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Abstract

In this paper, we study the Nielsen coincidence theory for maps
fi,f2 + M — X between closed orientable n-manifolds where X is C-
nilpotent. As an application, we show, when X = G//K is the homoge-
neous space of left cosets of a finite subgroup K in a compact connected
Lie group G, that L(f1, f2) =0 = N(f1,f2) =0 and L(f1, f2) # 0 =
N(f17f2) = Ig(fl,f2)7 where L(f17f2)1 Af(fla f2) and R(fhf?) denote the

coincidence Lefschetz, Nielsen and Reidemeister numbers respectively.

Resumo
Neste trabalho, nés estudamos a teoria de Nielsen de coincidéncia para
aplicacoes f1, fo : M — X entre n-variedades fechadas orientavéis onde X
é C-nilpotente. Como aplicacdo, quando X = G/ K é o espago homogeneo
das classes laterais a esquerda de um grupo de Lie compacto e conexo por
um subgrupo finito K, we mostramos que L(f1, f2) = 0= N(fi, f2) =
0e L(fi,f2) # 0 = N(f, f2) = R(f1, f2) onde L(f1, f2),N(f1,f2) e

R(f1, f2), sdo os nimeros de Lefschetz de coincidencia, de Nielsen and
de Reidemeister respectivamente.

1. Introduction

In topological fixed point theory, the non-vanishing of the Lefschetz number
L(f) of a selfmap on a compact connected polyhedron M guarantees the exis-
tence of fixed points. However, the converse is not true in general. The Nielsen
number N( f) is a homotopy invariant which gives a lower bound for the number
of fixed points of maps in the homotopy class of f. If M is a manifold of dimen-
sion n > 3, a classical result of Wecken shows that N(f) is indeed a sharp lower

bound so the converse of the Lefschetz theorem holds if L(f) = 0= N(f) = 0.
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If, in addition, M satisfies the so-called Jiang condition (or M is a Jiang space),
then all fixed point classes have the same fixed point index. In particular, either
(C1) L(f) = 0 = N(f) = 0 or (C2) L(f) # 0 = N(f) = R(f) where R(f)
denotes the Reidemeister number of f. Thus, under the Jiang condition, the
Nielsen number N(f) can be computed algebraically since R(f) is defined at the
fundamental group level. Nielsen fixed point theory has been generalized by H.
Schirmer [19] to coincidences of maps f, g : My — M, between closed orientable
n-manifolds. She defined an appropriate Nielsen coincidence number N(f, g)
and proved a Wecken type result for n > 3 so that N(f,g) gives a sharp lower
bound for the number of coincidences of maps f’, ¢’ in the homotopy classes
of f, g respectively. If M, is a Jiang space then the converse of the Lefschetz
coincidence theorem holds and N(f,g) = R(f,g) = #Coker(f.—g.) in the case
L(f,g) # 0, where R(f,g) is the Reidemeister coincidence number and f., g.

are the induced homomorphisms on the first integral homology groups.

One of the central issues in Nielsen fixed point or coincidence theory is to
find algebraic means to compute the Nielsen number. While the Jiang condition
is satisfied by a large class of spaces which include generalized lens spaces, H-
spaces and homogeneous spaces G/Gy of a compact topological group G by
a connected subgroup Gy, it is restrictive in the sense that the fundamental
group of a Jiang space must be abelian. In [5], the Reidemeister trace ! was
employed to show that under a weaker Jiang condition, we have either L(f) =
0= N(f)=0o0r L(f) # 0 = N(f) = R(f). This Jiang type result holds, for
instance, for all selfmaps of the orbit space of an odd sphere under a free action
of a finite group. In [1], D. Anosov proved (See E. Fadell and S. Husseini [4] for
another proof) that N(f) = |L(f)]| for any selfmap f on a compact nilmanifold.
This result was strengthened by B. Norton-Odenthal [17] so that N(f) = R(f)
in the case where L(f) # 0. More recently, the second author [24] showed that

conditions (C1) and (C2) hold for selfmaps of orientable homogeneous spaces

!The term generalized Lefschetz number was used instead in [5]. Ross Geoghegan pointed
out to us that the term Reidemeister trace was coined by F. Wecken in section 4 on p.226 of

[23].
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G/ K where (G is a compact connected Lie group and K a closed (not necessarily
connected) subgroup. However, the techniques used in [24] cannot readily be
generalized to coincidences.

