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EQUIVARIANT NIELSEN COINCIDENCE THEORY

Pedro Luiz Fagundes*®

Abstract

In this paper we develop a equivariant Nielsen coincidence theory
for G-maps. We consider G-maps f , h : V —— M defined on an
open invariant subset V' of an oriented, connected, closed G-manifold, M,
where GG is a compact Lie group and the G-action on V' is not necessarily
free, so that: The G-action preserves orientation, for each isotropy type
(H;) of V, MHi is orientable and the W H;-maps fa;, ha, Vg, — MM
preserve the dimensions of the connected components of Vi, and M.
We also study the question of minimizing the number of coincidence’s
orbits.

Resumo

Neste trabalho desenvolvemos uma teoria de Nielsen equivariante para
coincidéncia de G-aplicacoes. Consideramos G-aplicagoes f,h : V —
M, definidas num subconjunto aberto invariante V de uma G-variedade
conexa, fechada, orientdvel, M, onde G' é um grupo de Lie compacto, a
G-agdo em V é, ndo necessariamente livre, e tal que: a) A agdo de G em
M preserva orientagio; b) Para cada tipo de isotropia (H;) de V, MH: ¢
orientavel; ¢) Para cada tipo de isotropia (H;) de V', as W H;-aplicagoes
fis b, 2 Vi, = M preservam as dimensdes das componentes conexas
de Vi, e de M. Estudamos, também, a questdo de minimizar o nimero
de orbitas de coincidéncia.

1. Introduction

In the Nielsen fixed point theory, it is well known that if X is a simply connected
manifold then L(f) = 0 implies that f is deformable to be fixed point free, where

L(f) is the Lefschetz number. For the non-simply connected case it follows from
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a classical result of Wecken that N(f) = 0 is sufficient to deform f to a fixed
point free map when X is a manifold of dimension dim X > 3.

Let G a compact Lie group. The problem of equivariantly deforming a
G-map to be fixed point free is more complicated.

Fadell and Wong [FW] showed that, some codimension hypothesis, N(f¥) =
0 for all H < G with Weyl group finite implies that f is G-homotopic to a fixed
point free G-map, where X¥ = {2 € X/he = 2,Yh € H} and f7 = f|yu. This
result was also proven by Borsari and Gongalves [BG]. Wilczynski [W] and inde-
pendently Vidal [Vi] showed this result when X* is simply connected. Nielsen
fixed point theory for equivariants maps was studied in [Wo] and developed in
[W1]. On the other hand, Nielsen fixed point theory has been generalized to
coincidence theory by Schirmer [H].

It is the purpose of this paper to extend the equivariant Nielsen fixed point
theory of [Wo] for coincidence of G-maps f,h : V — M, where V' is an open
invariant subset of an oriented, connected, closed G-manifold M.

Wong introduced in [Wo] the notion of an equivariant Nielsen number
NE&(f, V) which is an ordered k-tuple that depends on the isotropy types (Hy)...
(Hy) of V, where f : V — X is a G-map, V is an open invariant subset of a
G—ENR X and ( is a compact Lie group. When G is finite, N&(f, V) gives a
lower bound for the minimal number of fixed points in the G-homotopy class of
[ (by G-compactly fixed homotopies) and this lower bound is sharp when the
G-action on V is free. (The hypotesis on G being finite is not true restrictive
because of lemma 3.3 of [W]).

This paper is divided into three sections. The first section contains basic
concepts of group actions and the definition of G-compactly coincident maps.
In the second section we define the W H;-Nielsen classes of coincidence points
and we show its relationship with the ordinary Nielsen classes. Also, we de-
fine the W H-Nielsen number of coincidence of Nw g (f, h; V), which is a k-tuple
(Nw, (f, by Vi), - Nwa, (f, h; Vi, )) where (Hy), ..., (Hy) are the isotropy types
of V. We show that Nwg(f,h; V) is a lower bound for the minimal number of
W H;-orbits of coincidence of the maps fm,, ha,, by G-compactly coincident ho-
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motopies for the isotropy types (H;) of V with |[W H;| finite. The hypothesis of
|W H;| being finite is not too restrictive, because in section 3, we have extended
lemma 3.3 of [W] for coincidences. In section 3 we will study the minimality.
When @ is finite, acting freely on V and M is a connected, oriented, triangula-
ble, compact G-manifold without boundary and of dimension n > 3, we show
that Ng(f, h; V) is realized in the class of the G-maps G-homotopic to f and
h by compactly coincident homotopies. We also showed that, given a compact
Lie group G with dimG > 0 acting freely on V" and G-maps f,h: V — M, then
there exists f': V — M, G — e-homotopic to f such that Coin(f’, h) = @, which
extends the lemma 3.3 of [W]. Finally, we proved an equivariant version of Hopf
construction for coincidence and we showed that given G-maps f,h: V — M
compactly coincident, there exists a G-map [’ : V — M, G — ehomotopic to
f such that the isotropy subgroup of each coincidence point in Coin(f’, k) has
finite Weyl group.

The author would like to thank Fernanda S. P. Cardona, for helping with

the translation of this paper.

1. Preliminaries. Let G be a topological group and X a G-space. For
any subgroup H of G, we denote by NH the normalizer of H in G and
by NH/H, the Weyl group of H in G. The conjugacy class of H denoted
by (H) is called the orbit type of H. A subgroup H; of G is subconju-
gate of H, if exists ¢ € G so that gH;g! is a subgroup of H, then we
write (Hy) < (H). If € X, in which case G, denotes the isotropy sub-
group of z. ie., G, = {9 € G| gv = x}. For each subgroup H of G,
XH =z € X| ha =z, YVh € H} and Xg = {z € X| G, = H}, we
denote by X = GXH = {2 € X5| § € (H)} and by Xy = GXg =
{z € X| (G;) = (H)}. An orbit type (H) is called an isotropy type of X if

H appears as an isotropy subgroup of some z € X. Suppose X has a finite
set of isotropy types denoted by {(H;)}, we can choose an admissible order-
ing on {(H;)} so that (H;) < (H;) implies ¢ < j. Then we have a filtration
of G-subspaces X; C X; C ... C Xy = X, where X; = {z € X| (G,) =
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(Hj) for some j <i}. Also, X,y = X; — Xi_1. By a free G-subset of X, we
mean a GG-invariant subset on which the action is free.

