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TOPOLOGICAL OBSTRUCTIONS TO THE
EMBEDDABILITY OF CR-MANIFOLDS

Elisha Falbel

Introduction

Any Riemannian manifold can be isometrically embedded into an Euclidean
space. The analogous statement for complex manifolds is false. Aside from the
obvious fact, by the maximum principle, that compact complex manifolds can-
not be holomorphically embedded into CV, a manifold admits a holemorphic
embedding into C¥ which is proper, if and only if it is a Stein manifold. We
study the question of embeddability for structures modeled after boundaries
of complex manifolds.

Boundaries of complex manifolds were studied by Poincaré in 1907 [P],
where he showed that the polydisc is not biholomorphic to the ball in two com-
plex dimensions, by reducing the problem to the boundaries of those domains.
The abstract definition of the boundary as a CR-structure on a manifold is
essentially in E. Cartan [C], where a classification of the 3-dimensional homo-
geneous structures is given. A CR-structure over a manifold of real dimension
3 is given locally by a complex vector field L, defined up to a nonvanishing
function, which is not purely real nor imaginary at any point. In other words,
a CR-structure is a subbundle of the complexified tangent bundle all of whose
fibers are not purely imaginary nor real. A hypersurface N embedded in a
complex manifold M has a natural CR-structure given by the intersection
TY®M N CTN. A simple count of dimensions shows that this intersection is
of complex dimension one. In particular, considering the standard sphere in
C%, 5% = {{z21,22) € C*/ | z1 |* + | 2, |*= 1} the standard CR-structure is
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given by the global vector field

P
L=z2— — 23—
137, " %8z

We consider only strictly-pseudoconvex CR-manifolds. In the 3 dimensional
case this simply means that L, L,[L, L] are linearly independent at every point.
This is an open condition, therefore small deformations of the complex vector

field are siill stirictly pseudoconvex.

Definition 1. We say that a CR-structure I on a manifold & is embeddable
if there exists an embedding f : N — C" for some n, where f,(L) € T10C",
A CR-structure on N is locally embeddable if, given p € N, there exists a
neighborhood of p which is embeddable.

Definition 2. A complex function f : N — C on a manifold with CR-
structure L is said to be a CR-function if L(f) = 0.

In [BM] Boutet de Monvel showed that any compact, orientable d-dimen-
sional, 4 > 5, strictly pseudoconvex CR-manifold is embeddable in some C¥.
By a result of Harvey and Lawson [HL|, this manifold is the boundary of a
subvariety in C¥. On the other hand, 3-dimensional compact orientable CR-
manifolds are not necessarily embeddable. The first example is atiributed to
Andreotti in [R]. This example is actually on the list of homogeneous struc-
tures of Cartan, but at that time it was unclear whether it was embeddable.

Strictly pseudoconvex CR-manifolds arise naturally as boundaries of Stein
spaces. By a theorem of Andreotti-Frankel-Milnor [M1], the fundamental
groups of a Stein manifold and its boundary are isomorphic in dimensions
> 2. This is not the case in complex dimension 2. We give constructions
of non-embeddable three dimensional CR-manifolds arising from covers of
boundaries of Stein manifolds which have the property that the fundamental
groups of the manifold and its boundary are distinct.

A more radical phenomenom occurs in 3-dimensions, namely, that even lo-

<ally it might not be embeddable, as was shown for the first time by Nirenberg
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[N]. This situation was further analysed by Jacobowitz and Treves [JT 1,2| to
show that, in fact, non-embeddable CR-structures are, in some sense, dense in
the space of CR-structures over a 3-dimensional manifold in the higher dimen-
sional case. It is known that local embeddability occurs always in dimensions
> 7 [K] [A], but the 5-dimensional case is not settled. We also show that
local non-embeddability can be obtained by pasting together non-embeddable
structures on S° arising from the series of quotient singularities A, provi-
ding a more geometrical explanation for the local non-embeddability than the
techniques in [N| and [JT 1,2]. Most of the results announced here appeared
in [F,F1], to which we refer for the proofs.

Covers of boundaries of Stein manifolds

Let X be a topological space. Suppose X is a relatively compact subset of a
larger space ¥. We say that an open set V C X is a neighborhood of 38X if
it is the intersection of a neighborhood of dX in ¥ and X. A distinguished
neighborhood of 3X is defined to be such a neighborhood which doesn’t have
relatively compact components in X. If X is not a subspace of a larger space,
we still can define a distinguished neighborhood of the boundary of X as an
open set V such that V = X — K, where K is a compact in X and there
are no relatively compact components of X — K. We say then that V is a
neighborhood of 8X, as we will consider only distinguished neighborhoods.