The purpose of this paper is to show that conditions (C1) and (C2) hold
for coincidences when the target manifold M, is a homogeneous space G/K
where (G is a compact connected Lie group and K is a finite subgroup. In fact,
we prove a more general result for My a C-nilpotent space whose fundamental
group has center of finite index (see Theorem 2). Our approach uses the notion
of C-nilpotent actions and follows the approach in [7].

This paper is organized as follows. Section 2 reviews some background in
Nielsen coincidence theory and C-nilpotent actions. We prove our main results
in section 3 for C-nilpotent spaces. We show in section 4 that the homogeneous
space G/ K when K is finite is C-nilpotent and hence the Jiang type results for
coincidences may be obtained in this case(see Theorem 4). Finally, in section 5,
we discuss the coincidence theory for homogeneous spaces of non-compact Lie
groups, such as compact nilmanifolds.

The basic references in Nielsen fixed point theory are [3], [12] and [13]. For
C-nilpotent spaces, see [6] and [10].

2. Preliminares

In this section, we review some basic elements of Nielsen coincidence theory and
the notion of a C-nilpotent space.

Let f,g : X — Y be two maps between two closed connected orientable
n-manifolds. The coincidence set C(f, g) = {z € X|f(z) = g(«)} is compact in
X. If 21,25 € C(f,g), we say that z; and 2, are Nielsen equivalent if there
is a path a:[0,1] = X with a(0) = 21, a(1) = 2 such that f o« is homotopic
to goa (f oa ~ goa) relative to the endpoints. Given an isolated subset
v C C(f,g), the coincidence index of vy with respect to f, g is defined to be
the integer (see Chap. 5 of [22])

I(f,g:7) = 1(f,9;Uy) =< (f,9)"p2, 04 >
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where U, is an open neighborhood of 4 in X which does not contain any other
coincidences of f and g; o, € H,(X, X —~) is the fundamental homology class
around v; pg € H*(Y x Y, Y X Y — Ay) is the Thom class and (f,g) : X —
Y xY is given by (f,g)(z) = (f(z),9(x)). Here H,, and H™ denote the singular
homology and cohomology with integer coefficients, respectively. Analogous to

the Lefschetz coincidence number L(f, g) ([22]), we have the following

Definition 1. A coincidence class v is essential if I(f,g;v) # 0. Then the
Nielsen coincidence number of f and g, denoted by N(f,g) is defined to be

the (finite) number of essential coincidence classes of f and g.

Using covering spaces, we may treat the coincidence classes algebraically as
follows. Following [5], by choosing base points and lifts to the universal covers,
the maps f, g induce homomorphisms ¢, @, on the fundamental groups. Then

m(X) acts on m(Y) via

gea=pyc)ap (o).

Denote by R(f, g), called the set of Reidemeister coincidence classes, the set of
orbits of this action and by R(f,g), called the Reidemeister number, the cardi-
nality of R(f,g). It is well-known that R(f,g) is independent of the choice of
base points and lifts and it is invariant under homotopy. Furthermore, every co-
incidence class (non-empty) corresponds to a unique Reidemeister coincidence
class in R(f,g). Throughout, a coincidence class means a non-empty Reide-
meister coincidence class.

We now turn to C-nilpotent spaces. The notion of class is a generalization
of the definition of a class of abelian groups introduced by J.-P. Serre [20] and
that of a Serre class of nilpotent groups given by P. Hilton and J. Roitberg [10].

The following was introduced in [6].

Definition 2. A family C of groups is called a class of groups if it satisfies the
Jfollowing property:
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Given a short exact sequence of groups
l1-A—=B—-C—1

we have A,C € C if and only if B € C.

Example 1.
(i) The family of all finite groups is a class.

(i1) All torsion groups form a class.

Let C be a class of groups.

Definition 3. A group m is said to be C-nilpotent if I'*(7) € C for some n

where I'"~1(7) denotes the n-th term in the lower central series of m:
m=T%m) D [ma]=T"(7)D [r,I(m)] =T%(7) D ...