A cell complex (X, K) is called a G-cell complex if:
a) The orbit space X/G is a Hausdorfl space.
b) G acts cellularly, that is, e € K implies ge € K for every g € G.

c¢) Every point z of a cell e has the same isotropy subgroup, which is denoted

by G, and, in particular, each boundary point is fixed by G..
d) If g is not contained in G., then ge is disjoint from e.

e) The topology of the subspace G€ is the identification topology determined
by the induced G-characteristic maps, G,(= po(lg)) : GXA™ — Ge C X.

For more details on G-cell complex see [M1].
Let Y be a G-space and f,h : X — Y G-maps. We denote by Coin(f,h) the
set of coincidence points of f and h, i.e. Coin(f,h) ={z € X| f(z) = h(z)}.

Definition 1.1. The maps f and h are called compactly coincident if the set

of coincidence points of f and h, Coin(f,h), is a compact subset of X.

Definition 1.2. The maps f and h are called G-compactly coincident if for
each isotropy type (H;) of X the maps fu,, hy, : Xu, — Y are compactly
coincident, where H; € (H;).

If f and h are G-compactly coincident then they are compactly coincident

but the converse is not true. See [Wo], 2.3.

Definition 1.3. Two G-homotopies F,T : X x I — Y, where G act on [
trivially, are called compactly coincident if |J, Coin(Fs, T) is a compact subset
of X. The homotopies I’ and T are called G-compactly coincident if for each
isotropy type (H;) of X, U, Coin(Fu, x {s},Th, x {s}) is a compact subset of
Xu,, where H; € (H;).
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Unless otherwise specified in this paper, the word “manifold” will refer to a
C*-manifold without boundary. Let G be a Lie group and M a manifold. By a
smooth action of G on M we mean an action § : G x M — M which is a smooth
map. A manifold M together with such an action will be called a G-manifold.
In general, M/ is not a differentiable manifold with the structure induced by
the orbit map p : M — M/G, see [Bd] p. 301, as a matter of fact, not even a
manifold see [tD], 1.2.19, ex. 3.

Proposition 1.4. Let G be a compact Lie group. A compact G-manifold has
Jinite orbil type.

Proof. See [tD], L.5.11.
O

Proposition 1.5. Let G be a compact Lie group and M a G-manifold. Let H
be any isotropy subgroup of G. Then Mgy is a submanifold of M ( which may

have components of different dimensions).

Proof. See [tD], I.5.13.

It follows from 1.5 that M€ is always a closed submanifold of M.

Proposition 1.6. Let V' be an open invariant subset of a G-manifold M, where
G is a compact Lie group, and let H be an isotropy type of V. Then Vi is an

open subset of M™Y.

Proof. It follows from corollary 11.5.5 of [Bd].
[}
Let M; and M, be connected, oriented n-manifolds with M; compact. De-
notes by z; € H,(M;) be the fundamental class of M; and U, € H™(M') the
Thom class of My, where My = (M; x My, My x My — A(M,)). Suppose W
is an open set in My and f,h : W — M, are maps for which Coin(f,h) is a

compact subset of W. Since M; is normal, there exists an open set V in M;
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with Coin(f,h) CV CV CW.
Define the Coincidence index of the pair (f,h) on W to be the integer ]m

given by the image of the class z; under the composition:
Ho(My) — Ho(My, My — V) =5 H W, W - V) Y2 7, (M) ~ 2.

Here the map (f,h) : W — My x M, is given by (f,h)(z) = (f(z),h(z)) and
the identification H, (M3 x My, My x My — A(M,)) = Z is given by sending a

class o to the integer < Uz, a >. For more details on I}, see [V] chapter 6.

Proposition 1.7. Let My, My, M| and M) be connected, oriented manifolds
of dimension n with My and M| compact. Let oy : W — W' = o1(W) be a
homeomorphism, where W is an open subset of My. Let f,h : W — My and
floR W — M) be maps compactly coincident and suppose that the following

diagram is commutative:
A
wo I M,

i 01 i 24
/’h‘l
w LA My
where oy 1 My — M), is a local homeomorphism.
i) If both oy and oy preserve or reverse the orientations, then [m = I}/Y;L,.

[ 3 . . . !
ii) If o1 preserves the orientation and oy reverses it, then [}/51 = _]}/I’/,h"

Proof. The first part follows from [O], p. 16 and the second follows from the
first, by changing the orientation of Mj.

2. Equivariant Nielsen numbers

Throughout this section, G will denote a compact Lie group.
Let X and Y be G-spaces, where GG acts freely on X, and f,h: X — Y
compactly coincident G-maps. Suppose Coin(f, k) # 0.

Definition 2.1. Two points x,y € Coin(f,h) are said to be G-Nielsen equiva-
lent, denoted by © ~¢g y, if either (i) @ € G(y) or (ii) there exists a path
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a : I = X such that a(0) = z, a(l) = gy for some g € G and f o« is

homotopic to h o a, relative to endpoints in X.
It is easy to see that ~¢ is an equivalence relation on Coin(f,h).

Definition 2.2. Let V be a free G-subset of X and f,h: V — Y compactly
coincident G-maps. The equivalence classes on Coin(f,h) C V, given by the
above relation, will be called G-Nielsen classes (or G-classes) of coincidence of
fand hon V.

