

PROJECTIVE DIMENSIONS FOR ONE POINT EXTENSION ALGEBRAS

Flávio Ulhoa Coelho Maria Izabel R. Martins José Antonio de la Peña D

Let A be a finite dimensional k-algebra and let M be a finitely generated A-module. The algebra $B = A[M] = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$, with the usual matrix operations, is called the one-point extension of A by M. It is well-known that the finitely generated B-modules can be identified with triples (k^t, X, f) , where X is an A-module and $f: M \otimes_k k^t \longrightarrow X$ is an A-morphism.

When dealing, for instance, with necessary conditions for an one-point extension B = A[M] to be quasitilted, one needs good criterions for deciding the injective and the projective dimensions of a B-module (k^t, X, f) in terms of (homological) properties of X and of f. Denote by $\mathrm{pd}_A X$ and $\mathrm{id}_A X$ the projective and the injective dimensions of an A-module X, respectively. In [3](III.2.2), it has been proved that $\mathrm{id}_B(k^t, X, f) \leq 1$ if and only if $\mathrm{id}_A X \leq 1$ and $\mathrm{Ext}_A^1(M, X) = 0$. On the other hand, only necessary conditions for $\mathrm{pd}_B(k^t, X, f) \leq 1$ were established in general. The purpose of this short note is to establish a criterion for $\mathrm{pd}_B(k^t, X, f)$ to be at most one, generalizing known results from [3]. Let $\tilde{X} = (k^t, X, f)$ be an indecomposable B-module. We shall see in section 1 below that the morphism f induces naturally a morphism Θ_f : $\mathrm{Hom}_A(\mathrm{Ker} f, -) \longrightarrow \mathrm{Ext}_A^2(\mathrm{Coker} f, -)$. Our criterion can be stated as follows.

Theorem. Let A be an algebra with $gl \dim A \leq 2$, B = A[M] and $\tilde{X} = (k^t, X, f)$ an indecomposable B-module with $f \neq 0$. Then $pd_B\tilde{X} \leq 1$ if and only if

- (a) Kerf is a projective A-module; and
- (b) The sequence $Hom_A(Kerf, -) \xrightarrow{\Theta_f} Ext_A^2(Cokerf, -) \longrightarrow 0$ is exact.

We shall prove this result in section 1 below, while in section 2 we shall see some applications to the class of quasitilted algebras. The results of this paper were completed during exchange visits México - São Paulo. The authors wish to thank their Institutions, FAPESP in Brazil and CONACyT in México for support. The first author also acknowledges support by CNPq.

1. Main result

For a given non zero morphism $f \colon Y \longrightarrow X$ in mod A, we shall denote by ξ_f the exact sequence $0 \longrightarrow \operatorname{Ker} f \stackrel{\iota}{\longrightarrow} Y \stackrel{f}{\longrightarrow} X \stackrel{\pi}{\longrightarrow} \operatorname{Coker} f \longrightarrow 0$, where ι and π denote the natural inclusion and projection, respectively. We shall first see that ξ_f induces naturally a morphism $\operatorname{Hom}_A(\operatorname{Ker} f, -) \stackrel{\Theta_f}{\longrightarrow} \operatorname{Ext}_A^2(\operatorname{Coker} f, -)$. In fact, let $p \colon P_0 \longrightarrow X$ be the projective cover of X in mod A and consider in mod A the exact sequence

$$0 \longrightarrow K \longrightarrow Y \oplus P_0 \xrightarrow{(f,p)} X \longrightarrow 0$$

where K = Ker(f, p). From the snake lemma, we have the following exact sequences

(*)
$$0 \longrightarrow \operatorname{Ker} f \longrightarrow K \longrightarrow \Omega \longrightarrow 0$$
 and

$$(**)$$
 $0 \longrightarrow \Omega \longrightarrow P_C \longrightarrow \operatorname{Coker} f \longrightarrow 0$

where $\Omega = \Omega^1(\operatorname{Coker} f)$ is the first syzygy of $\operatorname{Coker} f$ and $P_C \longrightarrow \operatorname{Coker} f$ is the projective cover of $\operatorname{Coker} f$ in $\operatorname{mod} A$. Using (**) and the fact that P_C is projective, we infer that, for each $i \geq 1$, the connecting morphism $\delta_i \colon \operatorname{Ext}_A^i(\Omega, -) \longrightarrow \operatorname{Ext}_A^{i+1}(\operatorname{Coker} f, -)$ is an isomorphism. Using (*), we get the connecting morphism $(\operatorname{Ker} f, -) \xrightarrow{\gamma} \operatorname{Ext}_A^1(\Omega, -)$. Define now $\Theta_f = \delta_1 \gamma$.

We shall now prove our main result.