An action 0 : m — Aut(G) of a group m on a group G is said to be C-nilpotent
if I2(G) € C for some positive integer n, where I2(G) is the smallest nor-
mal m-subgroup that contains [G, T2~ (G)] and the set {(a-g)g™' |a € m, g €
I'"=1(@)}. Moreover, a space X is C-nilpotent if (i) mi(X, xo) is a C-nilpolent
group and (ii) the action of m (X, zo) on m,(X, zg) is C-nilpotent, for all zg € X
and for alln > 1. Nilpotent spaces are C-nilpotent where C = {1} is the trivial

class.

Proposition 1. Let G be a torsion free group. If a finite group m acts on G
nilpotently, then m acts trivially on G.

Proof. Let o € m and < a > be the cyclic subgroup generated by a. Since
acts nilpotently on (7, there exists an n such that I'2 . (G) = 1 and T2 L (G) #
1. Let « € 22 (G).

Then

(,’L'_l()l g x)_la » (:1,'_1(1 - 1:)) = ((x - :L')_lz(a * :1:_1)((12 * :1:) =1
= :L'(a . :1:_1)((12 . J') =a-x
= 2= (a-z)(a? 2) a2z
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Let p = o(a), the order of a. Then af - x = x and thus
oz =(a-z)(a? 2)Ha- )

a- (& '-z)=a-(z(a-2)'2).

This implies that

o =a(a-z)

— (a-2)(a? -2) (@~ 2)(a- @) (a- 2)(a? - 7)o - 2)
=«- (:ﬂ(a . IL‘)_IZI:(O( . I)_l.'L').
= afr? p=z(a -2) w(a-2) .

Similarly, we obtain

k
o= (J]z(a-2) ™)z
i=1
In particular, when k = p, we have
»
z=([[e(a-2) ™)
1=

which implies that
»
H z(a-z) = 1.
i=1
Since G is torsion free, we must have a- @ = = and so every a € 7 acts trivially

on (.
O
For the rest of the paper, C will denote the class of finite groups unless

otherwise stated and the fundamental group of a space X is finitely generated.

Proposition 2. Let Covn be the group of covering transformations of a regular
cover n : . If X is a C-nilpotent space then Covn acts nilpotently on
H.(X;Q).

Proof. It follows from Prop. 2.10 of [6] that Covn acts C-nilpotently on
H*(AXA"; Z). 1t is easy to see that the action of C'ovn on H*(X'; Q) is nilpotent
(see also Prop. 2.3 of [7]).
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The following is a useful characterization of C-nilpotency.

Proposition 3. [[6]] A space X is C-nilpotent if and only if m1(X) is C-nilpotent
and the action of m(X) on H*(X; Z) is C-nilpotent, where X is the universal
cover of X.

Example 2. (Jiang spaces) The Jiang subgroup J(X) (or the Gottlieb sub-
group G(X)) of m1(X) is the set of elements (when identified with deck trans-
formations) that are (X )-equivariantly homotopic to the identity 15, where
X denotes the universal cover of X. Tt follows from Theorem 1.4 of [9] that
G(X) is a subgroup of the group of elements in (X)) which act trivially on
7«(X). Recall that a space X is Jiang if G(X) = m1(X). Since G(X) is central
in m1(X), it follows that a Jiang space must be C-nilpotent (in fact, nilpotent).

Example 3. Let G be a finite group acting freely on an odd sphere $2"~!. The
orbit space X = S#"~1/( is C-nilpotent. Note that if X is a Jiang space then G
must be abelian. The converse is also true, i.e., if G is abelian then X is Jiang.

This follows from the fact that the Gottlieb group G(X) is the center of G [18].

3. Coincidence theory for C-nilpotent spaces

We now compute the Nielsen coincidence number when the target manifold is

C-nilpotent.

Theorem 1. Let M and X be closed connected orientable n-manifolds such
that X is C-nilpotent and m (X)) is abelian. For any two maps fi, f» : M — X,

the Reidemeister coincidence classes of fi, fa have the same coincidence indez.

