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Enumeration of hypersurfaces with

prescribed non-isolated singular

subschemes

Weversson Dalmaso Sellin , Israel Vainsencher

Abstract

Let W be an irreducible subvariety of a Hilbert scheme HilbPW (t)(Pn).

We show under mild hypothesis that there are polynomial formulas

for the degrees of the loci of hypersurfaces in Pn with singular sub-

schemes containing some member of the family W. The formulas are

made explicit in a number of cases.

1 Introduction

The enumeration of singular hypersurfaces has a rich history. We refer

the reader to Kleiman[20], [21] for a guide to the classical sources. Recent

work has centered on generalizations of Göttsche’s pioneering article [12].

Polynomial formulas have been shown to exist for the counting of any type

of specified isolated singularities for hypersurfaces in higher dimensions,

cf. Rennemo [27]; alas, his method is nonconstructive and doesn’t lead to

formulas. A different approach for the existence of universal polynomials
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enumerating singular subvarieties is offered by Tzeng [31], via cobordism

theory of bundles and divisors. A few special cases of explicit polynomial

formulas, still for isolated singularities in higher dimensions, can be found

in [32].

The purpose of this work is to investigate the loci of hypersurfaces

with possibly nonisolated singularities. More precisely, given a closed,

irreducible subvariety of a Hilbert scheme, W ⊂ HilbPW (t)(Pn), we define

a generalized discriminant subvariety Σ(W, d) ⊂ PNd = P(H0(OPn(d))),

the points of which correspond to the hypersurfaces of degree d in Pn

singular along some (variable) member W ∈W. Assuming that a general

member W ∈W is smooth and of pure dimension ≤ n− 2, we show that

the degree of Σ(W, d) is expressed by a polynomial pW(d) for all d � 0.

Our argument uses Grothendieck-Riemann-Roch. The degree of pW(d)

is shown to be bounded a priori by n dimW. The polynomial is made

explicit for a few families W, distinguished by an adequate description in

the literature. Notably, we study the cases

•W(k,n) := {Pk − linear in Pn },

•Wm := { plane curves of degree m in P3},

•Wtwc := { twisted cubic curves in P3 },

•Wrc := { ruled cubic surfaces in P4 },

•Wseg := { Segre cubic 3-folds in P5 } and

•Weqc := { elliptic quartic curves in P3 }.

(1)

In all examples we actually find that the degree of our polynomial is

deg pW(d) = (k + 1) dimW, where k = dimW (≤ n− 2), W ∈W. (2)

We conjecture this is always the case. Our main result is the following

Theorem 1. Notation and hypotheses as above, set Fd := H0(Pn,OPn(d)).

There exists a desingularization W̃→W such that
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(i) for d � 0 there exists a vector subbunble Ed ⊂ W̃ × Fd whose fiber

over a general W ∈ W̃ is the subspace H0(Pn, (IW )2(d)) ⊂ Fd formed by

homogeneous polynomials of degree d with gradient null along W ;

(ii) the map P(Ed) −→ PNd = P(Fd) induced by projection is generically

injective and its image, Σ(W, d) ⊂ P(Fd), has degree

deg Σ(W, d) =

∫
Segre(w, Ed) ∩ [W̃],

where w = dim W̃ = dimW.

(iii) deg(Σ(W, d)) is a polynomial in d of degree ≤ nw for all d� 0.

Let us summarize the contents. §2 contains the proof of the theorem.

The first step is to associate to a family W as above a family W′ of

thickenings, cf. Def. 4. The general member W ′ ∈ W′ has ideal IW ′ =

(IW )2 for W ∈ W a smooth member. A hypersurface of degree d>>0 is

singular along W if and only if its equation F lies in H0(Pn, IW ′(d)) ⊂
Fd (Lemma 5). The set of pairs (W ′, F ) such that F ⊃ W ′ is a vector

subbundle Ed of W′×Fd. Our generalized discriminant Σ(W, d) ⊂ PNd is

the image of the projectivization P(Ed), cf. (10). Standard techniques of

intersection theory enable us to express deg Σ(W, d) as a top Chern class

of the quotient bundle Dd := Fd
/
Ed, cf. (12),(13). The latter bundle is a

direct image, (7). Now GRR applies (14) to ensure that the desired top

Chern class is a polynomial in d of degree ≤ n dimW.

Polynomial formulas for the families envisaged in (1) are derived via

Bott’s localization at fixed points (15), as we learn from Ellingsrud and

Strømme [9] and Meurer [24]. The fixed points of Wtwc are available in

op.cit. Additional work is required since our parameter space W′twc is

in fact a blowup of Wtwc, cf. Prop. 14, Remark 15. Ditto for the families

Wrc (§3.3.2), Wseg (§3.3.3) and Weqc (§3.4). We work over C.
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2 There are a vector bundle and a polynomial

formula

Let W be a closed, irreducible subvariety of a Hilbert scheme HilbPW(t)(Pn).

We assume the general member W ∈W is smooth and of pure dimension

≤ n− 2. Let W ′ ⊂ Pn be the subscheme with ideal sheaf IW ′ = (IW )2.

Lemma 2. Notation as just above, set N = IW
/

(IW )2. We have the

formula for the Hilbert polynomials

PW ′(d) := χ (OW ′(d)) = χ (OW (d)) + χ (N (d)) . (3)

Proof. The assertion follows from the exact sequence

0→ N −→ OPn

/
(IW )2 = OW ′ −→ OPn

/
IW = OW → 0.

Lemma 3. Notation as just above, we have a generically injective rational

map

W 99K HilbPW ′ (t)(Pn)

W 7→ W ′, IW ′ = (IW )2,
(4)

which is a morphism on the open subset of W consisting of smooth mem-

bers.

Proof. By Hirzebruch-Riemann-Roch [11, Cor.15.2.1,p. 288] and Conser-

vation of Number [11, 10.21,p. 180], the r.h.s. in (3) is independent of the

particular (smooth) W . By the universal property of Hilb [15], (see [8] for

a wonderful introduction or [29] for the state of the art) the map exists

over the open subset where flatness is ensured. Finally, if Z,W ∈ W are

smooth members such that (IZ)2 = (IW )2 it follows that IZ = IW .

Definition 4. Denote by W′ the closure of the image of the map (4).

