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Abstract. In this work, we approach the Laplacian coflow of a
coclosed Ga-structure ¢ using the formulae for the irreducible Go-
decomposition of the Hodge Laplacian and the Lie derivative of the
Hodge dual 4-form of . In terms of this decomposition, we charac-
terize the conditions for a vector field as an infinitesimal symmetry
of a coclosed Ga-structure, as well as the soliton condition for the
Laplacian coflow. More specifically, we provide an easier proof for the
absence of compact shrinking solitons of the Laplacian coflow. More-
over, we revisit the Laplacian coflow of coclosed Ga-structures on al-
most Abelian Lie groups addressed by Fino-Bagaglini [3]. However,
our approach is based on the bracket flow point of view. Notably, by
showing that the norm of the Lie bracket is strictly decreasing, we
prove that we have long-time existence for any coclosed Laplacian

coflow solution.
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1 Introduction

A Go-structure is defined by a positive 3-form ¢, which, in turn, defines
the metric g and the corresponding Hodge dual 4-form 1) := *p. The main
goal in Ga-geometry is the study of torsion-free Go-structures, i.e. Vo =0,
which is equivalent to the closed dp = 0 and the coclosed condition di» = 0
(e.g [10]). Using Ricci flow ideas, Bryant introduced the Laplacian flow
of closed Ga-structures [5|, which is an evolution of an initial closed Go-

structure along its Hodge Laplacian, namely

20 — nelt), w0 = (1)

The Laplacian flow is not parabolic, however, when the initial condition
is closed, the flow (1.1) preserves the closed condition and it evolves as
a Ricci-like flow on Q3. It allows to use DeTurck’s trick and, then, the
Laplacian flow becomes parabolic in the direction of closed forms. In [6],
Bryant and Xu addressed this approach in order to prove the short-time
existence of (1.1).

Motivated by Bryant and Xu ideas on the Laplacian flow of closed Go-
structures, Karigiannis, McKay and Tsui introduced the Laplacian coflow
of coclosed Ga-structures in [16]. It means that, instead of considering the

heat flow equation for ¢, they deal with the flow:

(1) _ _
T = A, $(0)=. (12)

Equally to the Laplacian flow, if the initial condition satisfies dy) = 0, the
flow (1.2) preserves the coclosed condition. On one side, the Laplacian
coflow is interesting, because coclosed Ga-structures exist in any (com-
pact and non-compact) spin and orientable 7-manifold by a parametric
h-principle (see |7]). Unfortunately, the analytic approach employed for
the Laplacian flow does not apply in the case (1.2), since it is not parabolic
in the direction of the coclosed forms. Hence, the short-time existence of
the Laplacian coflow is still an open problem. Nevertheless, in [13], Grigo-

rian proposed a modification of (1.2) fixing the failure of the Laplacian
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coflow to be parabolic, specifically the modified Laplacian coflow of co-
closed Geo-structures is the evolution given by
oY

i Aptp(t) +2d((A — trgyy T(2))e(t)), for A>0. (1.3)

However, the critical points of (1.3) are no longer torsion-free Go-structures.
For instance, if ¢ is a nearly parallel Go-structure, i.e. dp = 49, the left
hand side of (1.3) vanishes for A = 5. So, despite the fact that the modi-
fied Laplacian coflow can be seen as a tool for improving the torsion of ¢,
it does not search only for the torsion-free ones.

Regardless of the absence of an analytical theory of the Laplacian
coflow in the general setting, the flow (1.2) had received the attention
of some authors for manifolds with either a symmetry or an additional
geometrical structure. For instance:

Assuming short-time existence and uniqueness of (1.2), in [16], Kari-
giannis, McKay and Tsui studied soliton solutions on warped products of a
circle or an interval with a compact 6-manifold N with an SU(3)-structure
(w,Re(2)). Running the Laplacian coflow among cohomogeneity-one solu-
tions, when (N,w,Re(£2)) is a Calabi-Yau manifold, they proved that the
unique soliton solutions on the warped product are the steady ones. In par-
ticular, in the compact case, the soliton solutions are given by translations
and phase rotations of the standard torsion-free Ga-structure.

Furthermore, in [25], Manero, Otal and Villacampa consider the Lapla-
cian coflow on a warped product of the form M” = M" X g St with M©
being a compact 6-manifold endowed with an SU(3)-structure. They pro-
vide conditions for the existence of this flow using the torsion forms related
to the SU(3)-structure and the warping function f. Furthermore, they an-
alyze the Laplacian coflow when the base is endowed with a nearly kéhler,
symplectic half-flat, or balanced SU(3)-structure and provide some exam-
ples of solutions of the Laplacian coflow.

In 23], Lotay, S& Earp and Saavedra proved the existence of a family of
Go-structures on a contact Calabi-Yau manifold by solving the Laplacian

coflow, choosing ¢ € R* and initial data ¢ = en A w + Re(Y), which is
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coclosed and the solution exists in ¢ € ( 00). We recall that a contact

1
1022
Calabi-Yau manifold is a Sasakian manif%lds (M, &,n, ®) with a contact
Calabi-Yau structure (w := dn,Re(Y)), where 7 is a contact form, £ the
Reeb vector field, ® is a (1, 1)-endomorphism and T is a basic holomorphic
(3,0)-form on D = kern related to the almost complex structure ®|p =

J. Hence, the solution of the Laplacian coflow is immortal with a finite

1
10e2*

the Laplacian coflow which had an infinite time type I1B singularity.

singularity at t = — It was the first example of a compact solution to

On 3-Sasakian manifolds there exist two non-equivalent nearly parallel
Ga-structures [12]|, moreover, using the natural SU(2)-action there is a 4-
parameter family of coclosed Go-structures (up to sign), which contains the
nearly parallel ones. Under a special ansatz of this family of coclosed Go-
structures, Kennon and Lotay proved that any solution of the Laplacian
coflow starting at a coclosed Ga-structure converges, after rescaling, to one
of the nearly parallel Go-structures in the same family of the initial data
[18]. In particular, the nearly parallel Ga-structures are both stable within
their families.

On the other hand, when M = G/H is a homogeneous space and
the solutions of (1.2) are required to be G-invariant, the Laplacian coflow
becomes an ordinary differential equation. Namely, let g and b be the
Lie algebras of G and H respectively, and g = h & m a reductive decom-
position (i.e. Ad(H)-invariant), any G-invariant solution of (1.2) on M
is determined by an Ad(K)-invariant 4-form v (¢) on m ~ T,M (where
0= 1gH). Then, since A1) is invariant by diffeomorphisms of M, the flow

(1.2) restricted to G-invariant solutions is equivalent with:

d

a Ad(H)
dt '

B(t) = Ay(t) for (t) € (A'm*) (1.4)

Hence, short-time existence and uniqueness of (1.4) are followed by the well
known ODE arguments, since the linear map A on A*m* is continuous.
For instance, in [17], Kath and Lauret obtained expanding solitons and
immortal solutions of the Laplacian coflow when M is the connected and

simply connected Lie group with Lie algebra axR?*, where a is any maximal
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R-split torus of sI(R*). The latest have been obtained using the bracket
flow approach (see [20] for a deep exposition of this method). Conversely,
using a direct method, Bagaglini, Ferndndez and Fino obtained explicit
immortal solutions of (1.4) when M is the 7-dimensional Heisenberg group
[2]. In [3], Bagaglini and Fino gave explicit immortal solutions and solitons
of the Laplacian coflow for a subclass of almost Abelian Lie groups.