Theorem 1.1. Let A be an algebra with $gldimA \leq 2$, B = A[M] and

 $\tilde{X}=(k^t,X,f)$ an indecomposable B-module with $f\neq 0$. Then $pd_B\tilde{X}\leq 1$ if and only if

- (a) Kerf is a projective A-module; and
- (b) The sequence $Hom_A(Kerf, -) \xrightarrow{\Theta_f} Ext_A^2(Cokerf, -) \longrightarrow 0$ is exact.

Proof: The fact that $pd_B\tilde{X} \leq 1$ implies that Kerf is projective in modA is proved in [3](III.2.1). For the convenience of the reader, however, we shall show it here. We shall use the notation above, considering $Y = M^t$. In particular, denote by K the kernel of the morphism (f,p), where $p: P_0 \longrightarrow X$ is the projective cover of X in modA. Since $(0,P_0,0)$ and (k,M,id) are projective B-modules, then the commutative diagram

shows that $\operatorname{pd}_B \tilde{X} \leq 1$ if and only if K is a projective A-module. Suppose first that $\operatorname{pd}_B \tilde{X} \leq 1$. Then K is a projective A-module and since $\operatorname{gldim} A \leq 2$ we infer that $\operatorname{pd}_A \Omega \leq 1$. From (*) we get that $\operatorname{Ker} f$ is a projective A-module and $\operatorname{Hom}_A(\operatorname{Ker} f, -) \xrightarrow{\gamma} \operatorname{Ext}_A^1(\Omega, -) \longrightarrow 0$ is an exact sequence. So it implies that $\operatorname{Hom}_A(\operatorname{Ker} f, -) \xrightarrow{\Theta_f} \operatorname{Ext}_A^2(\operatorname{Coker} f, -) \longrightarrow 0$ is also exact as required.

Conversely, if Ker f is a projective A-module and the sequence $\operatorname{Hom}_A(\operatorname{Ker} f,-) \xrightarrow{\Theta_f} \operatorname{Ext}^2_A(\operatorname{Coker} f,-) \longrightarrow 0$ is exact, then $\operatorname{Ext}^1_A(K,-) = 0$ and K is therefore a projective A-module. This finishes the proof.

The following corollary has been proved in [3](III.2.1).

Corollary 1.2. Let A be an algebra with $gl \dim A \leq 2$, B = A[M] and $\tilde{X} = (k^t, X, f)$ an indecomposable B-module. Assume that $pd_A(Cokerf) \leq 1$. Then $pd_B\tilde{X} \leq 1$ if and only if Kerf is a projective A-module.

2. Quasitilted algebras

An algebra A is called *quasitilted* provided: (i) $\operatorname{gldim} A \leq 2$; and (ii) for each indecomposable A-module X, either $\operatorname{pd}_A X \leq 1$ or $\operatorname{id}_A X \leq 1$ (see [3]). In [1] and [2] we have discussed the situation where an one-point extension B = A[M] is quasitilted. Here, we will show that our main theorem can be used to get some further criterion for such an algebra B to be quasitilted.

Proposition 2.1. Let A be an algebra with $gl \dim A \leq 2$, M a hereditary projective A-module and B = A[M]. Assume furthermore that if $\tilde{X} = (k^t, X, f)$ is an indecomposable B-module, then either $pd_AX \leq 1$ or $id_AX \leq 1$. Then B is a quasitilted algebra.

Proof: Since $\operatorname{gldim} A \leq 2$ and M is a hereditary projective A-module, we infer that $\operatorname{gldim} B \leq 2$. Let $\tilde{X} = (k^t, X, f)$ be an indecomposable B-module. Suppose first that t = 0. Then X is an indecomposable A-module and, since A is quasitilted, we have that either $\operatorname{pd}_A X \leq 1$ or $\operatorname{id}_A X \leq 1$. Correspondingly, $\operatorname{pd}_B \tilde{X} \leq 1$ or $\operatorname{id}_B \tilde{X} \leq 1$ and the result is proved in this case. Assume now $t \neq 0$. If $\operatorname{id}_A X \leq 1$, then $\operatorname{id}_B \tilde{X} \leq 1$ because $\operatorname{Ext}^1_A(M,X) = 0$. Suppose now that $\operatorname{pd}_A X \leq 1$ and consider the exact sequences

$$(*) \qquad 0 \longrightarrow \mathrm{K}erf \longrightarrow M^t \longrightarrow C \longrightarrow 0 \quad \mathrm{and} \quad$$

$$(**)$$
 $0 \longrightarrow C \longrightarrow X \longrightarrow \operatorname{Coker} f \longrightarrow 0$

Since M is a hereditary projective A-module, $\operatorname{Ker} f$ is a projective A-module. Observe that $\operatorname{Ext}_A^1(M^t,-)=0=\operatorname{Ext}_A^2(X,-)$, and then, by the above construction, we infer that the sequence

$$\operatorname{Hom}_A(\operatorname{Ker} f, -) \xrightarrow{\Theta_f} \operatorname{Ext}_A^2(\operatorname{Coker} f, -) \longrightarrow 0$$

is exact. The result now follows from our main theorem.