Note the occurrence of a new Hilbert polynomial, PW′(t). For instance,

if we take W as the family of lines in P3, we have PW(t) = t+ 1 whereas

presently PW′(t) = 3t + 1. The latter is the Hilbert polynomial of the
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subscheme defined by the ideal 〈x2
0, x0x1, x

2
1〉 = 〈x0, x1〉2. Our starting

point is the elementary fact that a surface in P3 is singular along the line

〈x0, x1〉 if and only if its defining homogeneous polynomial lies in 〈x0, x1〉2.

Quite generally, to ask a hypersurface F of degree d to be singular along

a general member W ∈ W is equivalent to requiring F to be an element

of H0((IW )2(d)). This approach was probably inaugurated by Harris and

Pandharipande [17] and followed by Göttsche and Rennemo for isolated

singularities.

We write Sing(F ) for the singular locus of F . The next lemma is a main

step towards the proof of Theorem.1(ii).

Lemma 5. Suppose Jd := (IW )2(d) globally generated. Let F be a general

element of H0(Jd). Then Sing(F ) = W set-theoretically.

Proof. The hypothesis that Jd be globally generated implies by Bertini

(cf. [18, 10.9.2]) that Sing(F ) ⊆W . The inclusion W ⊆ Sing(F ) is evident:

if F lies in H0(Jd) then its gradient is zero all along W .

Next we borrow from [1] the technical construction of the correspon-

dence

Σ̃(W′, d) := {(Z,F ) ∈W′ × PNd |Z ⊂ F}. (5)

Lemma 6. Notation as in Definition 4, consider the projection maps

W′ × PNd

p1

zz

p2

%%
W′ PNd .

(6)

Then for all d � 0, the correspondence Σ̃(W′, d) (see (5)) is a projective

bundle over W′ via the first projection p1.

Proof. Let Z̃ ⊂ W′ × Pn be the universal subscheme and similarly F̃ ⊂
PNd ×Pn the universal hypersurface of degree d. Let us denote Ẑ, F̂ their
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pullbacks to W′ × PNd × Pn. We have the following diagram of sheaves

OY //

ρ
""

OY (F̂ ) //

����

O
F̂

(F̂ )

O
Ẑ

(F̂ )

over Y := W′ × PNd × Pn. By construction, the oblique arrow ρ vanishes

at a point (Z,F, x) ∈ Y if and only if x ∈ F ∩ Z. So the inclusion Z ⊂ F
holds when the previous condition occurs for all x ∈ Z. Thus, Σ̃(W′, d)

is equal to the scheme of zeros of ρ along the fibers of the projection

p12 : Ẑ → W′ × PNd . Recalling Altman & Kleiman [1, (2.1) p. 14], this

is equal to the scheme of zeros of the adjoint section of the direct image

vector bundle p12∗(OẐ(F̂ )). Look at the projection maps

W′ × Pn q2 //

q1
��

Pn

W′.
Since O(F̃ ) = OPNd (1)⊗OPn(d), by the projection formula we have pro-

duced a section of OPNd (1)⊗Dd, where Dd = q1∗(OZ̃(d)). By Castelnuovo-

Mumford and base change theory, there is an integer d0 (= regularity) such

that Dd is a vector bundle of rank PW′(d) for all d ≥ d0, where PW′(t)

denotes the Hilbert polynomial of the members of W′. In fact, Dd fits into

the exact sequence of vector bundles over W′:

0 // q1∗(IẐ ⊗OPn(d)) // q1∗(q2
∗OPn(d)) // q1∗(OZ̃(d)) // 0

Ed // // Fd // // Dd .
(7)

Taking the projectivization and pulling back to W′×PNd , we get (omitting

pullbacks):
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OPNd (−1)

��

��

ρ

$$
Ed // // Fd // // Dd .

(8)

By construction, ρ vanishes precisely over Σ̃(W′, d). And this tells us that

Σ̃(W′, d) = P(Ed). (9)

Lemma 7. Notation as in (7),(9) we have that Σ̃(W′, d) represents the

top Chern class of OPNd (1)⊗Dd.

Proof. As codimW′×PNd Σ̃(W′, d) = PW′(d), which coincides with the rank

of Dd due to (7), the assertion follows from Fulton [11, 3.2.16, p. 61].

Definition 8. We call the W-discriminant, denoted by Σ(W, d), the sub-

variety of PNd corresponding to the hypersurfaces which contain some

member of W′.

For a general point W ′ ∈W′ and a hypersurface F , asking that F ⊃W ′

as schemes is equivalent to requiring that the hypersurface be singular

along the reduced scheme W = W ′red ∈ W. With the notation of (6), we

have

Σ(W, d) = p2(Σ̃(W′, d)). (10)

The usual discriminant hypersurface corresponds to the choice W = Pn.

Lemma 9. Notation as above, the map

W′ × PNd ⊃ Σ̃(W′, d)
p2−−−→ Σ(W, d) ⊂ PNd

(Z,F ) 7→ F
(11)

is generically injective for all d >> 0.
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Proof. We must show that for a general F ∈ Σ(W, d), the fiber p−1
2 (F ) ⊂

Σ̃(W′, d) consists of a single element. In view of Lemma 3, there is an open

subset W′0 ⊂W′ formed by subschemes W ′ with ideal of the form IW ′ =

(IW )2 with W ∈ W smooth. Now it suffices to show that the restriction

of p2 over W′0 is injective. Let F be a general hypersurface of degree d

containing W ′ ∈ W′0. This means that F is general in H0(IW ′(d)) =

H0((IW )2(d)). By Lemma 5 we have that Sing(F ) = W (as sets). Let

Z ′ ∈W′0 be such that Z ′ ⊂ F . So we have (W ′, F ) and (Z ′, F ) ∈ p−1
2 (F ).

By construction of W′0, we have IZ′ = (IZ)2 for some smooth Z = Z ′red ∈
W. So Z ⊆ Sing(F ) = W . Since the Hilbert polynomials of Z,W are one

and the same, therefore Z = W and so Z ′ = W ′. This shows that the

map in (11) is generically injective as asserted.

Lemma 10. Notation as above, we have

deg Σ(W, d) =

∫
Segre(w, Ed) ∩ [W′], (12)

where w := dimW′ = dimW.

Proof. We have the equality of cycle classes

(p2)?[Σ̃(W′, d)] = [Σ(W, d)].

