with Theorem D we see that here the first n compo-

nents are specified and we wish to find the remaining components.

Proof: By Theorem D, there is some C* CR map U?"t4 — C**?, so we may
assume U2+ C C? and py = 0 € C**?. Let Ty denote the tangent space
to the leaf at p = 0. Our assumption is that Ty is transverse to Hy. But

rankpHy + rankgTy = 2n + d. Thus
HO @ TO - TOL/‘/{

so JToy N Ty = {0} and Ty is a totally real d-plane in C**¢. Thus we may find
coordinates (zj ...z, w; ... wy) with w = u + iv such that M is a graph over

(z,u). That is
M = {(z, u +1¢(z,Z,u)} and dip(0) = 0.

Note that df|r, = 0, so, at the origin, dfi A --- Adf, = Adzy A ... A dz, with
A # 0. Thus for g, = ue + ite(z,Z,u) we have at the origin

df Ndf A dg = |M\*dz AdZ A du # 0.
This proves the Lemma.

We need the transverse condition; this is demonstrated by simple examples.

Returning to f7 : U/ — C", we apply this lemma to obtain ¢’ : U7 — C?
such that

dfi AdF A dg’ # 0.
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We claim that on U7 N U* we have

£ =Fy(f)

9" =Gy(f, ¢
with Fy; holomorphic near f7(U7NU¥) and Gy; holomorphic near f7(UNU*) @
¢ (U7 N U*). To see this, we may start with U7 C C**? and f/ = 2z, ¢ = w.
Then f* is CR on U/ NU* and hence is the restriction of some holomorphic FJ;
(Theorem E). Provided we shrink each U a little before starting, we can obtain
that FJ; is holomorphic in a C"*? neighborhood of the submanifold f/(U7 NU*).

Thus
5 = Fij(z, w)lu = Fi (£, ¢).
In the same way
9" =G(f, ¢')

with Gy; holomorphic. However, {f = ¢} gives the foliation F' and it follows

that F'* is independent of g. So we are done.

Finally, we use Lemma 5 to complete the proof of Theorem 1.
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