Proof. Let 1,2 : m (M) — m(X) be the homomorphisms induced by fi, f2,
respectively and let H = {@a(a)p1(a)™ o € m(M)}. Since m(X) is abelian,
H is a normal subgroup of m(X). Let Ry,..., R, be the Reidemeister classes

in m1(X) corresponding to the essential coincidence classes of fi, f>. Note that
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a Reidemeister class R takes the form {pa(a)zp;i(a)™|a € m (M)} so that
R = Huz, i.e., cosets of H are precisely the Reidemeister classes of ¢; and ;.
Thus, there exist z;,7 = 1,...,r such that R; = Hx,;. The set {[z1],...,[z.]} in
m(X)/H is a finite set and [z;] # [z;] for i # j.

Now let W = {[;z}']|1 < i,j < r,i# j}. There exists a normal subgroup
N of finite index in m1(X)/H such that NNW = {1}. I p: m(X) — m(X)/H
is the canonical projection, then H; = p~'(N) is an abelian subgroup of finite
index in m(X) such that H; intersects at most one of the R;’s.

Let  : X — X be the finite cover corresponding to H; and ¢ : M — M
be the finite cover corresponding to C' = @7 (Hy) N @3 (Hy). Then fi, f,
can be lifted to Fy,Fy, : M — X. Since X is C-nilpotent, it follows from
Proposition 1 and Proposition 2 that m(X)/H; acts trivially on H.(X;Q).
Thus, for any a € Covn, we have L(aFy, Iy) = L(F, F,). By the choice of
Hy, the set ¢(Coin(afFi, F,)) consists of a single coincidence class C of fi, f2
and the coincidence index of C is given by L(aF}, F,)/|rc| where mc depends
upon C. By assuming (without loss of generality) that C'(aF, F,) is finite, |7¢|
is equal to the number of coincidence classes of aFy, Fy times the number of
coincidences in each class. Since m1(X) is abelian, the number of coincidences
in each class is independent of the class C (see section 5 of [16]) and the number
of coincidence classes of aF, Fy is independent of a and hence of C, so |mc|
is constant. Hence, every Reidemeister coincidence class of fi, fy has the same
index.

O

As an immediate corollary of Theorem 1, we recover the following well-known

fact.

Corollary 1. Let M and X be closed orientable n-manifolds and X be a Jiang
space. Then for any two maps fi, fo : M — X, the Reidemeister coincidence
classes have the same coincidence index. In the fizred point situation, i.e., when
M =X, [, =1x and X is a compact polyhedron satisfying the Jiang condition,
all fized point classes of fi have the same fized point index.
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Theorem 2. Let M and X be closed connected orientable n-manifolds such
that X is C-nilpotent and [m(X) : Z(m(X))] < oo. For any two maps fi, f> :
M — X, the Reidemeister coincidence classes of fi, fo have the coincidence
index of the same sign. In particular, either L(f1, f2) = 0= N(f1,f2) =0 or
L(fi, f2) # 0= N(f1, f2) = R(f1, f2).

Proof. Since [m1(X) : Z(m(X))] < oo, there exists a finite covering n : X — X
corresponding to Z(m(X)). Then X is C-nilpotent and m(X) is abelian. Lift
fi, f2to Fy, Fy: M — X where q: M — X is the finite cover corresponding to
T (Z(m (X)) Ny (Z(m1(X))) and 1,y are the respective homomorphisms
induced by fi, fo. By Theorem 1, for any a € Covn, all coincidence classes
of aFy, Fy have the same index. Furthermore, since 1 — 7T1(X) — m(X) —
Covnyp — 1 is a central extension, a acts trivially on m(X) and hence the
Reidemeister numbers R(aFy, Fy) and R(F, F3) coincide. It follows that the
coincidence classes of fi, f, are essential if and only if L(af, F,) # 0. Since
the set of Reidemeister classes of aFy, I, (with « ranging over C'ovn) surjects

onto those of fi, f2, we have N(fi, f2) = R(f1, f2) when L(f1, f2) # 0.

O

Corollary 2. Let X be a compact connected polyhedron. Suppose that X is
C-nilpotent and [m(X) : Z(m(X))] < co. Then for any selfmap f: X — X,
either L(f) =0= N(f) =0 or L(f) # 0= N(f) = R(/).

Remark 1. In the case where m;(X) is finite, Corollary 2 follows from Theorem
5.6 of [12] since m;(X) acts nilpotently and hence trivially on H.(X;Q), the

rational homology of the universal cover X.