This follows from [11, §1.4, p. 11] since Σ̃(W, d)
p2−−→ Σ(W, d) is birational,

as shown in Lemma 9. Set δ := dim Σ(W, d). We have δ = w + ε, with

ε := rkEd − 1. Set H = c1OPNd (1), the hyperplane class. By projection

formula we may write

deg Σ(W, d) =

∫
Hδ ∩ [Σ(W, d)] =

∫
p?2H

δ ∩ [Σ̃(W′, d)]

=

∫
(p1)?

(
p?2H

w+ε ∩ [Σ̃(W′, d)]
)

=

∫
Segre(w, Ed) ∩ [W′],

using Fulton [11, §3.1, p. 47, Prop.4.4,p. 83 and Ex. 8.3.14, p. 143].

Proposition 11. The degree of the W-discriminant, Σ(W, d), is a poly-

nomial in d of degree ≤ n dim(W) for all d� 0.
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Proof. Let W̃ → W′ be a desingularization (cf. [19]). Pulling back Ed,Dd
in (7) to W̃, we may as well simplify notation and assume W̃ = W′ smooth.

We now argue as in [6] and [33]. Recall Dd is a direct image of a sheaf

over W′ × Pn (cf. 7). The same diagram of sheaves tells us

Segre(w, Ed) = cw(Dd). (13)

Now we can apply Grothendieck-Riemann-Roch (cf. [11, Thm.15.2, p. 286])

to express the Chern character of Dd as

ch(Dd) = ch((q1)!(OZ̃(d))) = (q1)∗
(
ch(O

Z̃
) · ch(OPn(d)) · todd(Pn)

)
.

(14)

Note that the right hand side is a polynomial in d of degree ≤ n. On the

other hand, the Chern class cw is a weighted polynomial of degree w on

the coefficients of the Chern character ([11, 3.2.3,p. 56]). This implies that

cw(Dd) is a polynomial in d of degree ≤ nw.

Remark 12. In order to get a polynomial formula, it suffices to calculate

the degree of Σ(W, d) for n dimW + 1 values of d. In all cases treated

in this work, we find that the degree of the polynomial pW(d) actually is

(k+ 1)×dim(W), where k denotes the dimension of a member of W. The

validity for W arbitrary remains conjectural. [31] and [27] handle the case

k = 0.

To compute explicitly the integral in (12), we will apply Bott’s residues

formula in the equivariant flavor of [9] (see also [23], [24]),∫
Segre(w, Ed) ∩ [W′] =

∑
F

cTw(−Ed) ∩ [F ]T

cTtop(NF |W′)
, (15)

where the sum runs through all fixed components F of a convenient action

of the torus T := C∗ on W′. The NF |W′ appearing in the denominator

denotes the normal bundle of a fixed component F in W′. In all cases

treated in this work the set of fixed points is finite. Thus the denominator

in (15) is the T-equivariant top Chern class, cTtop(TFW′), where TFW′

denotes the tangent space at a fixed point F in W′.
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Remark 13. Notation as in (1), for W = W(k,n) (as well as W = Wm), the

family W′ which parameterizes subschemes of Pn defined by (IW )2 with

W ∈W is flat. In fact, we have W = W′: the map (4) is an isomorphism.

However, in the other cases dealt with in this work we have only the

generic flatness guaranteed over the locus of smooth W ∈W. In fact, the

Hilbert polynomial for (IW )2 may jump at special points. A blowup will

be required in order to achieve flatness, following Raynaud [26].

3 Enumerative results

“For many problems it would be miraculous and totally unexpected if

somebody were to find a precise formula for the solution; most of the time

one must settle for a rough estimate instead.”1

A detailed exposition of the fixed points and the computations of their

contributions on Bott’s formula (15), including scripts for Macaulay2 [14],

Maple [22] and Singular [7] and for the resolution of indeterminacies in

the cases of sections 3.3 and 3.4 can be found in Sellin [28].

3.1 Hypersurfaces singular along a linear Pk ⊂ Pn

Here, the parameter space W(k,n) := G(k + 1, n+ 1), the grassmannian

of k + 1 dimensional vector subspaces of Cn+1. Our goal is to determine

the degree of the family of hypersurfaces of degree d singular along some

Pk ⊂ Pn.

For the reader’s benefit we will show the calculations for deg Σ(W(1,3), d).

Consider the torus T = C∗ acting diagonally on F1 = (C4)∨ via

t ◦ xi := twixi,

with appropriate weights, say:

w0 = 4, w1 = 11, w2 = 17, w3 = 32; (16)

The requirement is that denominators appearing in (15), which turn out

to be polynomials in the weights w0, ..., w3, do not vanish.

1TimGowers, Mathematics: A Very Short Introduction
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We get a natural induced action on W(1,3) = G(2, 4). The tautological

vector bundles

S // // F1
// // Q

on W(1,3) are T-equivariant. The fiber of S over a line l ∈ G(2, 4) is the

two dimensional subspace of F1 of linear forms vanishing on l. Presently

we have six fixed points corresponding to the coordinate axes

〈x0, x1〉, 〈x0, x2〉, . . . , 〈x2, x3〉.

Referring to (15), we have

deg Σ(W(1,3), d) =
∑
F

cT4 (−Ed) ∩ [F ]T

cT4 (TW(1,3))
(17)

summing over the six fixed points. The denominator in (17), let’s say for

F = 〈x0, x1〉, is obtained as follows. First we find the fiber of the tangent

TFW(1,3) = Hom(SF ,QF ) = 〈x0, x1〉∨ ⊗ 〈x2, x3〉 =
x2

x0
+
x3

x0
+
x2

x1
+
x3

x1
,

where xi
xj

denotes the T-space with weight wi−wj . In this way, we obtain

cT4 (TW(1,3))∩[F ]T = (w2−w0)(w3−w0)(w2−w1)(w3−w1). With the choice

of weights in (16), this gives us the value 45864. Similarly, the numerator

requires the weight decomposition of the fiber (Ed)F . To fix the ideas, take

d = 3. Now that fiber consists of the cubic forms f ∈ H0(OP3(3)) with

gradient null along the line F . The weight decomposition is given by

(E3)F = x3
0+x2

0x1+x2
0x2+x2

0x3+x0x
2
1+x0x1x2+x0x1x3+x3

1+x2
1x2+x2

1x3.

Since we actually need the Segre class, Chern(−Ed)=Chern(Dd) cf. (7), we

find the complementary decomposition

(Dd)F = x0x
2
2+x1x

2
2+x3

2+x0x2x3+x1x2x3+x2
2x3+x0x

2
3+x1x

2
3+x2x

2
3+x3

3.