In this work, we study the Laplacian coflow of invariant coclosed Gao-
structures. In order to do so, in Section 2, we provide some preliminaries
on coclosed Go-structures to establish the notation that is going to be
used for the rest of the paper. In Section 3, we recall the definition of
the Laplacian coflow of coclosed Ga-structures and its soliton solutions.
Specifically for the parameter A € R and the vector field X € 2 (M),
such that ¢ satisfies the soliton equation (3.3).  In Proposition 7, we
characterize the soliton condition in terms of the full torsion tensor T" and
the Ric tensor of . As a direct consequence, we give in Corollary 9 an
alternative proof for the non-existence of compact shrinking solitons of the
Laplacian coflow.

Finally, in Section 4, we address the Laplacian coflow of invariant co-
closed Go-structures on almost Abelian Lie groups G 4, with Lie algebra
g4 and Lie bracket determined by A € gl(R%). Using the bracket flow,
we write the Laplacian coflow (1.4) as the ODE (4.10) of A € gI(RS). As
an immediate consequence, we prove that any Laplacian coflow solution
(g4, p(t)) starting at any coclosed (non-flat) Go-structure is immortal (see
Theorem 20). In spite of not obtaining explicit solutions of (1.4) as it has
been done in [3] for a subclass of almost Abelian Lie algebras, Theorem
20 generalizes the result of long-time existence of solutions for any almost
Abelian Lie algebra. Moreover, the ODE bracket flow (4.10) allows us to

study the dynamical behavior of the 2-parameter family

0 « O
A Bl O ith B 0 0 d eR
g W1 = all 33‘,
0 —Bt Yy Y
0 0 0

showing that it is stable under the Laplacian coflow (see Example 22). To
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conclude, we study the invariant solitons of the Laplacian coflow in terms
of the Lie bracket induced by A € gl(R®), satisfying the time independent

equation (see Theorem 24)

[A, AY) 4+ 54 06 Sa = —(tr S2 — S(tr JA) + 2d> Is + (D + DY)|gs,

1

2
where og is the product on gl(R®) defined in Lemma 12, D is a derivation
of g4 and

HA’ At”Q + <SA C6 SAa [Aa At])
2|AJ? ’
As an application of the Theorem 24 , firstly we prove if A is skew-

d=

symmetric, then (g4, ) defines a a semi-algebraic soliton of the Lapla-
cian coflow (see Corollary 25). Secondly, we prove that any (non-flat)
semi-algebraic soliton on an almost Abelian Lie group is an expanding
one (Proposition 26). Finally, as far as we know it, we provide the first
example of a semi-algebraic soliton of the Laplacian coflow, which is not

algebraic (Example 28).

Note

Fino and Bagaglini [3] have substantial overlap with this paper. How-
ever, while a number of conclusions are similar, the point of view on the
Laplacian coflow is different. In this paper, we use the bracket flow in-
troduced by Lauret in [20], while in [3], a more traditional geometric flow
approach is used. Both approaches are valuable and complementary, since
they provide different perspectives on the same phenomenon. Since we
are studying the same flow in the same space, we want to emphasise that
this paper has different techniques, and both papers will give a better

understanding of the Laplacian coflow.

Notation

Let (M, g) be a smooth oriented Riemannian 7-manifold. We use the
Einstein summation convention throughout. We compute in a local or-

thonormal frame, so all indices are subscripts and any repeated indices are
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summed over all values from 1 to 7. A differential k-form « on M will be
written as

o= %ailiz...ik dz Ada? A - Adat
in local coordinates (xl, ey x7), where ;,4,...5, is completely skew-symmetric
in its indices. With this convention, the interior product 9,,2« of o with
a coordinate vector field 9y, is the (k — 1)-form

Omlo = Qmiyigeip_q Azt Ada? A Ada' 1,

1
(k—1)!
The metric g on a Riemannian manifold M induces a metric on k-forms,

such that the inner product of o and 3 is

1 . L
g(a, ﬁ) = Hail"'ikﬁjlmjkglljl ce glk]k.
The Levi-Civita connection associated to g is denoted by V, and its Christof-
fel symbols by Ffj We write V; for covariant differentiation in the 0; di-
rection. If T, ..;, is a tensor of type (0,k), then V,,,Tj,...;, always means

(VinT)

et We write the exterior derivative da of a k-form « as

1

da = o (Vi y, ) dz™ A da™ - -+ A da®

in terms of the covariant derivative. The metric g defines an isomorphism
between T'M and T*M (raising and lowering indices.) If v is a vector
field, then the metric dual 1-form v” is defined by v*(w) = g(v,w). In
coordinates, ((%)b = gir, d2¥. Similarly, the 1-form « has a metric dual
vector field of, and (daz:i)ﬁ = g% 0y,

We use 'vol’ to denote the volume form on M associated to the metric
g and an orientation. The Hodge star operator * taking k-forms to (7 —k)-
forms is defined by

a A xp = g(a, B)vol.
Our convention for labelling the Riemann curvature tensor is

0 0
ijkm 817" = (VZVJ — VJVZ) —_—

R
oxk
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in terms of coordinate vector fields. With this convention, the Ricci tensor
is Rj, = Ry, and the first Bianchi identity of the Riemann curvature
tensor is:

Rabmn + Ramnb + Ranbm =0. (15)

We use I'(E) to denote the space of smooth sections of a vector bundle E.

As special instances, we denote the following cases as:
o OF:=T (A¥ (T*M)) is the space of smooth k-forms on M;

e §: =T (82 (T*M)) is the space of smooth symmetric 2-tensors on
M.

o 2 (M) :=T(TM) the space of vector fields.

With respect to the metric g on M, we use Sg to denote those sections h of
S that are traceless. That is, Sy consists of those sections of S, such that
Trh = gijhij = 0 in local coordinates. Then S ~ QY & Sy, where h € S
is decomposed as h = 1(Trh)g + ho. Then, we have I'(T*M @ TM) =
00 3 Sy ® O2, where the splitting is pointwise orthogonal with respect to
the metric on T*M ® T'M induced by g.

2 Preliminaries

In this section we collect some results related to Gs-structures that will
be needed in the present paper. Any result of this section can be found in
[14, 13, 5].

2.1 Gg-structures and their torsion

A Ga-structure on a 7-manifold M is given by a differential 3-form ¢

on M, which is pointwise isomorphic to the 3-form

0o = 123 4 M5 | 16T | 246 (25T 34T 356 ¢ AB(RT)
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where €% = ¢! Ael Aek and {e!,..., e} is the dual basis of the canonical
basis of R7. The Ga-structure ¢ determines a Riemannian metric g, and

a volume form vol, so that
69,(X,Y)vol, = (Xup) A(Yop) AN for XY € Z/(M).

In addition, ¢ induces a Hodge star operator x, and we denote its dual
4-form by 9 = x,p. For simplicity, we will write g = g, and * = *,.
A Go-structure gives rise to a decomposition of the space of differential

k-forms QF on M into irreducible Go-submodules. For instance,
=090, and P =00 e 03,

where Qf has (pointwise) dimension /. In [5], R. Bryant defines an injective

map i, : S? — O3, given in local coordinates z', ... 27 by
: 1. ijk 1 m m m ijk
ip(h) = 30 ip(h)ijedz™” = g(hi Omgk + B} imk + by pijm)da?", (2.1)

where h € 8% is a symmetric 2-tensor field on M. Additionally, the map i,
is surjective on Q3 @ 92’7 and its Hodge dual satisfies (e.g. [14, Proposition
2.8])

*i,(h) = %(ﬁrwmﬂcl + B}ndjzmkl + Ezll/)z‘jml + E?lwijkm)d:cijkl =: i¢(71),
(2.2)
where h = %tr(h)g — h. In particular, for any trace-free symmetric 2-
tensors h € S, we have i,(h) € Q37 and iy (h) € Q3; = * (23;). According
with the Ga-decomposition of Q4 and Q°, the exterior derivative of ¢ and
1 are completely described in term of the torsion forms 19 € Q0, 7 € Q!,

9 € 02, and 73 € Q3,, given in terms of (see [5, Proposition 1])

dgozfow+3ﬁ/\go+*736%@%@5237

(2.3)
dy =4m Ap+ o Ap € Q@ Q3.