For the next result we need some notations. For a quasitilted algebra A we denote by \mathcal{L}_A (respectively, by \mathcal{R}_A) the subcategory of mod A consisting of all indecomposable modules Y such that all its predecessors (respectively, all its successors) X have $\mathrm{pd}_A X \leq 1$ (respectively, $\mathrm{id}_A X \leq 1$) (see [3]).

Corollary 2.2. Let A be a quasitilted algebra and M be a hereditary projective A-module such that $Hom_A(M, \mathcal{R}_A \setminus \mathcal{L}_A) = 0$. Then B = A[M] is a quasitilted algebra.

Proof: Just observe that if $\tilde{X} = (k^t, X, f)$ is an indecomposable *B*-module with t > 0, then $pd_A X \le 1$.

Proposition 2.3. Let A be an algebra with $gl \dim A \leq 2$, $M \in mod A$, $M = M_1 \oplus M_2$, $pd_A M \leq 1$, B = A[M] and $B_i = A[M_i]$. Assume that each indecomposable B-module $\tilde{X} = (k^t, X, f)$ with $id_B \tilde{X} = 2$ is isomorphic to $(k^t, X_1 \oplus X_2, f_1 \oplus f_2)$ with $pd_{B_i}(k^t, X_i, f_i) \leq 1$, i = 1, 2. Then B is quasitilted.

Proof: Since $\operatorname{gldim} A \leq 2$ and $\operatorname{pd}_A M \leq 1$, we infer that $\operatorname{gldim} B \leq 2$. Therefore, to show that B is quasitilted, it suffices to show that each indecomposable \tilde{X} with $\operatorname{id}_B \tilde{X} = 2$ has $\operatorname{pd}_B \tilde{X} \leq 1$. Let $\tilde{X} = (k^t, X, f)$ be an indecomposable B-module with $\operatorname{id}_B \tilde{X} = 2$. By the hypothesis, \tilde{X} is isomorphic to $(k^t, X_1 \oplus X_2, f_1 \oplus f_2)$ with $\operatorname{pd}_{B_i}(k^t, X_i, f_i) \leq 1$, i = 1, 2. By 1.1, $\operatorname{Ker} f_i$ is a projective A-module and the corresponding ξ_i induces an exact sequence $\operatorname{Hom}_A(\operatorname{Ker} f_i, -) \xrightarrow{\Theta_i} \operatorname{Ext}_A^2(\operatorname{Coker} f_i, -) \xrightarrow{\Theta} 0$, for i = 1, 2. So $\operatorname{Ker}(f_1 \oplus f_2)$ is a projective A-module and $\xi_1 \oplus \xi_2$ induces an exact sequence $\operatorname{Hom}_A(\operatorname{Ker}(f_1 \oplus f_2), -) \xrightarrow{\Theta} \operatorname{Ext}_A^2(\operatorname{Coker}(f_1 \oplus f_2), -) \xrightarrow{\Theta} 0$. Hence $\operatorname{pd}_B \tilde{X} \leq 1$, as required.

We end this note with an example which shows that an one-point extension of a quasitilted algebra by a hereditary projective module can be non-quasitilted.

Example 2.4. Let A be the radical square zero algebra given by the quiver

It is not difficult to see that A is a tilted algebra. Consider now the A-module $M=P_1\oplus P_4$, where P_i denotes the indecomposable projective A-module corresponding to the vertex i. Clearly, M is a hereditary projective A-module. Let $\alpha\colon P_4\longrightarrow I_4$ be a nonzero A-morphism, where I_4 is the indecomposable injective A-module corresponding to the vertex A, and consider the B-module A-module and it has both projective and injective dimensions equal to A-module and therefore A-module and it has both projective and injective dimensions equal to A-module and therefore A-module and quasitilted.

References

- [1] Coelho, F. U., Martins, Ma. I. R., Peña, J. A. de la, Quasitilted extensions of algebras I, Preprint. São Paulo (1998).
- [2] Coelho, F. U., Martins, Ma. I. R., Peña, J. A. de la, Quasitilted extensions of algebras II, Preprint. São Paulo (1998).
- [3] Happel, D., Reiten, I., Smalø, S., Tilting in abelian categories and quasititled algebras, Memoirs of the Amer. Math. Soc. volume 120, number 575, 1996.
- [4] Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099, Springer-Verlag, Berlin, Heidelberg, New York (1984).

Fávio Ulhoa Coelho

Maria Izabel R. Martins

Departamento de Matemática - IME

Universidade de São Paulo

Caixa Postal 66281

CEP 05315-970 - São Paulo - SP Brazil

José Antonio de la Peña Instituto de Matemáticas

UNAM

Mexico 04510 D.F.

Mexico