Now, we will show how an ordinary Nielsen class relats to the G-class of
coincidence that contains it. Let zo € Coin(f,h) and R be the (ordinary)
Nielsen class so that g € R. It is easy to see that Ggr = {g € G| gzo € R} is a
subgroup of GG and does not depends of the point z¢ chosen. If Ry and Ry are
two Nielsen classes contained in the same G-class R it is easy to show that Gg,

and (g, are conjugate to each other.

Definition 2.3. G will be called the isotropy subgroup of R.

Consider the set of equivalence classes on G/Gr = {H1, Ha, ..., H;, ...}, where
H, = g and denote by h; € H; a representative of the class H;, 1+ = 1,2, ....
It is easy to see that for each i=1,2..., the class h; R does not depend on the
representative h; € H; chosen. In this way we will denote the class h; R simply

by RZ .

Proposition 2.4. Let R be the G-class containing xo. Then k= Ll; R: (disjoint

union).

Proof.

i) U: R: C R, follows from 2.1.

ii) Rc ;R Lety e R, ify ¢ G(zp), then y is Nielsen equivalent to gz
for some g € G, so y € g.R = R;, for some 7 =1,2,....

iii) Se R; N R; # (), we have R; = R; and then i = j.
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Corollary 2.5. If X is a compact ANR andY is a compact ANR or an ENR,
then [G : GRg] is finite.

Proof. It follows from 2.4 and corollary 1.5.1 of [F].
O
Let M; and M, be connected, oriented G-manifolds with M; compact. Let
V be a free G-subset of My and f,h: V — M, compactly coincident G-maps.
By proposition 2.4, each G-class R is an open subset of Coin(f,h), then there
exists an open subset U of V' such that R=Un Coin(f,h).

We may now, define the index of a G-class.

Definition 2.6. The coincidence index of the G-class R, denoted by I(R) is

the coincidence index of the pair (f,h) on U.

Proposition 2.7. I(R) = Y7_,I(R;), where r = [G : Gg] and R is a Nielsen

class contained in R.

Proof. It follows from proposition 2.4 and lemma 6.6 of [V].
O

Proposition 2.8. If the action preserves orientation on My and M, (or re-

A

verses the orientation on My and M;), then I(R) = [G : Gg].I(R), where
R C R is a Nielsen class of f and h.

Proof. By 2.7, it suffices to show that I(f, h; R) = I(f, h;g.R), Vg € G. Denote
by ¢, the homeomorphism ¢, : M; — M; defined by ¢,(z) = gx. Let U be an
open subset of W so that R = U N Coin(f,h) and 6, = ¢, |v: U — ¢,(U) =V,
then gR = o,(R). It is easy to see that V N Coin(f,h) = gR.

We have the following commutative diagram:

voIh M,
oy, Ny
v A M,
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where the map p, : My — M, is given by p,(z) = ga.
Since the action preserves (reverses) the orientations, so do o, and p, ac-
cordingly preserve (reverse) too. The result follows from 1.7.

O

Definition 2.9. A G-class R is called essential if ]([A%) # 0. The number of
essential G-classes, denoted by Ng(f, h; V'), will be called the G-Nielsen number

of coincidence of f and h on V.

Definition 2.10. Let F,T : V x I — M,, be G-homotopies, where the G-
action on [ is trivial. A G-class it C Coin(Fy, Ty) is said to be FT-related to
a G-class P C Coin(Fy,T1), denoted by RFTP, if there exist Nielsen classes
R C Rand P C P so that RFTP, i.e. there exists * € R, y € P and a
path @ : I — V with a(0) = 2, a(1) = y so that < F,a >~< T,a >, where
< Foa> (1) = F(a(t),t).

Proposition 2.11. If RFTP, then Ggr = Gp.

Proof. Let g € Gr so gR = R. Since F and T are G-maps and RFTP we
have that gRFTgP and so RFTgP, so g.P = P, see proposition 1.5.6, of [F],
and then g € Gp.
Similarly, we show that Gp C Gg.
O

Proposition 2.12. [f the G-homotopies F and T are compactly coincident and
RFTP, then I(R) = I(P).

Proof. Since I(R) = I(P) if RFTP, where R C R is a local Nielsen class of
Iy and Ty and P C P is a local Nielsen class of Fy and Ty, the result follows
from 2.7 and 2.11.

O

Our next objective is to verify the invariance under compactly coincident

G-homotopy of Ng(f,h; V).
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Proposition 2.13. [f the G-homotopies I' and T are compactly coincident,
then Ng(Fo,To; V) = Ne(F1,T1; V).

Proof. Let R be a G-class of Fo and Hy. 1) If R is FT-related to some G-class
P of Fy and H,, then by 2.12, ](R) = I(P) i) If R is not FT-related to a
G-class of Fy and Hy, then I(R) = 0.
So, for each essential G-class R of Fy and Hy, there exist a essential G-class
P of Iy and H; with RFHP.
[}

Corollary 2.14. i) If Na(f,h; V) #0, then f and h have at least one orbil of
unremouvable coincidences.
i) If G is a finite group, then |G|Ng(f,h; V) < #Coin(f', 1), for all pair of
G-maps ', h' G-homotopic to f and h by compactly coincident G-homotopies.
O
Let X and Y be G-spaces, and f,h : X — Y compactly coincident G-maps
and suppose Coin(f,h) # 0.

Definition 2.15. Two points z,y € Coin(f,h) are said to be G-Nielsen equiv-
alent, denoted by = =¢ y, if (i) For some H < G z and y lie in Xp, and (ii)
r ~wH Y.

It is easy to see that A4g is an equivalence relation to C'oin(f,h).