Moreover, for the full torsion tensor is defined locally by (see [14])

Vivir = T Y- (2.4)
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The full torsion tensor T is given in terms of the torsion forms by

T0 # 1
T= ZQ —T21 — TP — 57'2,
where 7o7 is the trace-free symmetric 2-tensor satisfying 73 = i,(727) and Tf
denotes the unique vector field induced by 7 and the Riemannian metric
g, (i.e. g(Tf,X) = 71(X) for any € 2 (M)). In addition, from (2.4) for

the 4-form v, we have
Voijrt = —(Tmi0jkt — Tmj ikt — Tmk@jit — TmiPjki)-

2.2 Properties of coclosed Gs-structures

A Ga-structure ¢ is coclosed if it satisfies dip = 0, in terms of (2.3)
the coclosed condition is equivalent with 71 = 0 and 79 = 0. Hence, the
full torsion tensor of a coclosed Geo-structure simplifies to the symmetric

2-tensor

T = %9—727 €S2 (2.5)

In addition, dp € Qf © Q3 thus, by (2.1), (2.3) and (2.5), we have

dp = *i, <;(trT)g - T) . (2.6)

The following proposition includes some well known identities of coclosed
Ga-structures given in [13], obtained as a consequence of a general formula
of the exterior derivative of a generic 3-form. Here, we give an alternative

proof of those identities, using the called Go-Bianchi type identity
1 mn

where Tj; is the coordinate of (2.5) and R;jm, denotes the Riemann cur-
vature tensor. We remark that the identity (2.7) can be read as the in-
finitesimal version of the diffeomorphism invariance of T as a function of

¢ (see |14, Section 4] for an extensive discussion in the Ga-case and [9] for
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any H-structure). In the statement, for any h, k € §2, we denote the inner
product (h, k) and the circ product h ok € S? by

(h, k) = hijkapg™g”® and  (hok)ap = PamnPopgh™ k™. (2.8)
The divergence and the curl of h are given in coordinates by

divh, = Vyht  and  Curlhgy = Vihaney™. (2.9)

Proposition 1. Let ¢ be a coclosed Go-structure with full torsion tensor

T, then the divergence and the curl of T satisfy
divl, =V trT and Curlly, = Curlly,. (2.10)
In addition, the Ricci tensor and the scalar curvature are

Ric = —CurlT — T% + (t+t )T and R = (trT)* —|T|2. (2.11)

Proof. Using (1.5) and the symmetries of Rgpmy, it is easy to prove that
Rabmn®™™ =0 and  Rumnpths™™ = 0. (2.12)

Now, since T is symmetric, using (2.7) and (2.12) for the divergence T', we

have

1
divT, = vng = VaTé) + <2Rbamn - Tamen> gpbmn =V, trT,
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and in addition, by (A.2) for the curl of T', we get
CurlTyy, — CurlTyy =V Tunes™™ — Vi Tonwa ™

1
= <2Rmapq - TmpTaq> ‘Pnpq@bmn

1
- <2Rmbpq - Tmprq> (Pnpq@amn

1

= <2Rmapq - TmpTaq> (gggqm - gggpm + ")

1
- <2Rmbpq - Tmprq> (929%™ — gag"™ + ¥a""?)
1 1
:iRmabqgmq - iRmapbgmp - Tamem + tr(T)Tab
1 1
- §Rmbaqgmq + iRmbpagmp + Tme(;n - tIA(T)Tba

= — Ricyp + Ricy, = 0.

The formula for Ric can be derived from the computation above and

for the scalar curvature, it follows from the observation
CurlTyy = Vi Tanps ™" = 0.
O

Similar to [5]*Corollary 2 for the case of closed Ga-structures, we can

characterize the Einstein metrics induced by a coclosed Ga-structure:

Corollary 2. A coclosed Ga-structure ¢ induces an Finstein metric if and

only if the full torsion tensor satisfies
3
i, (CurlT) = ?]T|2<p — (tr T)m3 — ip(T?). (2.13)
Proof. The result follows by applying the map i, in (2.11). O

Remark 3. Using the expression of the full torsion tensor in terms of the

torsion forms (2.5), the equation (2.13) becomes

ST )
O i (). (2.14)

. 3
i, (Curlmyr) = ?|7'27]2g0 ~
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It is well know that a metric induced by the nearly parallel Go-structure
(i.e. 73 =1i,(m7) = 0) is Einstein. It is easy to check that (2.14) is satisfied

trivially for a nearly Go-structure.

3 Laplacian coflow of Gs-structures

In this section, we recall the definition of the Laplacian coflow and we
also study soliton solutions and symmetries of coclosed Ga-structure. Here
we follow [16, 13].

Definition 4. A time-dependent family of Ga-structures {¢(t) }1e(z, ) On
a 7-manifold M, satisfy the Laplacian coflow of coclosed Go-structures, if
for any t € (e1,e2) we have

0

5 (t) = App(t) and dy(t) =0, (3.1)
where 9(t) = *;0(t) and Ay = dd** 4 d**d is the Hodge Laplacian with
respect to the metric g(t) = gy ()

As for many geometric flows, we are interested in considering self-

similar solutions,

o) =Xt f(t)"¢ where A(t) € C*°(M) and f(t) € Diff (M),

(3.2)
This means that the solution ¢(t) evolves from the initial data ¢, by a
scaling with the function A(¢) and by pullback with the diffeomorphism
f(t). Since this kind of solutions are expected to be related to singularities
of the flow. In particular, self-similar solutions with initial condition ¢ are
equivalent with a time independent equation of 1) = %, called the soliton
equation, namely, ¢ is called a soliton for the Laplacian coflow (3.1), if ¢

satisfies the soliton equation:

Aptp = Lxp + M (3.3)

where A € R and X is a complete vector field on M. Moreover, the soliton
(p, A, X) is called ezpanding, steady, or shrinking, if A > 0, A =0or A <0,

respectively.
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The following lemma, decomposes the Hodge Laplacian of ¥ accord-
ing to the Go-irreducible decomposition of Q2, it appeared originally in
[13|*Proposition 4.6. Here, we provide the computations in detail so that
the work is self-contained. We follow the computation given in [24] for

A, in the closed case.

Lemma 5. Let ¢ be a coclosed Go-structure on a manifold M with asso-

citated metric g. Then,
Aptp = ((trT) + TPy & (dtrT) A g
1 1
Dy, (Ric—§ToT—(trT)T+ﬁ ((trT)* +|T%) g) € Q1e0ie0;,
Proof. Since di = 0, by (2.6) we have

Ayp =dd™p =d*xdp =df where f:=i,(h) (3.4)

1
In local coordinates, we can write (3.4) as

Aytp = *(Aww)mkldfﬂ”kl

where

(Ay)ijrr = ViBjrt — VjiBiri + ViBiji — ViBijk- (3.5)
We can decompose Ay into irreducible summands as
Aytp = ar) + X’ A © + *ip(s),

where a € C*(M), X a vector field and s is a trace-less symmetric 2-

tensor. Now, we compute the expression of a, X and s in terms of the full
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torsion tensor of . For a, using (3.4), (3.5), (A.3) and (A.5), we have

1

< B V) =—(V zﬂjkz — V;Bik + Vk/Bijl _ Vlﬂijk)wijkl

168
1 g
:Evi(h;‘n()@mkl + B0 jmt + 0k )M

1 .