Corollary 3. Let G be a finite group acting freely on an odd sphere S**~1. For
any two maps fi, fo : M — X = S?*71/G, where M is a connected orientable
(2n — 1)-dimensional closed manifold, either L(f1, f2) =0= N(f1,f2) =0 or
L(f1, f2) #0 = N(f1, f2) = R(f1, f2)-
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Remark 2. Corollary 3 in the fixed point case was obtained by E. Fadell and
S. Husseini in Corollary 6.38 of [5].

4. Coincidence theory for homogeneous spaces

In this section we study the coincidence theory of two maps fi, fo : My — M,
where M, = G/K is the homogeneous space of a compact connected Lie group

G by a finite subgroup K.

Theorem 3. Let G be a compact connected Lie group and K a finite subgroup.
The homogeneous space of left cosets M = G/ K is C-nilpotent.

Proof. Write A = m(G,¢),B = m(M,eK),e = identity in G. Since the
canonical projection G — M is a finite regular cover, by homotopy exact se-

quence, we have the following short exact sequence of groups
0—+A—-B—->K-—>1 (%)

Note that K acts on G via k+ g = gk™'. Given a loop g¢; (based at €) in G,
Bi = k*g, = gk ! is a loop based at k~!. Let a, be a path in G from e
to k7'. Then o, - 3 - ;' is a loop based at e. Let 3,; = ga;'. Clearly,
Bos = g and By, = gk~' = Bi. Therefore, a; - B3¢ - a7' yields a homotopy
from g; to B; = k * g;. In other words, K acts trivially on A. It follows that
the extension (*) is central. A similar argument shows that K acts trivially
on m,(G) = m,(M) for n > 2. Hence B = m(M) acts trivially on m,(M). It
remains to show that B is C-nilpotent.

The 5-term low dimensional exact homology sequence [21] of the extension
yields

Hy(K) 5 AJ[B, Al = Hy(B) = Hy(K) = 0. (%)

Note that Hy(K) is a finite group since K is finite. The subgroup A (identified
with its image in B) is central in B so that A/[B, A] = A. Consider the following

short exact sequence of finitely generated abelian groups

0 — A/I(Hy(K)) — B/[B, B] = K/[K, K] — 0.
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Since K is finite, the groups A/I(H,(K)) and B/[B, B] have the same rank.
Furthermore, I(H,(K)) is finite and A is of finite index in B so that [B, B]
must also be finite, i.e., [B, B] € C. Thus B is C-nilpotent.

O

Let By be the fundamental group of M,. Denote by Z(B,) the center of
B,. Since (%) is a central extension and A = m;(G) is of finite index in By,
[B; : Z(Bs)] < oo. Let i : Mz — M, be the finite cover corresponding to
Z(By).

Let ¢1,p2 be the homomorphisms induced by fi, fs, respectively, on funda-
mental groups. Then the subgroup C' = @7 (Z(B2)) N3 (Z(By)) is normal in
m(M;) = By and denote by p: M, — M, the cover corresponding to C'. Note
that [B; : €] < 0o so p is a finite cover.

Theorem 4. Let My and My be closed connected orientable n-manifolds such
that My = G/ K is the homogeneous space of a compact connected Lie group G
by a finite subgroup K. For any two maps f1, fo : My — M,, the Reidemeister
coincidence classes of fi, fo have the coincidence index of the same sign. In
particular, either L(fi, f2) = 0= N(f1,f2) =0 or L(f1, f2) #0= N(f1, f2) =
R(fu, f2).

Proof. This follows from Theorem 2 and Theorem 3, which states that My is
C-nilpotent, the remark following Theorem 3 and the center of m; (M) has finite

index in 1 (My).

Remark 3. Theorem 4 generalizes to coincidences a special case of a result for
fixed points in [24] in which K need not be discrete. In the fixed point case,

i.e., when f, = 1x, our result here gives an alternate proof.
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5. Coincidence theory for nilmanifolds

Consider a pair of maps fi, f; : My — M; where M; and M, are compact
orientable manifolds of the same dimension. We will consider the following
question: if M, is a homogeneous space, when do the Reidemeister coincidence
classes of f1, f> have coincidence index of the same sign? Of course we know that
a positive answer implies that L(fi, f2) = 0 = N(fi,/2) = 0 and L(fi, f2) #
0 = N(f1,f2) = R(f1, f2). We have seen in section 4 that the homogeneous
space G/ K, which is the coset space of a compact connected Lie group with
a finite subgroup K, provides an affirmative answer. The situation with G
non-compact and K a co-compact closed subgroup is quite different.