Definition 2.16. Let V' be an invariant open subset of X and f,h:V — Y G-
compactly coincident maps. The equivalence classes on Coin(f,h) C V, given
by the above relation, will be called W H-Nielsen classes (or W H-classes) of

coincidence of f and h on V.

Remark. The number of WH — classes, where H € (H) is finite iff #(-&-) is
finite.
Let My and M; be connected, oriented, G-manifolds with M; compact. Let

V' be an invariant open subset of M; and f,h : V' — M, G-compactly coincident
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maps.

In order to define the index of a W H-class, the idea is to apply the previous
theory to the functions fr, hgr : Vir — MI | since WH acts freely on Vi and
by proposition 1.6, Vi is an open subset of M. But there exist two problems:

i) If M, is oriented, even if the G-action preserves the orientation, M{? could
be non-orientable. FEzemple: Let N = S!' x S x S x I with the Zy-action,
t(z,y,2,a) = (2,y,2,a). Then N% = S1 x {£1} x {£1} x [. Let M be the
mantfold obtained from N by identifying the points (x,y,z,0) with (z,y,z,1).
It is easy to see that the Zy-action defined on N induces an action on M that
preserves the orientation, but M7 is the disjoint union of / copies of Klein
bottle, therefore non-orientable.

ii) Even in the case where MH and MF are connected, they can have dif-
ferent dimensions. Ezemple: Let N = S® with the Zy-action t(z1, T2, T3, T4, T5, T6) :
(21,29, —T3, —T4, —T5, —Tg). This action induces an action on RP® such that
(RP®)% = STURP3. It is enough to consider the constant map f : RP®> — RP?,
on one point P € St

From now on we will consider the case where V' is an open invariant subset
of a comapct, connected, oriented, G-manifold M so that all connected com-
ponents of M are orientable. Moreover, denoting by (M*)? the union of all
connected components of M of dimension d and by V& = Vi N (MH)?, we will
always assume that fy(Vi4) C (M7)? and hy(Vid) € (MT)2, for all isotropy
types (H) of V.

Let (H;) be an isotropy type of V' and V, a connected component of Vig,y.
It is easy to see that WH;, = {g € WH;| gV, = V,} is a subgroup of WH; and

does depend on the connected component V; choosen.

Definition 2.17. Let f,h : V — M be G-compactly coincident maps. We
define the coincidence index of the W H;-class R, as follows:

Let V] be a connected component of Vg, and M, the connected component of
M so that fi, (Vi) € M, and hy, (Vi) C M. Choose an orientation on V; and
an orientation on My, let U be an open subset of Vi, so that UNCoin( fu,, hu,) =
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R. So UNV; is an open set containing RNV} and we can compute the coincidence

index of RN Vi, ie, ]JE;T}/"IHJ We define I(R) = k.]}’;{?}ng, where k = [WH, :
W H;

wl-
If the connected component V; contains only one coincidence class R whith
is contained in the W Hi-class R, then WH;, = W H;, the isotropy subgroup

of Rin WH;, so, in this case, I(R) = [WH,; : WH; |I(R).

Definition 2.18. A W H;-class R will be called essential if I(R) # 0. The
number of essential W H;-classes, denoted by Ny g, (f, h; Vi,), will be called the
W H;-Nielsen number of f and h on Vig,.

Definition 2.19. The k-tuple (Nwmw, (f,h; Vi), ..., Nwa, (f, h; Vi) will be
called the W H-Nielsen number of f and h on V and we will denote it by
Nwu(f,h; V), where {(H;), ¢ = 1...k} is the set of isotropy types of V.

Remark. For every isotropy type (H;) of V, the WH;-Nielsen number,
Nwu,(f, h; Vi), of f and h on Vy, is finite and since Vg, is homeomorphic
to Vi ((also, M is homeomorphic to M™" )if H' € (H;), Nww,(f, h; Viz,) is
independent of the choice of the representative of (H;) and hence Nwp(f,h; V)
is well defined.

Theorem 2.20. If F,T :V x I — M are G-compactly coincident homotopies,
where the action on I is trivial, then Nwpu(Fo, To; V) = Nwu(F1,T1; V).

Proof. Since V' is a disjoint union of V(g,), where H; appears as an isotropy
subgroup, it suffices to show that for each ¢ = 1,....k Nwg,(Fo,To; Vi) =
Nww, (F1,Tv; Vi,).

By 2.18, Nwa,(Fo,To; Vi) is the number of essential W H;-classes of Fy
and Ty on Vi, by 2.17, an essential W H;-class contains, at least one, essential
Nielsen class R. Consider the restriction of the homotopies F' and T to V x I,
where Vj is the connected component of Vi, such that R C V;. Since F and T

are (G-compactly coincident homotopies, for each isotropy type (H;) of V, Fy,
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and Ty, are compactly coincident G-homotopies and the result follows from
2.13.
O

Corollary 2.21. Let f,h : V — M be G-compactly coincident maps. If
fiR 2 Vo= M are homotopic to f and h by a G-compactly coincident ho-
motopy then, for each isotropy type (H;) of V' with |W H;| finite we have,
Nwa,(f, 1 Vi) < g #Coin(fir,, har,).-

3. Minimal number of coicidence orbits

In this section, we study the minimal number of coincidence orbits in the G-
compactly coincident homotopy class of a pair of G-compactly coincident maps.
When @ is finite, the G-action on V' is free and M is a compact, connected,
oriented, triangulable GG-manifold of dimension n > 3, any pair of compactly
coincidente G-maps f,h : V. — M can be equivariantly deformable to a pair
of G-maps with exactly Ng(f, h; V) coincidence orbits by compactly coincident
G-homotopies.