= (Vih " omp + B T Yk 907
2 -

:?(Vihgngom” +trhtrT — (h,T))
2

== ((rT)* + 7).

where h is the symmetric 2-tensor given in (3.4). For the vector field X,

we have
(Apth,e™ N ) = (XA A (€™ A @) =4X° ™) = 4X,g"™
Thus, using (3.4), (A.2), (A.1), (A.3) and (2.10), we get
Xm :i@w, " N p)gmn
:9*18(%'5]'1@1 — VBt + ViBiji — ViBir) (€™ A ) ¥ g

1 ) A
:I(Vmﬁjkl‘ﬂ]kl — 3V B’ )
1

_E(
1 ) . .
:E (3vm<h?90njk§0]kl) - 3h?90nlemp¢mkl - 3vj(h¢n90nkl90]kl

+2h2 Pmnl (pjkl )>

Vi (Biie™) = Bita V@™ = 3V Bk ™™ + 3Bmi V™)

1 . . .
=2 (6Vmhiigh — A0S Toppn®” = 6V i, — 2Vmhitgh + 2Vl

:% <§Vm(tr T) - %Vm(trT) + Vﬂ%) — (divT)m

Finally, to find the symmetric 2-tensor s, we have:

(DY) imnp; ™" + (Ap®) jmnp®i ™"

aA(Yimnp;™™ + VjmnpPi™) + (Kp(8))imnp; ™ + ($ip(8)) jmnpthi ™",
(3.6)
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Then, using (2.2),(A.5) and (A.6), we get
(*i<p<3))imnp¢jmnp - - Sgwqmnp"/}jmnp - 3sgn¢iqnp"/}jmnp
= — 24s{gq; — 350, (49i594" — 497" 9aj + 20ig") = —12s4;.

By symmetry, the right hand side of (3.6) becomes

(Ayt)imnpty ™™ + (Ay ) jmnpthi™"" = 24 (2agij — 545) - (3.7)
Now, using (3.5), (A.3), (A.4) and (A.5), we have

(Aw¢)imnp¢jmnp = (viﬁmnp - BVmIBinp)T/ijnp

=3(Vihieanp + My Vipgnp) ;™™ — 3vm((hg€0qnp + 2h Pigp) ;™)
+ 3(h@gnp + 20} Pigp) Vinth; ™"

=3 <4V@-h?n<qum + hi, T} (49195 — 491" gaj + 20145™) — AVm (b ;™)
+2Vi (B g™ — hnjoi™ = byl — trhpy™)
(e panp + 2 Qigp) (=T + tr Tip;"™ — Trnip™ + T i0™"))

=6 (2(tr KT — T himyj) — Vihlogi™ — Vinhnjoi™ — Vi (R 05" + tr hipi;™)
—3h" Ty — tr W1 + b Ty + 3tr Thyj + tr T'tr hg;; — tr Thij — tr Thy;
+hi" Tnj — Tiphy' 9ij + T hinj — (T 0 h)ij)

=6 (tr hT;j — T]"hymj — (Curlh);; — (Curlh)j; — Vi (@™ + tr hpi™)
—h{"Tj +tr Thij + (tr Ttrh — (T, h))gij — (T o h)sj) .

Thus, replacing h = %(tr T)g—T in the above expression and using (2.10),
the left hand side of (3.6) becomes

(ApY)imnp;™"? + (Ap®) jmnpi™™?
1 1
=24 (Timej + (CurlT’);; + 5((“r T)? +|T))gi; + §(T o T)z‘j) :
Finally, from (3.7), we obtain

1 1
sy = —(CwlT )i = T Ty — S(T o T)yy + 7 ((tr ) +|T%)gij-
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Similar to the Laplacian of ¢, we can compute the decomposition of the
Lie derivative with respect to any vector field. We recall that the vector
field X is called an infinitesimal symmetry of ¢, if Lx1¢ = 0. The next

result was done in [8] for the 3-form ¢.

Proposition 6. Let ¢ be a coclosed Ga-structure on M, with associated
metric g, and let X be a vector field on M. Then, if 1 = *p,

Lxp = (leX)'l/J@(_*CuI‘IX‘f’XJT) /\tp@*1¢(7(divX)g—%([,Xg)> € Q10700
(3.8)

In particular, X is an infinitesimal symmetry of ¥ if and only if X is a
Killing vector field of g and satisfies Curl(X) = 2X JT.

Proof. Since ¢ is coclosed, i.e. dip = 0, we have
Lx =d(X)+ Xady = d(X ).
Let a = X b, so that locally o, = Xlwlijk and
(Lx¥)ijr = (da)ijp = Viaju — Vo + Viag — Vi

Denoting by 7rl (QF Qk the orthogonal projections, we decompose L x

as

Lxtp = mHLx) + 77 (Lxt) + T (Lx ) = ap + W Ao+ xig(h), (3.9)

where a € Q°, and h is a trace-free symmetric 2-tensor on M. We compute

a as follows:

1 1 .
= §<£X¢’ Y) = 168 ——(Viaju — Vi + Viaij — Vi)
1 1 . 1
= 5 Vi a7 = 42V (o) — 42%le M (3.10)
24
_ . m N S ym ) ijkl = :
49 vz(X gmz) 42X wmjkl( 1/1 ) 7v X 7d1VX7

where we used (A.3) and because T is symmetric. To compute W, note
that

(H((+Lxv) A ) ™) = 47, ™),
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thus
AW™ = «((xLxV) Ao Ae™) = (p Ae™, Lx) = (p Ae™, da).
Therefore, we obtain

1 1. - y y
wm = Z(gp Ne™ do) = I(Vzoﬂkm — Viaikm 4 gkalim — ymaiiky g,
1 o ‘ y
= B(gvza]kmSOijk — V" ki)

3., 3 . ) 1 . 1 ..
= SV (ad* 1) — ="V gy — Ivm(a”k%jk) + —al k™o

u : 41
- %vi(xlw”’“msom) - %XWW’? K
_ %Vm(Xﬂﬁ”j *oik) + %Xﬂ’blijkﬁn%jk
- —%w(mizm + X, T = —%(vixmo/m +XiVip™) + X T
- % ol % X/, I 4 (X T)™ = —%(CurlX)m +(XT)™.

(3.11)

Finally, to compute h, observe that

(ﬁXw)imnp"/)jmnp + (ﬁXw)jmnpd)imnp

= a(wimnpwjmnp + 77/}]'mnp¢imnp) + (*igo(h))imnpwjmnp + (*igo(h))jmnpwimnpa
(3.12)

where
(*llp(h))lmnp = _(h?%mnp + h%m¢iqnp + h%¢imqp + hg¢1mnq)
Using (A.5) and (A.6), we get

(*iv(h))imnp¢jmnp = - hgwqmnpwjmnp - 3h?nwiqnp7/)jmnp
= — 24h]gq; — 3h} (49i59q" — 49i" 9qj + 20igs™)
= —12h;;.