Here xαi x
β
j x

γ
k denotes the T-space with weight αwi + βwj + γwk. The

corresponding numerical contribution is 3217978137. The fixed point
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F = 〈x0, x1〉 contributes the fraction 3217978137/45864. The total con-

tribution of the six fixed points is

3217978137
45864 − 2152229961

17640 + 774359841
28665 + 1227942219

28665 − 392711889
17640 + 218302833

45864 = 504.

This is the degree of the subvariety of |O3
P(3)| = P19 consisting of the

Whitney umbrellas: surfaces of degree 3 in P3 which are singular along

some line (cf. [5]).

Recalling Remark 12, we need the degrees of Σ(W(1,3), d) for 3× 4 + 1

values of d. Interpolating, we get

deg Σ(W(1,3), d) =
1

32

(
d

2

)
(27d6−117d5+269d4−375d3+312d2−132d+48). (18)

We list below the results for (k, n) ∈ {(2, 4), (2, 5), (3, 5)}:

deg Σ(W(2,4), d) =
1

27 · 33
(
d+2
4

)
(9d14 − 18d13 − 63d12

+396d11 − 405d10 − 1530d9 + 5328d8 − 4176d7 − 9414d6

+27208d5 − 24347d4 − 4696d3 + 36572d2 − 32544d+ 14400).

(19)

deg Σ(W(2,5), d) =
1

(2)331153
(
d+2
4

)
(12800d23 − 25600d22

−224000d21 + 966400d20 + 520800d19

−10632000d18 + 18128000d17 + 35186000d16 − 170677265d15

+145358830d14 + 449576760d13 − 1292773830d12 + 778144037d11

+2164141556d10 − 5208921230d9 + 3728975455d8 + 3332483181d7

−10452711042d6 + 10781927010d5 − 2523245175d4 − 7609562253d3

+11511503406d2 − 8323547040d+ 3637418400).

(20)

deg Σ(W(3,5), d) =
1

227 · 33 · 54
(
d+2
4

) (
1125d28 + 15750d27

+86625d26 + 168750d25 − 187875d24 − 38250d23

+8824725d22 + 23473350d21 − 32467725d20 − 128183670d19

(21)
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+426415635d18 + 1377078570d17 − 2137554049d16

−7117020302d15 + 15925316455d14 + 37514746370d13

−82840806388d12 − 125157483544d11 + 422227932240d10

+287672117600d9 − 1529648949952d8 + 207120164224d7

+4517312266240d6 − 3047085731840d5 − 6253154779136d4

+11893749153792d3 + 2911913902080d2

−8455245004800d+ 2378170368000
)
.

Recalling dimWk,n = (k + 1)(n − k), we remark that the degrees of

the above polynomials are in agreement with the expectation (2), to wit,

(k + 1) dimW.

3.2 Surfaces singular along plane curves

The family of plane curves of degree m > 1 in P3 is parameterized by a

PNm-bundle over P̌3

Wm −→ P̌3,

where Nm =
(
m+2

2

)
− 1. We have calculated deg Σ(Wm, d) for m = 2, 3:

deg Σ(W2, d) =
1

213 · 32 · 5 · 7
(d− 2)(150903d15 − 3809754d14

+44834472d13 − 317080224d12 + 1422290970d11 − 3579080844d10

−455933988d9 + 47928493544d8 − 237841700217d7 + 712127741206d6

−1498533401372d5 + 2287674925704d4 − 2504345972608d3

+1873638158208d2 − 859900216320d+ 182801203200).

(22)
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deg Σ(W3, d) =
1

220 ·34 ·5·7·11

(
13286025d24 − 1038081420d23

+39146062158d22 − 946074434976d21 + 16407919974303d20

−216603408547548d19 + 2251372103607528d18

−18776305509313968d17 + 126579622223230407d16

−686155959955971780d15 + 2911999863446866566d14

−8886007643094113376d13 + 12799827743693355329d12

+50456388588134712812d11 − 483658040042985949724d10

+2229927488252098274992d9 − 7358275057877141245584d8

+18804143410678335462720d7 − 38007885859704936084800d6

+60658830486712279959808d5 − 75133955486596446561280d4+

69793667761693681135616d3 − 45744106516543857328128d2

+18819557445986636267520d− 3636764182567924531200) .

(23)

The reader interested in obtaining deg Σ(Wm, d) for other m, simply

plug in the desired value in the script in [28, Appendix E, p.92]. Notice

the degrees of the above polynomials in (22) and (23) are (k+1) dimW =

2
(

2 +
(
d+2

2

))
.

3.3 Hypersurfaces singular along base loci of nets of quadrics

of determinantal type

In this section we discuss the case of hypersurfaces in Pn (n = 3, 4, 5)

singular along base loci of nets of quadrics of determinantal type. By this

we mean the nets generated by 2 × 2-minors of a 3 × 2 matrix of linear

forms. Specifically, we consider the families
Wtwc = { twisted cubics in P3},
Wrc = { ruled cubics in P4} and

Wseg = { Segre 3-folds in P5}.
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3.3.1 Surfaces singular along twisted cubics

A twisted cubic is a rational, smooth curve of degree 3 in P3. Any such

is projectively equivalent to the scheme of zeros of the 2×2 minors of the

matrix ( x0 x1 x2x1 x2 x3 ) . Its Hilbert polynomial is 3t + 1. Piene & Schlessinger

[25] showed that the component Wtwc ⊂ Hilb3t+1(P3) is a smooth projec-

tive variety of dimension 12. Subsequently, Ellingsrud, Piene & Strømme

[10] proved that the subvariety of the Grassmannian

X ⊂ G(3,F2) (24)

formed by nets of determinantal type is smooth. Moreover the component

Wtwc is the blowup of X along the subvariety Gω of nets projectively

equivalent to the net

ω := (x2
0, x0x1, x0x2).

A typical element on the fiber of the exceptional divisor over ω corre-

sponds to an ideal of the form Iω,f := 〈x2
0, x0x1, x0x2, f〉, where x0 =

f(x1, x2, x3) = 0 is a plane cubic singular at the point x0 = x1 = x2 =

0. The square (Iω,f )2 of any such ideal has Hilbert polynomial 9t −
7, same as for the square of the ideal of the standard twisted cubic,

〈x1x3 − x2
2, x0x3 − x1x2, x

2
1 − x0x2〉.