We give an equivariant analogous to the Hopf construction for the case of
coincidence and we show that if G is a compact Lie group with dim(G) > 0
and (N, A) is a relative G — CW-complex such that the G-action on N — A is
free and the coincidence points in A are isolated, then f can be equivariantly
deformable (relative to A) to a G-map f’ such that C'oin(f',h) N (N — A) = (.

Also, we show that given compactly coincident G-maps f,h : V — M and
€ > 0, there exist a G-map f' : V — M, (¢ — ehomotopic to f such that,
the isotropy subgroup of each coincidence point in C'oin(f’, h) has finite Weyl
group.

Let M; and M, be compact, connected, oriented, triangulables n-manifolds
and (T, ) a triangulation of M;.

We will consider the sequence, 0 < ¢y < ¢; < ... < €41 given on [H] p. 24.
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Proposition 3.1. Let h : D* — R” be a continuous map and f: S*™' - R" a
continuous map such that, Coin(f,h) is finite and d(f,h) < €4—3. Then there

exist a continuous extension f' of f on D% such that:
i) If d < n, then Coin(f',h)NintD™ =0 and d(f', f) < €41.
i) If d = n we have:

a) If Coin(f,h) =0, then Coin(f',h)NintD™ = (), or contains al most
one point.

b) If Coin(f,h) # 0, then Coin(f’',h) NintD™ = (.
In the cases 1) and ii), we have d(f’, f) < ¢,.

Proof. The case i) for Coin(f,h) = §) see lemma 1 of [H], the case ii.a) see
lemma 2 of [H]. We shall go prove the case i) for Coin(f,h) # 0 and the case
ii.b).

Let g(z) = f(z) — h(zx), Vo € S%1, then Coin(f,h) = g~*(0).

Suppose that ¢g71(0) = {x¢}. Given a point z € ntD? let x; be the
other point obtained by the intersection of the straight line through =y and =
with S%71. Let ¢t € I such that, x = txg+ (1 — t)2; and define § on = by,
g(z) = (1 —t)g(z1). So g is a continuous map and extend g. If for some point
z € D%, g(z) = 0, then (1 —1)g(z1) = 0, where x; is the other point obtained by
the intersection of the straight line through zy and = with S9!, since g(x;) # 0
we have, 1 —1 =0, then ¢ = 1 and = = x5 € S%L.

Now suppose the result is true for #(g7'(0)) = k — 1, it is easy to see that
is true for #(g7*(0)) = k.

Let f = h 4+ §. Then f extend f, Coin(f,h) N intD* = () and we have
d(f,h) < d(f,h) < €ay < €421 < €.

The next lemma is fundamental for Theorem 3.3.

Lemma 3.2. For any G-space Y and ¢ > 0, there is a 6 > 0 such that,
if f,h Y — X are equivariant maps and d(f,h) < &, then f and h are
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equivariantly e-homotopic through a homotopy constant on the coincidence set

of f and h.

Proof. See [W], 2.3.
|
In what follows, given € > 0 we will assume that 2¢,41 < 4, where ¢ is given
by lemma 3.2.
The next theorem, is an equivariant version of the Hopf construction for

coincidence when (F is finite and the G-action on V' is free.

Theorem 3.3. Let M be a compact, connecled, orienled, triangulable G-
manifold with dimM = n and V a free G-subset of M. Let f,h : V — M
compactly coincident G-maps. Then, there exists a G-map f':V — M, G —¢-
homotopic to f by a G-homotopy F : V x I — M, so that:

1) Fiy(z) = f(z), Ve eV —-K, tel.

i) Coin(f',h) is finite, each coincidence point of f' and h lies in the interior
of some mazximal simplex of K and each mazimal simplex of K contains

al most one coincidence point.
iil) User Coin(F,, h) is a compact subset of V.

Proof. By I11.1.1 of [Bd] we can assume that the triangulation of M is regular
for the action of G. It is easy to see that there exists a finite homogeneous
n — G-subcomplex of 'y, K C V, with Coin(f,h) C intK.

We can suppose diam(f(c")) < €/2, diam(h(o™)) < €/2, Yo € K, where
€o 1s given on [H] p. 24.

If o € K let Stg(o) = St(o) N K, since the action on V is free, we have
Str(o)N Str(g.c) =0, Vg€ G, g#e.

In K, d(f,h) < €. For any y € K there exists 6™ € T so that,y € 7" € K,
thus exists @ € & with f(z) = h(z) then, d(f(y),h(y)) < d(f(y), f(z)) +
d(f(z),h(z)) + d(h(z),h(y)) < €o. In U — K, define f' = f and in K define f’

as follows:
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For ¢° € Coin(f,h), define f’ such that, 0 < d(f'(¢%),h(c")) < € and for
all g € G define f’ on g.c° by g.f'(¢°). Repeat this procedure for all coincidence
orbits of O-simplex on K — G(o?).

For the other 0-simplexes of K define ' = f.

Let ¢! € K, such that o' N Coin(f,h) # 0. We have defined f’ on do! such
that f/(z) # h(z), Yo € do'. This way, we can extend f’ continuously from o'
using 3.1 such that f/(z) # h(z), Vo € o', d(f’, f) < 1. For all g € G, define
f" on g.o! as follows: Given y € g.o?, there exists only one point z € o' with
y = g.x, then define f'(y) = g.f'(x).

Repeat this construction for all coincidence orbits contained in the interior
of some 1-simplex of K — G.(3").

For the other 1-simplexes of K, define ' = f.

Repeat this procedure for the 2,3, ..(n — 1)-simplexes of K which contains
some coincidence point and in the others 2,3, ...(n — 1)-simplexes of K define
F=f

Now let 6 € K, with o™ N Coin(f,h) # 0.

We have defined f’ on do™ with f'(z) # h(z), Vo € o™ and d(f',h) < €p1.

Using [H], lemma 2, we extend f’ to ¢” such that Coin(f’,h)N o™ =0 or it
contains exactly one coincidence point when I(f’, h;c™) # 0.