Observe that this definition doesn’t imply that the neighborhood is con-
nected. As an example, consider the cylinder 5! x (0,1} which clearly has
neighborhoods of the boundary which have two connected components.

We are interested in boundaries of Stein spaces. As any open Riemann
surface is a Stein space, there are no restrictions on the possible boundaries
of 1-dimensional Stein spaces. In particular, as in the case of the cylinder, the
boundary might not be connected. The situation changes completly in higher

dimensions.

Theorem 1. [M1]Let S be a connected Stein manifold of dimension strictly
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greater than I, Then a neighborhood of @S 15 connected. If dimension of 5 is
greater than 2, then m,(S) = m(35)

In dimension 2, we have the following

Theorem 2. Let 5 be a simply conected Stein manifold of dimension 2. Let
V be a neighborfood of 3S. Suppose that m : M — V is a finite nonramified
cover of complex manifolds. Then holomorphic functions of M are pull-backs

of holomorphie functions on V.

The set ¥ akove can be thought of as a tubular neighborhood of a strictly
pseudoconvex CR-manifold, and it can actually be confounded with this ma-
nifold. To formulate the version for CR-manifolds, we recall that a function
¢, on a complex manifold is said to be a strictly plurisubharmonic exaustion

function if its level sets are strictiy pseudoconvex CR-manifolds.

Corollary 1. Let ¢ be a strictly plurisubharmonic ezaustion function of a
stmply connected Stein manifold S of dimension 2. Let V be a neighborhood
of 38 and v : M — V a finite nonramified cover. Then the compact connected
level sets of n*(¢) are non-embeddable CR-manifolds. In faet CR funetions
are pull-backs of CR-functions of the level set of ¢ in V.

Remarks: .

1. The theorem is still true if we delete small parts of the manifold V.
This fact is very important, for later use in the pasting of CR-manifolds,
Analogously, it is not fundamental that we cover the whole CR-manifold of
the boundary, but a large enough piece of it. See [F| for details.

2. The theorem is still true if 8 is not simply connected, but has different

fundamental group than its boundary, as in example 1.
Example 1. Consider the Reinhardt domain

§={{zuz2) €C* [ (|21 | -1) + (| 2 | -1)" < 1/2}
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Observe that it is homeomorphic to S x §! x D!, whereas 35 is homeo-
morphic to 5! x 5! x §L. It is easy to see that it is a Stein manifold with a
strictly pseudoconvex boundary. § is not simply connected but has different
fundamental group than its boundary. We describe two completely different
possible 2-coverings of 985,

-i) The diflerence of the topology is concentrated in the last disc. If we
consider a finite cover of the last S! we obtain a CR-manifold whose CR-
functions are pull-backs of CR-functions on 85.

ii) Consider now a double cover of the first 5!, we can give it explicitly as
M= {{z1,z,w) €C* Juw' =2 and (| zn | -1)*+ (|2 | 1)’ =1/2}
In this case we see clearly that M is embedded into C3.

Example 2. Singularities. Consider a polynomial f{x,, zs, z3) which vani-
shes at the origin and A the algebraic set with an isolated singularity at the
origin
A = {(z1,72,73) € C*/ fz1,22,23) = 0}
Define the Stein neighborhood S = A n B, where B,, is a small ball
centered at the origin. In the following we will fix an arbitrarily small e,

and denote the Stein neighborhood simply by S, dropping the superscript. A
smoothing of S is the family

8. = {(z1, 72,73} € B,/ [ (21,22, 75) = ¢}

In particular we will consider the quotient singularities. Those are precisely
the ones for which m;(38) is finite. Let G C SU(2) be a finite subgroup.
We consider SU(2) acting on C? as a matrix group. It is a classical result
that G\C? can be given a structure of an analytic space with one isolated
singularity. In fact, the ring of polynomials in C|z), 22] which are invariant by
G is generated by 3 polynomials and those can be used to construct a map
7 : C? - C® that induces an isomorphism of the quotient to a hypersurface
in C® Observe then that G\S® is diffeomorphic to @5, the boundary of &
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Stein neighborhood of the isolated singularity. As a specific example let G be
the cyclic subgroup of order k given by

G,,:{(g g)GSU(Z)lg"=1}

The invariant polynomials are generated by z¥,2f and z,,2,, so by the
observations above G4\ C? is isomorphic to the hypersurface defined by the

equation x, -z — ¥ = 0.