Unlike the cases W(k,n) and Wm, the family formed by the subschemes

of P3 defined by (IW )2,W ∈Wtwc is not flat. In fact, the element

o := 〈x0, x1〉2 = 〈x2
0, x0x1, x

2
1〉 (25)

is a member of the good component Wtwc, but its square has “bad” Hilbert

polynomial, namely PWtwc(t) = 10t− 10, instead of 9t− 7.

This is remedied by blowing up Wtwc along the orbit Go. Since Go ∩
Gω = ∅, it follows that Go lifts isomorphically to an orbit in Wtwc, still

denoted by Go. Let W′twc denote the blowup of Wtwc along Go. In fact, X
and Wtwc are isomorphic over any neighborhood of Go disjoint from Gω.

The restriction W′twc|X\Gω
is isomorphic to the restriction X′|X\Gω

of the

blowup X′ of X along Go.
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Let C be the tautological subbundle of rank 3 over the grassmannian of

nets of quadrics G(3,F2). Write S2(C) the symmetric power.

Proposition 14. Let µ : S2(C)|Wtwc
→ F4 be the natural map induced by

multiplication. Consider the blowing up diagram of Wtwc along Go

W′twc

��

⊃ E′

��
Wtwc ⊃ Go.

(26)

Then (i) Go is the scheme of zeros of
6
∧ µ;

(ii) W′twc embeds in Wtwc × G(6,F4) as the closure of the graph of the

rational map Wtwc99KG(6,F4) induced by µ.

(iii) The fiber of the exceptional divisor E′ over o is the projectivization

of the quotient space of quartic forms,

(〈x0, x1〉3)4

/
(〈x0, x1〉4)4.

Proof. The argument is based on local calculations as shown in [28, Ap-

pendix F.1]. We just highlight the main steps. Denote by Z the scheme of

zeros in question; it is invariant under the natural PGL4 induced action.

Recall X (24) has precisely two closed orbits, represented by the nets

o = (x2
0, x0x1, x

2
1) and ω = (x2

0, x0x1, x0x2).

Clearly o ∈ Z 63 ω. Consider the list the 10 quadratic monomials,

m1 := x2
0,m2 := x0x1,m3 := x2

1,m4 := x0x2, . . . ,m10 := x2
3.

Use the affine coordinates aij , 1 ≤ i ≤ 3, 1 ≤ j ≤ 7 for the open subset

G0 ⊂ G(3, 10) so that the quadrics
q1 := x2

0 +
∑
a1jm3+j

q2 := x0x1 +
∑
a2jm3+j

q3 := x2
1 +

∑
a3jm3+j

yield a trivialization for the restriction C|G0 . Over G0 the multiplication

map C ⊗ F1 → F3 is of generic rank 12; the rank drops to 10 exactly

along X0 := X ∩ G0 = Wtwc ∩ G0 =: W0
twc; the 2nd equality stems from
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the fact that G0 is a neighborhood away from the orbit of ω. This yields

explicit equations for X0 ⊂ G0. These equations allow us to express

9 of the coordinates in terms of the 12 remaining ones; these in turn

provide affine coordinates for X0. Working out a matrix representation

for µ : S2C|X0 → F4 we find that the ideal of 6×6 minors, which defines

Z, is equal to the ideal of (Go)0 := Go ∩ X0 ⊂ X0. Since Z ⊇ Go are

closed invariant subschemes which agree in a neighborhood of their unique

closed orbit, they must be equal. Blowing it up, we get X′ (resp.W′twc)
embedded in X×G(6,F4) (resp.Wtwc×G(6,F4) as the closure of the graph

of the rational map induced by µ. Likewise, we find that the fiber of E′

over o is as stated in (iii).

Remark 15. The previous result implies that the fixed points in W′twc are

obtained from those well known for Wtwc (cf. [9]), except for the six ones

belonging to Go. For each of these, say o = 〈x0, x1〉2, we form the ideals

〈x0, x1〉4+〈Q〉, Q ∈ {x3
0x2, x

3
0x3, x

2
0x1x2, x

2
0x1x3, x0x

2
1x2, x0x

2
1x3, x

3
1x2, x

3
1x3}.

These eight monomials span the exceptional fiber (〈x0, x1〉3)4

/
(〈x0, x1〉4)4.

For details about the explicit contribution of each fixed point the reader

is again kindly referred to [28, Appendix F.3]. The polynomial that gives

us the degree of Σ(Wtwc, d) is displayed in (27). Note that its degree is

equal to 2× dim(Wtwc) = 2× 12 in agreement with (2).

deg Σ(Wtwc, d) = 1095687
50462720d

24− 19230291
18022400d

23 + 24114591
985600 d22

−3932462817
11468800 d21 + 73665592101

22937600 d20− 23321377833
1146880 d19 + 4087404048523

51609600 d18

−205245946577
2457600 d17− 79029321809671

68812800 d16 + 2854774357217311
309657600 d15

−6688891988137
143360 d14+ 895445339622112187

3406233600 d13− 4177328126526143027
2270822400 d12

+ 1134029525022301939
94617600 d11− 29052565860084958379

464486400 d10 + 1100107099486708819
4300800 d9

−31950097995158831119
38707200 d8+ 365421773568911927

172800 d7− 8318629615873057099
1935360 d6

+615395937691427021
89600 d5− 337777058982513508747

39916800 d4 + 5167781409451915223
665280 d3

−693707469384158233
138600 d2 + 466431399017887

231 d− 383398629664.

(27)
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Figure 1 shows with the help of Surfer [30] an example of a quartic surface

singular along a twisted cubic.

Figure 1: −8y4 + 16xy2z + 8y3z − 8x2z2 − 8xyz2 − 8y2z2 + 2xz3 + 2yz3 + 4z4 −
8xy2 + 2y3 + 8x2z + 10xyz − 2y2z − 2xz2 − 8yz2 − 6x2 + 2xy + 4y2 = 0

3.3.2 Hypersurfaces singular along a ruled cubic surface in P4

A ruled cubic surface in P4 is the base locus of a net of quadrics of deter-

minantal type (cf. Beauville [4, Prop. IV.7, p. 44)]; it’s projectively equiva-

lent to the subvariety W defined by the ideal IW of the 2×2 minors of the

matrix ( x0 x1 x2x2 x3 x4 ) . It has Hilbert polynomial Prc(t) := (3/2)t2 +(5/2)t+1.