For all g € G, define f’' on g.c™ as follows: Given y € g.c™, there is only one
point x € o” with y = g.z, then define f'(y) = g.f'(2).

Repeat this procedure for all coincidence orbits contained in the interior of
some n-simplex of K — G(").

So, we have a G-map f' : V — M, such that, f' and h only have iso-
lated coincidences each of which lies in the interior of n-simplex ¢™ of K with
I(f',h;0™) # 0 and f' # h for the other n-simplex of K.

In K, d(f,h) < € < €ny1, d(f',h) < €ny1 and f = f in V — K, then
d(f', f) < 2€441 < 6, 50 by 3.2, f' and f are G-homotopic by a G-homotopy
F:V x I — M, which is constant on the coincidence points of f’ and f.

It is easy to see that U;e; Coin(Fy, h) is a compact subset of V.
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Let M be a compact, connected, oriented, triangulable G-manifold of di-
mension n > 3, GG a finite group and V a free G-subset of M.

Next, we show how to coalesce coincidence orbits in the same G-class.

Proposition 3.4. Let f,h:V — M be compactly coincident G-maps, K the
n — G-subcomplex given by 3.3, and Oy, Oy two coincidence orbits in the same
G-class R. Then there exists a G-neighborhood U of O1UO, on'V and G-maps
[0V — M, G-homotopic to f and h by compactly coincident G-homotopies
F and H so that:

i) Fi(z) = f(z) and Hy(z) = h(z),Ye eV —-U, t € 1.

i) f" and I/ have no coincidences in U, or have al mosl one coincidence

orbit on U, if 15, # 0.

Proof. By 3.3, we can suppose that Coin(f,h) is finite and lies in the interior
of the n-simplexes of K, with each n-simplex containg at most one coincidence
point.

Since Oy and O, are in the same G-classe, there exist z; € O, x5 € O, and
apath A : I — K of 21 to zo with foAl~ho .

Consider X the image of A under the orbit map p : V — V/G.

By lemma 7 of [H], X is homotopic to a polygonal path (3 such that the
interior of each segment lies inside some maximal simplex and each endpoint
lies in the interior of some simplex of one less dimension. Moreover, by general
position we may assume that 3 is simple.

By lemma 9 of [H], there exist a closed e-neighborhood U(3) of 3 on V/G
which, have no coincidence point of f and h excluding p(z;) and p(x3), where
f and h are induced by f and h on V/G.

Lifting this homotopy, we have a path 3 of z; to x3 homotopic to A.

Since 3 is simple, for all ¢ € G, g # ¢, .3 N 3 = B and since g.3 is closed
in V, Vg € G, there exists an open subset Ug of V' containing 3 such that:

i) For all g € G, g.8 C g.Us and,
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ii) g1.Us N g2.Us = 0, if g1 # g

Let T(8) = p™(T(@E) T

We then coalesce the coincidence points 1 and zy along 3 inside U(3) by
the lemma 9 of [H], where U(3) = intU(8), so we obtain a pair of maps f’ and
h', homotopic to f and i by homotopies F', H' : V x [ — M, respectively,
such that:

a) Fl(z) = f(z), H{(z) =h(z), Ve eV -U(B),t € I.

b) either f" and A’ have no coincidences in U(/3), or have exactly one coinci-

dence point in U(B) with I(f',h';U(3)) # 0.

For all g € G, define F' and H on g.U(3) x I as follows:

If y € g.U(fB), there exists only one z € U(B) with y = g.z, then define
Fiy) = g.F/(z) and H:(y) = g.H{(z), Vt € I.

Let U = Uyeq g-U(B), for each 2 € V — U define Fy(z) = f(z) and Hy(z) =
h(z), Yt € I. Let f' = Fy and b/ = H;.

Since f" and A’ coincide with f and h outside a small contractible neighbor-
hood of G these G-homotopies are compactly coincident.

O

Theorem 3.5. (Minimality) Let fih : V. — M be compactly coincident G-
maps. Then there exists G-maps f',h' : V — M, G-homotopic to  and h by
compactly coincident G-homotopies so that, #Coin(f',h') = |G|.Ne(f,h; V).

Proof. By 3.3, f is G-homotopic to a G-map f’ via a homotopy F' such that
f" and h have only isolated coincidence which lies in the interior of some n-
simplexes of K~ with index non zero. Moreover U;e; Coin(Fy, h) is a compact
subset of V.

Applying 3.4 finitely many times, each G-class contains only one coincidence
orbit with non-zero index. So we obtain G maps f;, hy G-homotopic to f" and
h by compactly coincident G-homotopies such that Coin(fi,h1) have only es-

sential G-class, each of which contains only one coincidence orbit. Therefore,
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there are Ng(fi,h1; V) coincidence orbits. Since the G-homotopies are com-
pactly coincident, it follows from 2.13 that #Coin(fi, k1) = |G|.Na(f1,h1; V) =
(GI-Na(f, V).

O

Following Matumoto (4.4 of [M2]), if GG is a compact Lie group, any compact
G-manifold M has a G — CW-complex structure which induces a triangulation

on the orbit space.

Lemma 3.6. Let M be a compact, connected G-manifold and V an open G-
invariant subset of M. Let f,h : V. — M be compactly coincident G-maps.
Then there exist a structure of G — CW -complex on M, which induces a tri-
angulation on M/G and a G-subcomplex K € V with Coin(f,h) C intK such
that p(K') C V/G is finite, where p: M — M/G is the orbit map.

Proof. Consider on M a structure of G — CW-complex that induces a trian-
gulation on M/G, given by 4.4 of [M2].

Let A= {o?€ M/G | o2 p(Coin(f,h)) # 0} and K’ = Uyac4 0.