By symmetry, the right hand side of (3.12) becomes

8
(LXV)imnp; ™ 4 (LxY) jrmnpi™™F = 24 <7(diVX)gij - hij) - (3.13)
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For the left-hand side of (3.13), using the identities (A.4),(A.3),(A.5) and
(A.6), we have:

(LxV)imnpi™"™ = Victmnpth;™"" — 3V manpp; ™"
=Vi(mnpti™™") = QmnpVith;™"™ = 3V (Qinpthj ™) + 3tinp Vimh; ™"
=2V, X — 1217 (X 50)mj + 12(divX)gi; — 12ViX;) — 6(Vp X h) ;™

= 6tr(T) (X p)ij + 6(X T )me™; + 617" (X 0@)mj — 617" (X 10)mi

—1261(T) (X p)ij + 6T (X )i + 6T (X 1) + 6(X ST)mig™;
=12V, X; 4+ 12(divX)gij — 6(V, X 0)i; ™ — 18 tr(T) (X 50)i5

+12(X JT) g™,

By symmetry, we get
(ﬁxw)imnpwjmnp + (ﬁxw)jmnpl/}imnp = 12(V¢Xj + Vin) + 24(diVX)gij.
So, using (3.10), (3.13) and the above expressions, we obtain

;W&+W&H¢mm%:%mm%—%7
which, upon re-arranging gives

hij = %(diVX)gij - %(ﬁxg)m‘- (3.14)
Hence, substituting (3.10), (3.11) and (3.14) into (3.9) we obtain (3.8). O

Proposition 7. Let ¢ be a coclosed Ga-structure on M with associated
metric g. If (p, X, \) is a soliton of the Laplacian coflow as in (3.3), then

its full torsion tensor T satisfies

1
divT = — 5(CuﬂX)b + X T,
. 1 A 1
—Ric + §T oT + (trT)T =39 + §£Xg.

Proof. Using (2.10), (2.2) and Lemma 5, we obtain

(3.15)

1
Ao = (AVT) A+ iy (= Ric+ 5T o T+ (trT)T).



204 A. Moreno and J. Saavedra

On the other hand, by (2.2) and Proposition 6 we have

| A1
N+ Lxtp = (—5CurlX + XOT) A +iy (Zg + 5(cXg))

and thus we get (3.15). O

Remark 8. e We notice that (3.15) coincides with the soliton equa-

tion for a general geometric flow given in [9, Definition 1.52].

e The tuple (g, X,\) is called a Ricci soliton if it satisfies Ric =
Ag + Lxg. The second equation of (3.15) can be viewed as a per-
turbation of the Ricci soliton equation using the torsion tensor 7. A
similar remark was done by Lotay-Wei for the Laplacian flow [24],
but in contrast, the first equation of (3.15) coincides with one of the
equation of the isometric soliton condition of the harmonic flow of
Ga-structures [8, Definition 2.16].

e From the second equation of (3.15) is natural to ask for solitons of
the Laplacian coflow, inducing Ricci solitons, aside from the nearly
parallel case where Ay = A%t and Ric = %ng. For instance, in [26]
the authors obtain an example of a Laplacian coflow soliton inducing

a Ricci soliton on a solvable Lie group.

Using (3.15), we can give an alternative proof for the non-existence of
shrinking solitons in the compact case [16, Proposition 4.3, and we extend

this result to non-compact cases with X divergence free:

Corollary 9. 1. There are no compact shrinking solitons of the Lapla-

cian coflow.

2. The only compact steady solitons of the Laplacian coflow are given

by torsion-free Go-structures.

3. There do not exist steady (non-trivial i.e. X # 0) and shrinking
solitons of the Laplacian coflow with divX = 0.
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Proof. Taking the trace on the second equation of (3.15), we obtain
1 7 .
B ((tr T)% + |T|2) = 1)\ + divX, (3.16)

since tr(T o T) = (trT)? — |T|? and trRic = R (see (2.11)). If divX =0
then A > 0. When the manifold M is compact, we have

2
Avol(M) = 7/ ((trT)* +|T|?) vol > 0.
M
Hence, A > 0 or A =0 if and only if 7" = 0. O

Remark 10. In [16, Proposition 4.3, the flow equation (3.1) was defined
with a minus sign on the right-hand side, by analogy with the heat equa-
tion. However, as pointed out in |15, Theorem 5.3|, the definition of (3.1)
agrees with its definition as the gradient flow of the volume functional.
For this reason, the result in Corollary 9 1. is stated in terms of shrinking

instead of expanding.

4 Almost Abelian Lie groups revisited

We study in this section the Laplacian coflow and its solitons in a class
of solvable Lie groups, which have a codimension one Abelian ideal using
the bracket flow as described in [20].

Let G be a Lie group, it is called almost Abelian if its Lie algebra g
admits an Abelian ideal § of codimension 1. For dim G = 7, any invariant
Go-structure is completely determined by a Ga-structure on g. Moreover,
since Gg acts transitively on the 6-sphere, thus, for any orthonormal basis

{e1, ..., e7}, we can suppose that ez L h and the Ga-structure has the form

6127 + 6347 + 6567 + 6135 _ 146 245 236

gozw/\e7+p+: e —et —e™,

where w = e!?+e34 +¢50 and pT = 3% — 146 — 245 236 are the canonical
SU(3)-structure of h =2 RS, Additionally, the induced dual 4-form is

1 -
,¢ =k = §w2_’_p /\67 — 61234+61256+63456—62467+62357+61457+61367,
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where p~ = J*pt and J is the canonical complex structure on RS defined
by w := (J-,-). Moreover, the Lie bracket of g is encoded by A € gl(R%)
where A := ad(e7)|y. To emphasize the role of this matrix, we will usually
denote the Lie algebra g by ga.

The transitive action of GL(g) on the space of Ga-structures, defined
by h-¢ := (h=1)*p (for h € GL(g)), yields an infinitesimal representation

of the alternating 3-form

A (g)* = 0(gl(g))e, (4.1)

where 6 : gl(g) — End(A3g*) is defined by
oB)p = 5| o= —o(B) o, B~ el B,
dt lt=0
Since the orbit GL(g)w is also open in A*g*, the relation (4.1) also holds
for the 4-form v, namely A*(g)* = 6(gl(g))1. Coclosed Ga-structures on
almost Abelian Lie algebras are equivalent with the Lie bracket constrain
A € s5p(RO) [11], where

sp(R) ={Acgl(RY): AJ+JA'=0 < 6O(A)w=0}.
In particular, the non-vanishing torsion forms 7y and 73 can be de-
scribed in terms of the Lie bracket of g4 induced by A:

Proposition 11. /27, Prop. 3.2 & Cor 3.3] Let g4 be an almost Abelian
Lie algebra with coclosed Go-structure p. Hence, the torsion forms of ¢

are

Lotr(JA)Igue — L[, A 0
T0 :%tr(JA) and To7 = ( 14 I'( )6X6 2[ ’ ]‘ )

0 | —2tx(JA)

And its full torsion tensor is

R
r= ( : 0 [ 1tr(JA) ) (4.2)

Moreover, we can describe the Hodge Laplacian A in function of
A € s5p(RY), hence according with Lemma 5, we first compute the tensor
T oT given in (2.8):
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Lemma 12. Let ga be an almost Abelian Lie algebra with coclosed Go-
structure @. Denote by Sy := %(A—i—At) the symmetric part of A, then we

have

TOT:(—;(trJA)[J,A]—SA%SA 0 ) 43)

0 ‘ —tr 5’124
where og is the product on gl(R®), defined by
(SA O6 SA)ab = (SA)mn(SA)pqp;;pap:qub'

Proof. We first compute the entry (7' o T')77, thus by (4.2) we have

1
(T o T) 77 =TrinTpqPmptPngr = Z[J Almn[J; AlpgWmpng
1
=11 ADap ([, Al T )
1
:Z<J[<], A], [J, A]J> = —tI'SA,

for the last equality we used A = JA'J (i.e. A € sp(RY)). Now, for i # 7

and j =7, we have
1
(T o T)ir =TinnTpgPmpiwng = ZM AlmnJ, A]pqunpiwnq
1 1
:Z([J’ A]J[J, A})mpp;;pi = Z([J’ A]Q)mnjnpp;_mi
1 _
B 1([J’ A]Q)m”pnmi =0.