Denote by Wrc the corresponding component in HilbP4. The family Wrc

has dimension 18. The Hilbert polynomial of the subscheme W ′rc defined

by I2
W is PW ′(t) = (9/2)t2− (5/2)t+2. The family formed by subschemes

of P4 defined by I2
W for some W ∈Wrc is not flat. The culprits are again

in the orbit of the net o = 〈x2
0, x0x1, x

2
1〉, a legitimate member of Wrc. Its

square has Hilbert polynomial 5t2 − 5t+ 5 which is different from the ex-

pected. Blowing up as before produces a flat family W′rc. Computational

details are available in [28, Appendix G.1]. The polynomial that gives the
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degree of Σ(Wrc, d) is described below:

deg Σ(Wrc, d) = 1089331
2820745970948505600d

54 − 4609327
138135296519700480d

53

+ 17053361977
12432176686773043200d

52 − 44006738257
1243217668677304320d

51 + 43540862009
68559797904998400d

50

− 6776065867607
822717574859980800d

49 + 25203282464989
329087029943992320d

48 − 95461703632727
205679393714995200d

47

+ 3121945759267787
3290870299439923200d

46 + 13975371538743871
987261089831976960d

45 − 1762263793046822003
9872610898319769600d

44

+ 1571373547792223293
1645435149719961600d

43 − 18657333817850689
21095322432307200d

42 − 21162893089184824063
822717574859980800 d41

+ 8817237395388371983
42070785078067200 d40 − 7285835577039579827299

7404458173739827200 d39 + 18439965173115436460101
2278294822689177600 d38

− 30625726302752154570146789
251751577907154124800 d37 + 286671605346783151488709819

201401262325723299840 d36

− 5957731889573498708183240461
503503155814308249600 d35 + 946219385360559194318492423

13078004047124889600 d34

− 28843644632003758667785804741
88853498084877926400 d33 + 3586612308873070845414316631

3702229086869913600 d32

− 2772990057804229211772760003
3173339217317068800 d31 − 173239617944054456458227898277

17770699616975585280 d30

+ 3107360934070968268891455300733
44426749042438963200 d29 − 1302777164405876523072798778669

4936305449159884800 d28

(28)
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+2175543494720246680252051667789
3748506950455787520 d27 − 15324266643945858395023213928441

88853498084877926400 d26

−583723723691983350730395768869707
133280247127316889600 d25 + 295008612506350533900867771909281

14808916347479654400 d24

−72882298518045984492971696381249
1514548262810419200 d23 + 3179423312365559691881647284007591

59235665389918617600 d22

+65074915758634148942372090942475703
799681482763901337600 d21 − 17650658027740832446748837419090939

33566877054287216640 d20

+43155219287681067897344483362302109
35402565643193548800 d19 − 30042531700267289895379997718912521

22377918036191477760 d18

−749894075579299475576086383836784223
906305680465754849280 d17 + 1152884114126290978903651885817821

176296623184281600 d16

−679247544279215190070362388445065693
49980092672743833600 d15 + 27244209645180356835326895182601977

1851114543434956800 d14

−14180655522525890878698424573977769
8330015445457305600 d13 − 17786673868531949329900173945074227

694167953788108800 d12

+8140256480874854682039834827204717
148750275811737600 d11 − 15847193428252892198587722393037621

231389317929369600 d10

+51203085967146132778275681925029671
851933397830860800 d9 − 415833099791358148948760413114949

10846374277939200 d8

+190922280640278098795730933090799
10846374277939200 d7 − 47833769039838754264953305641

8608233553920 d6

+2764737243980163013076109790463
2560949482291200 d5 − 1553358364438869321892260077

17784371404800 d4

−1981299728200259795937983
242514155520 d3 + 15743878343562160667

7623616 d2

−655521591855018725
7351344 d+ 4625512425.

Note that the degree in (28) is 54 = (2 + 1)× 18, cf. (2).

3.3.3 Hypersurfaces Singular along a Segre 3-fold in P5

The Segre variety S := P1 × P2 ⊂ P5 has Hilbert polynomial (1/2)t3 +

2t2 + (5/2)t + 1. It moves in a family Wseg of dimension 24. It is well

known (cf. Harris [16, p. 99]) that the homogeneous ideal is spanned by a

net of quadrics of determinantal type. Identifying P5 = P(Hom(C2,C3)),

S corresponds to the locus of rank one matrices up to scalar. As in the

previous 2 cases, the family formed by the subschemes of P5 defined by

I2
W for some W ∈ Wseg lacks flatness precisely along the nets coming

from the Veronese-like embedding G(2,F1) ∼= Go ⊂ G(3,F2), 〈L0, L1〉 7→
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〈L2
0, L0L1, L

2
1〉. Write X̂ for the blowing up of X (= nets of quadrics

of determinantal type) along Go. It embeds in X × G(6,F4) and the

exceptional divisor Ê affords the same description as in Proposition 14(iii).

Scripts are available in [28, Appendix H].

Although we have all the information needed to calculate deg Σ(Wseg, d)

via Bott’s residues formula, computations become prohibitive beyond d =

28, last entry in Table 1. So we were not able to perform interpolation,

which would require pushing d up to (3 + 1)× 24 (conjecturally).

d degree

4 4985292672535

5 38085453623924002125608

6 75285508677103874434199729447346

7 6919928722801305898152558631141006297978

8 42181954432466686484802366327946036350563667373

9 30538531184782134440883223805188165885850765266730973

10 4224340951726565859342587822879909669270072209918091111509

11 158437528281133532734337703310993668084277908103801228619349318

12 2080035353059957499641534559924163791462457116358313751435919907641

13 11549735996636189943619254985547139290129087463355134074887299468381440

14 31296770227603270473657644859463859788303319257226489697655766935282861144

15 46218251138854455896028288030807107836206397262026919058025989004860345865068

16 40573178025017053248163455791995253138333248830219749681901524680514920694647875

17 22696403460389782282918120220096612693066990902486735463037695748458355012102065130

18 8560094850432050145388608162764331545974912158826771912534187363304630242378140685505

19 2280218446179281906894436399299532691147069188695294809825377606946754403932028306244123

20 445913122370782785268625533245649250274532741301118606978525517483582671680154337345798650

21 66136044830890785552763166513088475675562647217232322960605533153943919181299528743949231995