If f: T — T is a map, where T is the torus, our question has a positive
answer, from [3] chapter VIII Theorem 4. More generally, it follows from Propo-
sition 5 of [14] and Corollary 7.3 of [13] that for a pair of maps fi, fo: M — T
the Reidemeister coincidence classes have the same coincidence index. So in
both cases we have a positive answer. Of course, when we consider only one
map and the domain is the same as the target space, then we have the fixed
point situation. Despite the fact that 7' is a homogeneous space, the proofs of
the abovementioned results are based on the fact that 7" is a Jiang space.

Around 1985, D. Anosov [1] and E. Fadell and S. Husseini [4], considered
maps [ : N — N where N is a nilmanifold. They proved that N(f) = |L(f)].
Also implict in their work is the fact that all essential fixed point classes have
index the same value, which is either +1 or -1. This is not sufficient to get a
positive answer to our question because we need to know if one Reidemeister
class corresponding to one essential fixed point class implies the same corre-
spondence for all the other Reidemeister classes. Finally, relative to the two
works cited above, we should point out that the fact that N is a homogeneous
space plays a very important role in formulating our question.

J. Jezierski [11] in 1989 and R. Brooks and P. Wong [2] in 1992, considered
the coincidence case where the domain and the target are the same compact

nilmanifold. They showed that N(fi, fo) = |L(f1, f2)|- Also it is implicit in
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their work that the essential coincidence classes have coincidence index of the
same sign. (In fact these coincidence indices are equal).

In 1995, the first author in [8] showed that our question has a positive
answer for a pair of selfmaps fi, fo : N — N where N is a nilmanifold. This is
explicitly stated in Theorem 2.3 of [8]. Furthermore in Lemma 3.7 [8] this result
is extended to a manifold M, which fibers over a nilmanifold and the fibration
is nilpotent. Note that M is no longer necessarily a nilmanifold.

While positive results have been obtained, we cannot expect a positive an-
swer for an arbitrary homogeneous space M. If one looks at the example
given in [8] (first remark after Theorem 2.3), we have that L(id,g) # 0 but
N(id,g) # R(id,g), because R(id,g) = co. In fact, we have the following
example from [8] in which L(id,h) = 0 but N(id,h) # 0.

Example 4. Consider R? as a solvable Lie group with the group operation

given by
(xhylyzl) * (x25y23 22) = (.731 + 2,1 + (_1)I1y2721 + (_I)TIZQ)

Let S be the solvmanifold which is the quotient space of R? by the relation
(v,y,2) ~ (x + a,(—=1)*y + b,(—1)"2 + ¢), where a,b,c are integers. The
fundamental group of S is the semi-direct product of Z & Z by Z and the
action w : Z — Z & Z is given by w(l) = —id. Now take f = id and
hlz,y,z] = [-x,y + z,y]. These two maps are fiber preserving maps relative to
the fibration 7? — S — S', where the map S — S is the projection on the
first coordinate.

The induced maps id, h : S' — S are respectively the identity and h[z] =
[—2] and thus Fiz(h) = {[0],[3]}. Let Ty Té] be the fibers over the points
[0],[]5] respectively. Then h[0,y,z] = [0,y + z,y]. It follows that h|T[%] has

Lefschetz number —1. Now
1 1 1 1
h [57%2] = [—§,y + Zvy] = [_5 I 17 (_1)1(y+ 2)7 (_1)1y] = [§e_y -z, _y]

so that h|p2 has Lefschetz number 1. It was shown in [8] that L(h) = 0 but
28
N(h) =2.
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Finally, if we consider fi, fo : Ny — N, where the domain and the target are
compact nilmanifolds, possibly different, C. K. McCord [15] in 1995, showed that
N(f1, f2) = |L(f1, f2)] and that all essential coincidence classes have coincidence
index the same value which is either +1 or -1. Our question still remains open
for this case and is equivalent to determining whether N(f1, f2) = R(f1, f2)
when L(fi, f2) # 0. We believe that is the case.
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