For the above computation, we used that [J, A] € sp(R) is symmetric and
(A.7). Finally, for i # 7 and j # 7 we have

(T o T)zg :2TmnT77wmiwnj + Tmnqup;pipjz_qj

1
2 (tI‘ JA)[J A]anmZJn] + 7 [J A]mn['] A]pqpmpzpnq]
1
== §(t1‘ JA)(J[J7 A]J)U + (JSA)mn(JSA)Pqpmpipnqj
1
= 5 (tr JA)([J, A])ij + Tk (S4)kn ot (SA)1gPpiPhg

_ %(tr JA)([J, AD)ij — (Sa)kn(Sa) PPy
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Once again, we used the identities (A.7) Finally, combining each case of i

and j, we get the expression for T o T'. ]

Now, for almost Abelian Lie algebras g4, the Ricci curvature is [1]*Eq

A,A] o
Ricy = | 2= for A e sp(RY), 4.4
icq ( 0 ‘ o Si or sp(R®) (4.4)

and since tr(7) is constant, we have divl’ = 0. Therefore, we can write

Lemma 5 in function of the Lie bracket induced by A:

Proposition 13. Let g4 be an almost Abelian Lie algebra with coclosed
Go-structure . Thus, the Hodge Laplacian of 1 is A = 0(Q a)1 where

04 = QZ‘ 0 ) _ %[AaAt}+%SAOGSA‘ 0
0 ‘ qa 0 ‘ —1t1(S4)? — L(tr JA)?

(4.5)

In particular, Q4 € gl(ga) is symmetric.

Proof. The result follows by applying equations (4.2), (4.4) and (4.3) into
Lemma 5. O

Notice that the closed condition on v implies that Ay = dd*1 is also
closed. Similarly, it is interpreted as QE‘ € sp(RY) for A € sp(RY). Indeed:

Lemma 14. If A € sp(R®) is symmetric then Aog A € sp(RY).

Proof. Notice that B := A og A is symmetric, thus it is enough to prove
the equality JBJ = B. Hence

(JBJ)ij =Jir(A o6 A)riJij = Jik Amin ApgPpiOrat i
= - (JAJ)mnqupr_npipy_qu = _JmTATSJSnqup";LpZ'p;qj

— + ot
=Ars ApaPrpiPsq; = Bij-

Here, we used the identities (A.7) time and again, as well as the symmetry
of A. O
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4.1 The bracket flow

In this section we adapt the general approach of geometric flows of ho-
mogeneous geometric structures, proposed by J. Lauret, to the framework
of the Laplacian coflow (3.1) on almost Abelian Lie algebras with coclosed
Ga-structures, for a broad exposition see [20)].

Let {¢(t)}1e(e),e,) be a solution of the Laplacian coflow on g4 with
initial condition ¢(0) = ¢g. Since p(t) € GL(ga)po, we can write p(t) =
h(t)*@o for h(t) € GL(ga) satisfying h(0) = I. Since s,y = (h™1)* %0 h*
(see |26, Lemma 3.1]), we can write ¢ (t) = h(t)*1)g for Y9 = *,,¢0 and by

Proposition 13, we have

Aarp(t) = 0(Qa(1))y (1),

hence, the Laplacian coflow is equivalent with

d

Zh(t) = —h(HQa(t). (4.6)

Definition 15. Let (G1, 1) and (G2, p2) be Lie groups with Go-structure
@i (for i« = 1,2). An isomorphism f : (G1,¢1) — (Ga2,p2) is called
an equivariant isomorphism, if it is a Lie group isomorphism such that
p1 = [*p2, and in this case, (G1,¢1) and (Ga, p2) are called equivariant

equivalent.

Since p(t) = *1(t) induces a SU(3)-structure on b for each ¢, we can

write
h(t) = k(t) +a(t)e’ ® er  where k(t) € GI(R%) and a(t) € R*. (4.7)

We can define a time-depending Lie bracket on g 4(;) determined by At) =
a(t) 1k(t)Ak(t)~!, such that (4.7) becomes a Lie algebra isomorphism
between (ga,¢(t)) and (ga(), ) with ¢(t) = h(t)*¢. Moreover, since
Aa(t) = h(t)* A w1, we get the relation Q 4y = h(t)Qa(t)h(t)~! and
consequently, the equation (4.6) becomes an ODE on (g, %)

d

%h(t) = —Qaph(t). (4.8)
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In particular, under the flow (4.8) the matrix A(t) evolves by:

LA = qaAW) — [Q')y AW, (4.9

dt
where g4(t) and Q?4(t) are defined in (4.5) for each ¢ € (e1,£2). Since the
Lie bracket of g4 is completely encoded by A(t), the ODE (4.9) is named
the bracket flow and it provides an equivalent analysis of the geometric flow
of homogeneous geometric structures, varying the Lie bracket instead of

the geometric structure:

Theorem 16. [20, Theorem 5] Let {¢(t)}ie(e, e,) be a solution of the
Laplacian coflow on (ga) with initial condition ¢(0) = @o. Then, there
exist an equivariant isomorphism f(t) : (Ga,p(t)) = (Gaw), ¢), such that
h(t) = df(t)1 solves either (4.6) or (4.8) for allt € (e1,e2). In addition,
the solutions of (3.1) and (4.9) are

o) = h(t)'e and  A(t) = a(t)k(t) " Ak(D),
respectively, fort € (e1,€2).

Theorem 16 provides a useful tool for addressing long-time existence
and regularity questions, since it shows that the Laplacian coflow and
the bracket flow have the same maximal interval of solution. Hence, the

bracket flow (4.9) is explicitly given in the following proposition:

Proposition 17. Let £ ~ gl(R%) be the family of 7-dimensional almost
Abelian Lie algebras. The subfamily Leociosed =~ sP(R®) C L of coclosed
Ga-structures is invariant under the bracket flow (4.9), which becomes

equivalent to the following ODE for a one-parameter family of matrices
A= A(t) € sp(RO):

d 1 , 1 ) 1 .
aA_—(ﬁtr(SA) + 4 (trJ4) >A+§[A, [A, AY] + =[A, S 06 S4l.

1
2
(4.10)
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Proof. Notice that the velocity A(t) = qapnA +[A4, Qg(t)] lies in sp(RS),
since S og S4 € sp(RY) by Lemma 14, hence, the family Leociosed € £
is invariant under the bracket flow. Finally, replacing (4.5) into (4.9), we
obtain (4.10). O

Proposition 18. If A(t) is a solution of (4.10) associated to the Laplacian

coflow, then its norm evolves by
d 12 2 1 2\ 412 )2 t
ZIAP = = (142 + 5 (6 JA)? ) |AP = |[4, A")? = (Sa 06 Sa, [4, A").
(4.11)
Proof. From equation (4.10), we have
d 42 ' i At
%|A] =2(A,A) =2tr(AA")
1
=— (tr(SA)2 + i(tr JA)2> |A|? +tr([A, [A, AY)AY) + tr([A, Sa 06 Sa], AY)
1
= — (1842 + 5 (tr JA? )| A2 = |[A, A = (Sa 0 Sa, [4, A)).
O

In order to prove long-time existence solution for (4.10) we need the

following identity.

Lemma 19. For the symmetric part Sa of the matriz A € sp(R), we

have
1S4 06 Sal® = 4(1Sa*|Sal® — 2[S3)° — (JS4, 54)%).

Proof. This identity follows by direct computations, using the contractions
(A.7) and (A.8). O

Theorem 20. The Laplacian coflow solution (ga,@(t)) starting at any
coclosed (non-flat) Ga-structure is defined for all t € (€1, 00).

Proof. Let (t) a solution of the Laplacian coflow defined for all ¢ €
(1,€2), according to Theorem 16, we get that the solution A(t) € sp(RS)
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of (4.10) is defined for all ¢t € (g1,e2). Now, using the Cauchy-Schwarz
and Peter-Paul inequalities (i.e. ab < % + b2 for a,b > 0), we have

—(Sa 06 Sa, [A, A']) <[S4 06 Sall[A, A

<!SA o Sal?