22 7648060182749239379957328222725038044389468341441118678038359708033154622298562461760431031987

23 706122123807470790783755440277242773510506336035275026531817959540511125994738199269690002855831

24 53126049393404266440928946834127714486755547747259961078332514818104185788066175129628674092418346

25 3315561352388199144671538442416320830215174679718026171794913021436371907104234446224006732128647329

26 174334857471395667347731728239322112964231210603282356701591598514084204408291171080634141000772703155

27 7829482987143513944990986949407455476367377747552625701320278751035638067417139596314040948040344857400

28 303991364820542511002698414336553281396075120749252336213971319871871164262548779281153647072907136671375

Table 1: deg Σ(Wseg, d)

3.4 Surfaces singular along elliptic quartic curves

An elliptic quartic curve in P3 is the complete intersection of a (unique)

pencil of quadric surfaces. Avritzer & Vainsencher [34], [3] obtained an ex-

plicit description of the component Weqc of elliptic quartics of the Hilbert

scheme Hilb4t(P3). This has been used in [9] for enumerating curves in cer-
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tain Calabi-Yau 3-folds, and in [6] for studying Noether-Lefschetz loci of

systems of surfaces in P3. G. Gotzmann [13] has shown that Hilb4t(P3)

consists of two irreducible components; the second one parameterizes

unions of a plane quartic curve and a zero dimensional subcheme of P3 of

length 2.

Put X = G(2,F2), the grassmannian of pencils of quadrics in P3. We

summarize in the diagram below the construction of Weqc.

G(19,F4) ⊃Weqc = X̂

��

Ê

��

? _oo

G(8,F3)×X ⊃ X̃

��

⊃ Ẽ

��

⊃ Ỹ

��
G(2,F2) = X ⊃ Z ⊃ Y

(29)

where

Z ∼= P̌3 ×G(2,F1) consists of pencils with a fixed plane;

Y ∼= {(p, l) ∈ P̌3×G(2,F1|p ⊃ l} = closed orbit of Z;

Ỹ→ Y = P2-bundle of divisors of degree 2 over a variable line l ⊂ p;
X̃ = blowup of X along Z;

X̂ = blowup of X̃ along Ỹ.

Z =


 ⊃ Y =


←− Ỹ =

 ?

?


Let

A ⊂ F2 × X (30)

be the tautological subbundle of rank 2 on our grassmannian of pencils

of quadrics. There is a natural map of vector bundles on X induced by
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multiplication,

µ3 : A⊗F1 −→ F3 × X,

with generic rank 8. The rank drops precisely over Z. Hence we have an

induced rational map κ : X 99K G(8,F3). Blowing up X along Z, we find

the closure X̃ ⊂ G(8,F3)× X of the graph of κ. The fiber

Ẽ(p,l) = P
(
F l3
/
pF l2

)
where F ld denotes the space of forms of degree d vanishing on the line l.

The fiber of Ẽ over y := (x0, 〈x0, x1〉) ∈ Y contains the disjoint subspaces

My := P
(
x2

1

(
F1

/
〈x0〉

))
and P

((
F2

/
F l2
))

= Ỹy.

The latter embeds into Ẽ(p,l) via multiplication by p := x0 and coincides

with the fiber of Ỹ. The former is the fiber of a P2-bundle

M −→ Y

to be further described in a moment.

Now, over X̃ we have a subbundle of cubic forms,

B ⊂ F3 × X̃ (31)

of rank 8 obtained by pullback from the tautological subbundle over

G(8,F3). Thus we get a map of multiplication

µ4 : B⊗F1 → F4 × X̃

with generic rank 19. The scheme of zeros of
19∧
µ4 is equal to Ỹ (29). In

fact, it can be verified that each fiber of B is a linear system of cubics such

that

• either it has a base locus equal to a curve with “correct” Hilbert

polynomial PWeqc(t) = 4t

• or it is of the form p · F∗∗2 , meaning a linear system with fixed

component a plane p, and F∗∗2 denoting an 8-dimensional space of

quadrics cutting a subscheme of p of dimension 0 and degree 2.
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The exceptional divisor Ê is the P8-bundle over Ỹ with fiber

Ê((p,l),y1+y2) = system of quartic curves in the plane p which

are singular at the “doublet” y1 + y2.

Precisely, assuming the plane p := x0 and the line l := 〈x0, x1〉, a typical

doublet has homogeneous ideal of the form 〈x0, x1, f(x2, x3)〉, for some

binary form f, deg f = 2. Our system of plane quartics lies in the ideal

〈x1, f〉2 = 〈x2
1, x1f, f

2〉. Given a non-zero quartic g in this ideal, we may

form the ideal J = 〈x2
0, x0x1, x0f, g〉, (e.g, 〈x2

0, x0x1, x0x
2
2, x

4
2〉). It can be

checked that J contains precisely 19 independent quartics and the Hilbert

polynomial is correct. Moreover, the subscheme defined by J2 has the

expected Hilbert polynomial 12t−16. The preceding description suffices to

get a hold on the fixed points on X̂ (29) together with their tangent spaces

as explained in Araújo [2] (after [9], [24]). However, as in the case of nets

of quadrics, once we pass to the thickenings, one last blowup is required.

The new center M ⊂ Ẽ is supported in the locus of W ∈ Weqc where

the subscheme of P3 defined by (IW )2 has “wrong” Hilbert polynomial:

flatness fails. In fact, points corresponding to an ideal like

〈x2
0, x0x1, C〉 ∈ Ẽ(x0,〈x0,x1〉), (32)

where C denotes a cubic form arising from x2
1 · (F1

/
〈x0〉), are legitimate

members of Weqc, whereas its square has a “bad” Hilbert polynomial

(namely 13t − 20). Notation as in (30),(31), let ν : A ⊗ B → F5 be map

of vector bundles over X̃ defined by multiplication. The generic rank of ν

is 12. Set

M = scheme of zeros of
12∧
ν.