Consider a sufficiently fine subdivision of the triangulation of M/, such
that K’ C V/G and consider on M a structure of G — C'W-complex which
induces this new triangulation of M/G.

Let K = p~'(K").

O

The next theorem, is an equivariant version of the Hopf construction for

coincidence when G is a compact Lie group and the G-action on V is not

necessarily free.

Theorem 3.7. Let M be a compact, connected G-manifold and V' a G-invariant
open subsel of M and suppose that |W H,| is finite for any isotropy type (H;)
of V. Let f,h : V. — M be compactly coincident G-maps. Then there exist
a G-subcomplex K € V with Coin(f,h) C intK, p(K) C V/G f[inite and a
G-map f' -V — M, G — c-homotopic to f such that, Coin(f;,, hp,) is finite
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and p(Coin(fy,, hm,)) lies in the interior of some maximal simplezes of p(K)

for all isotropy type (H;) of V.

Proof. Let K be the G-subcomplex given by 3.6, and {(H), (H3),...(H,)} the
isotropy types of V' with associated filtration V;,V5,...V, = V and denote by
K;=KnV,forali=12,..r.

In V — K define f' = f, we will construct f’ on K.

Let K, = Kg, N (MHl)d. Since p(K) is finite, for d = 0 define ' = f.

Now, suppose d = 1.

Let A; = {7° € p(K})|e* N p(Coin(fu,,hm,)) # 0}. Choose A° €
pH(AY), so f(A?) € (ZWHl)l. Since all connected component of (JWH‘)I have
dimension 1, for all neighborhood U of f(A°) with diam(U) < ¢, there ex-
ist some point y € U, such that G, = Ggac). Then, define f' on A° so
that, 0 < d(f'(A°),R(A°%) < ¢. For each g € @, define f' on g.A° by
F'(g.A% = g.f'(A”).

Repeat this procedure for all O-cells in p~' (A}) —G(A®). For the other 0-cells
of Kj;, define f' = f.

Let A € p7'(Al). For all @ € 9A!, f'(z) # h(x), so by lemma 2 of [H],
we can extend f’ to A! with, d(f’, f) < &, and Coin(f’;h) = () or it contains
exactly one coincidence point in Al. For all g € G define f’ on g.A! as follows:
Ify € g.A', then there exists € A! with y = g.z and we define f'(y) = g.f'(z).

Repeat this procedure for all 1-cells of p~* (A7) —G(A?). For the other 1-cells
of Ky, define f' = f.

Now, suppose d = 2.

Let A5 = {o® € p(K%)|a* N p(Coin(fm,,hm,)) # 0}. Consider A® €
pH(AY), so f(AY) € (MHI)2 and since all connected component of (JWH‘)Z
has dimension 2, for any neighborhood U of f(A°) with diam(U) < €, there
exist some point y € U such that G = Gjfaoy. Then define f' on A® so
that, 0 < d(f'(A°),h(A°%) < e. For each g € G, define f' on g.A° by
f'(9.4°%) = g.f'(A”).

Repeat this procedure for all O-cells in p~' (AY) —G(A®). For the other 0-cells
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of K, define f' = f.

Let A' € p~'(A}). For all point x € JA', f'(z) # h(z), then by 3.1.i), we
can extend f’ to Al, with d(f’, f) < €, and f'(z) # h(z), for all z € Al.

For all ¢ € G define f’ on g.A! as follows: If y € g.A', then there exists
z € Al with y = g.x and we define f'(y) = g.f'(z).

Repeat this procedure for all 1-cells of p~' (A}) —G(A'). For the other 1-cells
of K7, define f' = f.

Now, let A? € p~'(A%), then f’ is defined on JA? such that, d(f, f) < &
and Coin(f',h) =0 on A% so by lemma 2 of [H] it is possible to extend f’ to
A? with d(f', f) < ez and Coin(f’,h) = 0 or it contains exactly one coincidence
point on A2

For all g € G define f’ on g.A? as above.

Repeat this procedure for all 2-cells of p~'(A%) — G(A?). For the other 2-cells
of K, define f' = f.

Similarly we define f’ on K(dHl) for all 3 < d < n, where n = dimM.

Then F" is defined on K,y = iy K{p,) such that Coin(f’,h) is finite,
p(Coin(f',h)) lies in the interior of some maximal simplexes of p(K(g,)) and
d(f', f) < €nta.

Since K(z,) = K1, we have f' defined on Kj.

Now we will define f" on K.

Let Ki,) = {A* € Kp,|A°NK; =0}, 0<s<mand K}, = Ky, — K,

In Ky,’ define f’ in the same as in Kp,. Define f’ on K} as follows:

Let K}' = K,n(M™) 0<d<m.

If d = 0, then Kﬁo = (). Now, suppose d = 1.

Consider A € K3'. Then the boundary A' consists of two O-cells, A? and
AY such that:

a) AYe K, and AY € Ky’

We can have:

i) AY € Ky, in this case f'(A7) # h(A?).
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Since A € KHz'l, we may apply the lemma 2 of [H], and extend
S’ to A such that, d(f’, f) < e, and Coin(f’,h) = @ or it contains

exactly one coincidence point on Al

h(AY).

1=
Since AY € Kpg,', by 3.1.ii.b), w may extend f’ on A! such that,
d(f',f) < & and Coin(f',h) N A" = AJ.

ii) A} € K%, in this case f/(A

b) A, AJ € K, and A'NK; =

In this case A} and AJ are in Kp . Thus f'(A7) = h(A?) and f/(A9) =
h(AY), so by 3.1.ii.b) we may extend f’ on A' such that, d(f’, f) < ¢ and
Coin(f,h)NA" = {A? AI}.

In the cases a) and b), we extend [’ to G(A!) by f'(g.A') = ¢.f'(A?), for
all g € G.