- 4

=[Sal?|Sal* = 2|S%|* — (JSa, Sa) +|[A, A%
(4.12)

+ 1[4, AP

Replacing the last inequality into equation (4.11), we have
LIAP <~ (1S4P + 3 (6r TAP) | AP — [[A, AP +|Sa[SP
— 2| SA* — (JS4,84)" + |14, A']]?
= [SaPISAl? — {ISaPIA — AP L (tr A AP
+18al*1Sal* = 2[SAI* — (IS4, Sa)”
= JISAPA — AP~ (i JAPIAP 283~ (784, S)” < 0.
Thus, |A|? is non-increasing and non-negative, therefore A(t) is an immor-

tal solution, i.e. it is defined for all ¢ € (e1,00). In particular, |A|? is

strictly decreasing unless (g A(t)s ) is torsion-free, that is
A2=0 & A'=—-A and trJA=0,
and thus A(t) = Ag € s[(C?) N sp(R®) = su(3) the bracket flow solution is

constant. OJ

Remark 21. In [3] Bagaglini and Fino address also the Laplacian coflow
on almost Abelian Lie algebras, there the approach is different from ours,
the authors find explicit solutions of the Laplacian coflow when A € sp(R)
is normal. Notice that the above theorem holds for any A € sp(R%).

Example 22. Consider the almost Abelian Lie algebra g4 with the matrix
A defined by

Bl 0 0 =z O
A= with B = 0 0 and z,y e R. (4.13
i ] g 0 0 ’ Y
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Figure 4.1: x-nullcline, y-nullcline, equilibrium points

The later 2-parameter family illustrates an example where the bracket flow
A(t) is stable: For A(t) given by (4.13) we have that tr(S4)% = (z +y)?,
tr(JA) =0, [A,S4 06 Sa] = 0 and the non-vanishing terms of [A, [A, AY]]

are

[Av [Av At]h? = [Av [Av AtH54 = 2x(y2 - x2)
[Aa [A’ AtH21 == [A’ [A’ At]]45 = 2y(3:2 - y2)'

Replacing the above into (4.13), we obtain that the bracket flow is equiv-
alent with the following nonlinear system x = f(x), where f : R? — R?,

x = f = (f1(%), fa(x)) given by

¢:—§(3x—y)(a:+y) and y:—%(?)y—x)(x—i—y). (4.14)

A point x € R? is an equilibrium point if f(x) = 0 which is given by the
surface S = {(x,y) € R? : x = —y}. The z-nullclines (i.e, x € R? where
fi(x) = 0) are the lines z = 0, x = —y and y = 3z and the y-nullclines
(i.e, x € R? where fy(z) = 0) are the lines y = 0, 2 = —y and y = Lz.
The intersection of the x-nullclines and y-nullclines yield the equilibrium
points. On the other hand, the lines y = 0 and = = 0 are invariants for
the system (4.14). If we set y = 0 then we obtain & = —6x3. Therefore, &
is positive if x > 0 and negative if x < 0 which clearly shows the stability
along the line y = 0.
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To determine the trajectories, if xq is not a equilibrium point then, at
least one of f1(xg) or fa(xg) is not zero. Let us suppose that fi(xg) # 0.
Then, there is an open neighborhood of x¢, such that fi(xg) # 0, so the
orbit through xg can be defined as a solution of the nonautonomous scalar

equation
dy _ y(z—3y)
dx r(3x —y)

This differential equation is homogeneous. Setting y = zv(x), we obtain

U_'_x@__v(l—Sv)
de 3—v

:17@—411 v-l
de 3—v)’

The resulting ODE is separable, with solution =40 =3(v — 1)2 = ¢. Re-

That is,

verting back to the original variables, the trajectories are level curves of

(y(t) — 2(t))”
t

H(x(t),y(1)) =~ s

On the other hand, let
V(x) = 2% + y* + 2z,

be a Lyapunov function. In fact, V(x) = 0 when x is an equilibrium point
for this system and V(x) = (x 4+ y)? > 0 if x is not an equilibrium point.
Computing V (x), we find

V(x) = —2(z + y)*(62% — 4zy + 6y7),

where V(z) = 0 if z = —y and V(z) < 0 otherwise. For any curve
(1, 0) = (rcos@,rsinf) with > 0 and 0 < § < 27, we obtain

V(y(r,0)) = —2r2(rsin 6 + r cos )% (6 — 2sin(20)) < 0,

since |sin(260)| < 1 then we have 6 — 2sin(f) > 0. Therefore, the system is

stable if xq is a equilibrium point.
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Proposition 23. Let (ga,¢(t)) be a Laplacian coflow solution on an al-
most Abelian Lie algebra, starting at any coclosed (non-flat) Ge-structure.
Then, the scalar curvature R(t) of (ga, p(t)) is strictly increasing and sat-
1sfies the inequality

< R(t) <0 for any te (e1,00).
In particular, |T|? is strictly decreasing. and it converges to zero when

t — o0 as |A(t)]> — 0.

Proof. From (4.4), we have R = —trS% = —} tr(4 + A")2. Thus, using
the bracket flow equation (4.10) we have

%tr(A + AN = 2tr ((A + At)%(A + Af))
S (tr S2 + %(tr JA)Q) tr(A + A2 + tr <(A +AY[A - AT (A, Af]])
Ftr ((A +AY[A — A, 84 06 SA]>
S 4(tr S2 + %(tr JA)2> tr S% + tr ([A AL A AY [A,At])
ttr ([A AL A~ A8, o6 SA)
== 2(1Sal? + (tr JA)?)|Sal? — 2[4, A2 - 2([4, A")S 4 0 Sa).

Using the inequality (4.12), we obtain

d
Ztr(A+ AY? < - 2<2|SA|2 + (tr JA)2> 1S4 ]2 +2|Sa]*

—4|S41* = 2((J 84, 54))”

< 9(trS%)2 = — L (tr(A + AD2)2,

8
For any t1,ts € (1, 00) satisfying t; < to, the last inequality implies
1 1 ty —t
- >2 1

R(ty)  R(ty) — 2
If 1 = 0 then we get
1
“h o 1 < R(t2) <0 any t2 € 0,00).
2 T R(0)
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If t9 = 0 then we obtain

1
< R(tl) <0 any t;€ (81,0].

i 1
RGO
Finally, by (2.10) and (4.2), the scalar curvature of a coclosed Ga-structure

1S

Ry = —|T]* + (tr(JA))>.
Hence, using the Cauchy-Schwarz inequality, we have

1
T T + 6| A(t) %
2~ R(0)

IT? < —R(t) + |T2|A(6)? = —R(t) + 6| A(t)[* <

Therefore, |T|? is strictly decreasing, since |A(t)|? is strictly decreasing as
well and |T'|? goes to zero as |A(t)] — 0. O

4.2 Algebraic solitons

In this section, we characterize the invariant Ge-structures on almost
Abelian Lie algebras which are semi-algebraic solitons of the Laplacian
coflow, in terms of the Lie bracket induced by A € sp(R®).