In a way similar to Prop. 14, local calculations (cf. [28, Appendix I.1, p.177])

show that M is the indeterminacy locus of the natural rational map

X̃99KG(12,F5) (33)

induced by ν. One checks that M is the P2-bundle over Y which pa-

rameterizes the triples 〈p, l, C〉, where p denotes a plane, l = 〈p, p′〉 a
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line therein and C a class in P
(
(p′)2 · F1/〈p〉

)
. We have the embedding

M ⊂ Ẽ of bundles over Y such that in the fiber over any (p, l) ∈ Y

the point 〈p, l, C〉 with C = (p′)2p′′ mod 〈p〉 is mapped to the class

(p′)2 · p′′ ∈ P
(
F l3
/
pF l2

)
= Ẽ(p,l). Consider the blow up diagram of X̃

along M
X̃′

��

⊃ M̃

��
X̃ ⊃ M

(34)

By construction X̃′ embeds in X̃×G(12,F5) as the closure of the graph of

the rational map (33). Since M is disjoint from the blowup center Ỹ (cf.

diagram 29), it follows that Ỹ lifts isomorphically to Ỹ′ ⊂ X̃′ so that the

blowup of X̃ along Ỹ is naturally isomorphic to the blowup of X̃′ along Ỹ′

over a neighborhood of Ỹ. In special, only the fixed points of X̂ over M
are replaced by those in M̃. It turns out that a point like (32) is replaced

by 9 fixed points in M̃ corresponding to ideals of the form

〈x2
0, x0x1, C〉2 + 〈m〉

m ∈ {x0x2C, x0x3C,
C2

x1
, x20x1x

2
2, x

2
0x1x2x3, x

2
0x1x

2
3, x

2
0x0x

2
2, x

2
0x0x2x3, x

2
0x0x

2
3}.

The technicalities of the final computation can be found in [28, Ap-

pendix I.1, p.177]. The polynomial that gives us the degree of Σ(Weqc, d)

is displayed below. Note once again that the degree is equal to (1 + 1)×
dim(Weqc) = 2× 16, cp. (2).
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deg ΣWeqc,d = 77991978249
47023181004800d

32 − 142130943
922746880d

31 + 8109239447979
1175579525120d

30

−4150267051797
20992491520 d29 + 47676232841150619

11755795251200 d28 − 6615027446596551
104962457600 d27

+128385059997089001
167939932160 d26 − 103459871906659801

14129561600 d25 + 893796960041917863271
16277254963200 d24

−312845973151702414313
1017328435200 d23 + 4312587609200253695639

4069313740800 d22

+6155781582234103357
7266631680 d21 − 1105621403101024328482787

24415882444800 d20

+2134617904050477326290337
5410337587200 d19 − 1027704290752048951537337771

476109707673600 d18

+1568309607110425883232529237
223176425472000 d17 + 399314335681097660200615893191

57133164920832000 d16

−127911974311612787565094357769
396758089728000 d15 + 729760755266942589134714032019

238054853836800 d14

−18285322486683264514566399967249
892705701888000 d13 + 15050777906503580350914982390277

137339338752000 d12

−8362721204990643447960751421719
17167417344000 d11 + 178565283439979930078484872809

98099527680 d10

−2731787128737717049736180171243
476872704000 d9 + 1125598445944774654288515801691861

74392141824000 d8

−58025484355390407710374488759691
1743565824000 d7 + 16796039461040747482814365174429

278970531840 d6

−8521350244073783951990040324653
96864768000 d5 + 599422208545470260381592707347

5930496000 d4

−796327032680715287225577370219
9081072000 d3 + 434272227079029305979707333

8072064 d2

−14906420412807524159489839
720720 d+ 3713124778880030320.

(35)

Acknowledgement Thanks are due to Angelo F. Lopez for clarifying

the argument on generic injectiveness (cf. Lemma9).
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Techniques de “platification” d’un module. Invent. Math., 13:1–89,

1971.

[27] J. V. Rennemo. Universal polynomials for tautological integrals on

Hilbert schemes. Geom. Topol., 21(1):253–314, 2017.

[28] W. D. Sellin. Enumeração de hipersuperf́ıcies com subesquemas sin-

gulares. PhD thesis, Universidade Federal de Minas Gerais, 2018.

URL https://arxiv.org/abs/1812.06129.

[29] E. Sernesi. Deformations of algebraic schemes, volume 334

of Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.

ISBN 978-3-540-30608-5; 3-540-30608-0.

[30] Surfer2012. Mathematisches Forschungsinstitut Oberwolfach –

Visualization of algebraic surfaces. https://github.com/Singular/

Sources/wiki/Installation-of-Surfer-on-Debian, 2012.

http://mc.sbm.org.br/docs/mc/pdf/20/a1.pdf
http://mc.sbm.org.br/docs/mc/pdf/20/a1.pdf
http://www.jstor.org/stable/24492817
http://www.jstor.org/stable/2374355
https://arxiv.org/abs/1812.06129
https://github.com/Singular/Sources/wiki/Installation-of-Surfer-on-Debian
https://github.com/Singular/Sources/wiki/Installation-of-Surfer-on-Debian


300 W. D. Sellin, I. Vainsencher

[31] Y. Tzeng. Enumeration of singular varieties with tangency condi-

tions. ArXiv e-prints, Mar. 2017. URL https://arxiv.org/abs/1703.

02513v1.

[32] I. Vainsencher. Hypersurfaces with up to six double points. Comm.

Algebra, 31(8):4107–4129, 2003. Special issue in honor of Steven L.

Kleiman.

[33] I. Vainsencher. Foliations singular along a curve. Trans. London

Math. Soc, 2(1):80–92, July 2015. URL https://doi.org/10.1112/

tlms/tlv004.

[34] I. Vainsencher and D. Avritzer. Compactifying the space of elliptic

quartic curves. Complex Projective Geometry(Trieste, 1989/Bergen,

1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ.

Press, Cambridge:47–58, 1992.

Weversson Dalmaso Sellin

Universidade Federal dos Vales do Jequitinhonha

Email: Mucuriweversson.sellin@ufvjm.edu.br

Israel Vainsencher

Universidade Federal de Minas Gerais

ivainsencher@ufmg.br

https://arxiv.org/abs/1703.02513v1
https://arxiv.org/abs/1703.02513v1
https://doi.org/10.1112/tlms/tlv004
https://doi.org/10.1112/tlms/tlv004

	Introduction
	There are a vector bundle and a polynomial formula
	Enumerative results
	Hypersurfaces singular along a linear ¶kPn
	Surfaces singular along plane curves 
	Hypersurfaces singular along base loci of nets of quadrics of determinantal type 
	Surfaces singular along twisted cubics
	Hypersurfaces singular along a ruled cubic surface in Lg
	Hypersurfaces Singular along a Segre 3-fold in P5

	Surfaces singular along elliptic quartic curves

	References