A, = {(ﬁ;zhxs) eC? [ z1z2 - ”g =0}

The map 7 : C? — C® defines a non-ramified cover outside the origin, that
is 7 : C* — {0} — A,y — {0} is a k-sheeted holomorphic cover. Analogous
descriptions can be given for the groups Dy, E¢, E7, Ey. See [Lo]

If we construct S, as indicated above, then a neighborhood V, of 88, will
have a cover diffeomorphic to the space between two concentric spheres in
C?. Therefore on a tubular neighborhood of $* C C? there exists a family
of complex structures which we denote by M, such that # : M, — V. is a
holomorphic cover. Observe that V. and S, satisfy the hypotheses of theorem
2 by [M2], therefore we get the following

Theorem 3. For eack finite subgroup G of SU(2) we get families of com-
plex structures on a tubular neighborhood of 8 C C? such that holomorphic

funetions are fnvariant under G.

Corollary 2. For each finite subgroup G of SU(2) there ts a family Lf of
G-invariant CR-structures on $*, deformation of the standard structure, such

that CR-functions are invariant under G for ¢ # 0.

The following example is attributed to Andreotti in [R], see also |AS]
and [B]. It corresponds to the proposition above in the case of the quadratic

quotient singularity

A‘ = {(lexz,i'a) = Ca / Ty Tq— xg —_ 0}
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Let M = {(21,22) € C* / | z1 |* + | 22 |*= 1} be the sphere §* C C*. For a

small complex number ¢ define the map 7, : M — G2 given by

I = Zf + tzg
ty = 23 +1t2}
T3 = =23 —tz2;

It is then clear that the map has its image inside the manifold
S‘: = {(21112133) € (::3 / Iy Xy — x; = c}

Moreover the image of S? is the real projective space P® given by the inter-

section

S.n {[$1,32,13) S Cs/ I.’Cl |2 + | Xq 12 +2 | xs lzz 1}

It is easy to see that the CR-structure on §° induced by . is given by the
vector field Z = L + cL. From corollary 2, CR-functions are invariant under

t.he map (Zl,}’.g) —* (—Zl,—.z;).

Pasting CR-structures

One of the most fundamental facts in 1 dimensional complex manifolds is that
we can make connected sums, this fact is essentially a consequence of the fact
that a disc in C is biholomorphic to the complement of any disc centered
at the compactification point of C, and is reflected by the observation that
there exist inversions of the annulus mapping one boundary compenen: to the
other.

This situation is no longer true in higher dimensions. Essentially because
there are no one point compactifications of C"%,n > 1. Fortunately, things are
different for CR-structures. Analogously to the 1-dimensional complex case,
the quadric, which is the standard open model, admits a 1-point compactifi-
cation which is $* € C? and an open ball in the quadric is CR-biholomorphic

to a complement of a neighborhood of the compactification point.
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The quadric in C? is the real 3-dimensional manifold defined as
Q = {(21,23) € C!. / Imzz =| E41 |=}

and its CR-structure is given by the complex vector field

The quadric @ is CR-biholomorphic to §* — {p} ¢ C?, where p = (1,0) €

C?, by the following transformations
n=z—ifz+1 ¢=2z/zm+i
Consider the point (0,0) € @ and the neighborhood
Bs ={(z1,2) €Q/ |21 |’ +3 < 6}

By the transformation (z;,2;}) — (tz1,t%2;),t € R* the neighborhood B; is
dilated. Given a neighborhood of p it is clear then that, for a suficiently large
t, B;s is CR-biholomorphic to the complement of a closed set contained in this

neighborhood.

Proposition 1. Let M and M' be CR-manifolds which have balls B and B'
with the standard structure. Then they admit a pasting which doesn’t change

the structure in the complement of these balls.”

Now, pasting together the examples of non-embeddable CR-structures on
§3 of corollary 2, we will obtain an example of a CR-structure which is not
locally embeddable. Observe that if we paste a sphere we don’t change the
topology of 2 manifold.

Theorem 4. There exists a CR-structure on B; arbitraridy near the standard
one, obiained by pasting non-embeddable structures on S® which acumulate
at the origin of B, such that, any germ of CR-function at the origin has

vanishing first derfvatives.
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Remarks: 1. We can improve the theorem above using the same technique to
show that given any point P in an embeddable CR-structure of dimension 3,
there exists a deformation obtained by pasting spheres, so that CR-functions
have vanishing first derivatives at P. See [F|.

2. In higher dimensions we can find nonembeddable strictly pseudoconvex
open CR-manifolds. In particular, we were able to find arbitrarily small de-
formations of the standard strictly pseudoconvex structure on an arbitrarily
small neighborhood of S* which are not embeddable. Also, if we allow dif-
ferent Levi forms, the topological restrictions expressed in theorem 1 do not
hold.

3. In example 2, we see that surface singularities can give rise to simply
connected Stein manifolds with non-simply connected boundaries. It is an

open question to classify all Stein manifolds with this property.
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