The solution (3.2) on the almost Abelian Lie group G4 is self-similar
relative to equivariant equivalence if A(t) € R* and f(t) € Aut(G4) (see
[22, Equation (16)]). Then, the corresponding solution (3.2) on g4 is

V() = Mt)h(t)* € A*(ga)* with A(t) € R* and h(t) € Aut(ga),

(4.15)
with df(t)1 = h(t) and then, the soliton equation (3.3) becomes Ay =
M+ Lx,¥ € A(ga)* with A € R and Xp = %|,—oh(t) =1 —D €

Der(ga). Using the representation (4.1), we have
0(Qa)Y =Aytp = M+ Lx ¢
A d .
0 (=37) ¥+ fplanlt)'s

A
=0 <—417 T D) 0.
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By Proposition 13, the matrix Q) 4 is symmetric, hence, setting A\ = —4c¢

we say that v is a semi-algebraic soliton if
1
Qa=cl7 + §(D +D'),

and 1 is an algebraic soliton if D' € Der(ga). Moreover, the self-similar

solution (4.15) is given
1

AMt) = (1—2ct)? and h(t) = e*OP where s(t) = ~ % log |2¢t — 1],
c

(for ¢ = 0 set s(t) = t). And the corresponding bracket solution of a

semi-algebraic soliton is induced by
A(t) = (1 —2ct) V25O 4e=5F  where E = %(D — DY, (4.16)

(e.g. [19, Remark 3.4| for the homogeneous Ricci soliton case). The next

theorem shows the (semi-) algebraic soliton equation in terms A € sp(RS).

Theorem 24. Let (ga,¢) be an almost Abelian Lie algebra with coclosed
Ga-structure:
(i) 1 is an algebraic soliton for the Laplacian coflow if and only if
HAa At”Q + <SA 06 SA, [A7 At]>
A2
In this case, D = Q4 — clI; € Der(ga) for
1 A AP (Sa o6 Sa, [A»Atb)

_ Y@ 1 o |l
c= 2<trSA—|—2(trJA)+ A2 A2

[[A, A" + Sa 06 Sa, A] = A (417)

(ii) v is a semi-algebraic soliton if and only if
1
[A, A+ Sp0654 = —(tr §5—3 JA)2+2d>16+D1 + D!, (4.18)

for some Dy € gl(R®) such that [D1, A] = dA, where

A, A"” 4 (S4 06 Sa, [A, AT])
2|14

In this case Qa = cI7 + (D + DY) for

1 1 A, A2 (S 0654, A, At
c= —2<trS§1+2(trJA)2+|[ \AIQH 44540 |A|2[ D). (4.19)

Ll
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Proof. (i) Suppose that (g4, ¢) is an algebraic soliton i.e. Q4 = cI+ D
for c € R and D € Der(ga). Then,
De7 =dey for some deR and [QZ,A] = [Dly, A] = dA.
Thus, by Proposition 13 we get
[[A, AY], A] + [Sa 06 Sa, A] = 2dA.

Taking the inner product between A and the above equation we

obtain

HA) AtHQ + <SA 06 SA) [Av At])
2|AJ? '
The converse follows by taking D = Q4 — ¢l € Der(ga) and

d:

1[4, A]|? L (Sa 06 S, [A, At]>>

_ a1 2 1 2
c=q—d= (trSA+2(trJA) + A2 A2

2

(ii) Suppose that (ga, ) is a semi algebraic soliton, i.e. Q4 = cl; +
2(D+D?) for some ¢ € Rand D € Der(ga). It implies the equations

1
QZ:CI6+§(D1+D§) and ¢g=c+d
where
De; =de; for deR and [Dy,A]l=dA where D;=D|.

Since ([Dy, 4], A) = (A, [DY, A]), by Proposition 13 we obtain (4.18).
The converse follows immediately, and the formulae for ¢ and d are
obtained as in (i).

O

Using the condition (4.17) we describe a class of algebraic solitons.

Corollary 25. If A € sp(RS) is skew-symmetric then (ga, ) is an alge-

braic soliton.

Using Lemma 19, we can prove the absence of shrinking (semi-) alge-

braic solitons for the Laplacian coflow on almost Abelian Lie algebras.
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Proposition 26. If (g4, ) is a (semi-) algebraic soliton for the Laplacian

coflow then it is expanding, and it is steady if it is torsion-free.

Proof. Using the inequality (4.12) in the equation (4.19), we have

A, At]l2)

1
2c S — (tI‘Si—f— *(tI‘JA)2 + W

2

i lAll2 (1Sal?1Sal® = 2SI = (JSa, Sa)? + |[4, A?)
<- |Al’2(|SA|2(|A|2 — 1842 + %(tr TA?|AP? +2|S%)% + <JSA,SA>2>
<0.
If ¢ =0 then

trJA=0 and S%=0.

In particular S4 = 0, and thus A is skew-symmetric. And since A € sp(R%)
it implies that [J, A] = 0. Therefore, by equation (4.2) we get that the full

torsion tensor 1" vanishes. O

Remark 27. We remark that the previous proposition was proved in [3,
Corollary 4.4] for the context of algebraic solitons and assuming that A is

normal.

We conclude this section with an example of a semi-algebraic soliton

which is not an algebraic one.

Example 28. Let (ga,®) be an almost Abelian Lie algebra with Ga-
structure ¢ = w A €7 + pT, where
w=e e 13 and  pt o= el28 156 4 A6 (345

)

and the Lie bracket is determined by the 3-step nilpotent matrix

ol B 000 0 V2 0
010 0 0 0
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We have that the matrix

2 00
0 20
D:<D1 0)) Dy V2 0 4 e
0 d 30 V2
03 0
00 1

satisfies the relation [Dj, A] = A, it means that D € Der(gs). Now,
for each term of (4.5), we obtain trS3 = 3, trJA =0, [[A Al =
12, |A|?> =6 and (S4 og Sa, [A, AY]) = 0 where

(4,41 = (ﬂg) - S = <%>

with
-2 0 0 1 0 —v2
P= 0 -1 0], and R= 0O 0 0
0 0 1 V2 0 2

Since the matrices A and D satisfy the equation (4.18), we have that

(ga, ) is a semi-algebraic soliton with

5 1
Qa= —§I+ 5(D+Dt).

Notice that [D%, A] # A, so D ¢ Der(ga) thus (g, ) is not an algebraic

soliton. According to (4.16), the associated bracket flow solution is

A(t) = (14:5t) 712e3WE ge=sWE — (14 5¢)71/2 <cos it)A + sin S(t)AL> ,

V2 V2

where
1 Er |0 0 0 1
E:f(D—Dt):ﬁ 0 | By , Er=| 0 00
0 -1.0 0
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and
0 -1 0 0 0 0
1 OBI / !
A= B=|-1 0 0|, C'"=]0 0 V2
0 0 0 0 vV2 0

As in [21, Example 5.28], we obtain that A(t)/|A(t)| runs on a circle and

A(t) converges to zero rounding in a cone.

A Contraction of Gs and SU(3)-identities

Let ¢ be a Go-structure with Hodge dual 4-form v and induced SU(3)-
structure (w, p* +ip~) € A2(R)* @ A3(C3)*. From [14, §A.3] and [4, §2.2],
we gather the following contraction identities for Go and SU(3)-structures,
respectively.

Contractions of ¢ with ¢:
aby ©"% = 69k, (A1)
Papa?’jk = 9pjdak — Ipkaj + Vpgjk- (A.2)

Contractions of ¢ with :

Pijg¥" = 4Pqki, (A.3)
Pipg'jk1 = IpiPakl — 9jq okl + IpkPjql
— Gkq¥Pjpl + 9plPikq — GiqPjkp- (A4)

Contractions of ¢ with :
7vbabcd'(ljal;rm = 49emYdn — 49endm + 2Vabmn, (A5)
wabcdwmde = 24gam, (AG)
Contractions of w with w and p* with w:
b _ —
Wipij = _52']', p;bwa =0, P;’;pwpk = Pijk> Pijpwpk = _p;;]y (A7)
Contraction of p* with p*:

P;;pp}:lp = —WipWj; + Wiwjk + k01 — dk0y = pi_jpp];[p' (A.8)
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