Repeat this procedure for all 1-cells of K}' — G(A')

Proceeding this way to d = n, we will have f’ defined on K(g,) such that
d(f', f) < €uq1 and Coin(f', h) is finite and each point in p(Coin(f’,h)) lies in
the interior of a maximal simplex of p(Kz,)).

Since Ky = Ky | K1), (disjoint union), we have f’ defined on K.

Now, repeat this process for all K;, j = 3,4...r.

Since 2¢,41 < 9, follows from 3.2 that f’ and f are G-e-homotopic by a
constant homotopy in the coincidence points of f' and f.

]

Corollary 3.8. Let M be a compact, connected G-manifold and V a G-
invariant open subset of M and suppose that |W H;| is finite for any isotropy
type (H;) of V. Let f,h : V. — M be compactly coincident G-maps. Then
there exists a G-map ' :'V — M, G — e-homotopic to f so that, f' and h are

G-compactly coincident maps.

Proof. It follows from 3.7, since Coin(f’, h) is finite.
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Proposition 3.9. Let G be a compact Lie group with dimG > 0 and (N, A) a
relative G — CW -complex such that, the G-action on N — A is free and dimN <
n. Let fh : N — M be G-maps so that, the coincidence points on A are
isolated. Then there exists f' : N — M, G — e-homotopic to [ relative to A
such that, Coin(f',h) N (N — A) = (.

Proof. Consider on (N, A) the estructure of G — CW-complex which induces
on N/G a triangulation. Since dim(G) > 0, dim((N — A)/G) = m < dimN.
Since each d-cell A of N, 1 < d < m is homeomorphic to a d-simplex o of N/G,
denoting by ¢ this homeomorphism, we may suppose that diam(f(¢3'(c™)) <
€ns1 and diam(h($3'(0™)) < €nt1, Vo™ € N/G.

Let K = {AY € N — A | AN Coin(f,h) = B}, for all 0 < d < m and
K'={A°c N—-A|AINA#P}, foralll <d < m.

In A, define f' = f and in N — A define f’ as follows:

In K, repeat the process of 3.7.

In K, given o' € p(K’), choose a 1-cell A! € p~'(¢?), then in the boundary
of A! there exist at most two coincidence points, which are in A.

If Coin(f,h)N A" # 0, we can extend f’ by 3.1.ii.b) to A! with d(f', f) < &
and Coin(f',h) C A.

If Coin(f,h)NA' = (), by lemma 1 of [H] we may extend f’ to A! such that
d(f', f) < e and Coin(f',h) N Al = 0.

Given another 1-cell AV € p~'(a'), there exists g € G with AY = g.A! and
we define f’(All) =g.f'(A").

Repeat this procedure for all 1-simplexes in p(K’) — o'.

So we have defined f’ on the 1-cells of N — A such that d(f’, f) < 1, without
coincidence with % in the interior of 1-cell and if f’ have some coincidence point
with A in the boundary of some 1-cell, this coincidence point is in A.

Given o2 € p(K"), choose a 2-cell A% € p~'(5?), then in the boundary of A*
there exist at most a finite number of coincidence points.

If Coin(f,h) N A% # (, it follows from 3.1.ii.b) that we may extend f’ to A?
such that d(f’, f) < €3 and Coin(f',h) C A.
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If Coin(f,h) N A% = (), it follows from lemma 1 of [H], that we can extend
f' to A? such that d(f’, f) < e and Coin(f',h) N A% = (.

Given another 2-cell A? ¢ p~1(c?), there exists g € G with AY = g A! and
we define f/(A?) = g.f'(A?).

Repeat this procedure for all 2-cell in p(K’) — o?.

So we can extend [’ to all d-cell, 2 < d < m, such that " and A do not have
coincidence on N — A. Moreover d(f', [) < €m < €p41.

Since 2¢,41 < 9, f" and f are G-¢ homotopic by 3.2.

Theorem 3.10. Let M be a compact, connected G-manifold and V an G-
invariant open subset of M. Lel f,h 1V — My compactly coincident G-maps,
where My is a connected G-manifold with dimM, = n. Then there exists a
G-map ' :V = My, G — e-homotopic to [ such that, the isotropy subgroup of
each coincidence point in Coin(f', h) has finite Weyl group.

Proof. Let (H,),(H3),...(H,) be a admissible ordering on isotropy types of V,
with associated filtration V; C,V, C,...C V, = V.

Since Coin(f,h)is a compact in V, by 3.6 there exist a structure of G—CW-
complex on M that induces a triangulation on M/G and a G-subcomplex K C
V, with Coin(f,h) C intK.

Denote by K = KNV, where V4 is the union of the connected components
of V; of dimension d.

Let iy € {1,2,...r}, be the first index for which dimW H;, > 0.

By 3.7, we can suppose that C'oin(fm,, hy,) is finite and each coincidence lies
in the interior of some maximal simplex of K, for 1 <1 < #;, where K; = KNV, .

Let Ni = Vg, nVi_, C (M%)t

The pair (Nf,Vi¢_,

a WH; -map fz-dll : (Ng, V4

110 Vi1 —1

to V’_, and such that Coin(fd;l,h;[{ld) A, =

11—1

) is a relative G — C'W-complex, applying 3.9 we obtain
) — (NE V;-[li_l), W H;,-homotopic to ffhl relative

TR

Extend fdi-l to V(‘;I!,l) as follows:
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For each y € V({;’J”) there is one point x € anl{q such that y = g.z, where
geWH,.

Define f%, (y) = g.f*, ().

Then we have fd:-I defined on Vi* = Vi_, V(ihl)’ such that Coin(fd;-1 ,h)N
Vit = 0-

Do the same for all index j € {i1,41 + 1,...r} for which dimW H; > 0.
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