
Vol. 60, 137–162 ©2024
http://doi.org/10.21711/231766362024/rmc607

Parallelisms on the 7-sphere

E. Loubeau 1, L. Rodríguez Díaz 2 and H. Sá Earp 3

1Univ. Brest, CNRS UMR 6205, LMBA, F-29238 Brest, France
2Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
3Universidade Estadual de Campinas (Unicamp), SP, Brazil

Abstract. We survey Kirchhoff’s classical construction of paral-
lelisms on spheres, induced by almost complex structures on their
equator. Motivated by the Hopf problem, we focus on the 7-
dimensional context, highlighting the construction’s proximity to
notions of Lie group structure and integrability of almost-complex
structures on S6. We explain how integrability of such almost com-
plex structures and parallelisms are mediated by a particular notion
of torsion, a fact which has interesting algebraic and geometric reper-
cussions.

Keywords: Almost-complex structures, Hopf conjecture, 7-sphere,
parallelisms, Kirchhoff frame.

2020 Mathematics Subject Classification: 53C15.

Email: loubeau@univ-brest.fr
Email: lazarord@im.ufrj.br
Email: henrique.saearp@ime.unicamp.br

137

http://doi.org/10.21711/231766362024/rmc607
https://orcid.org/0000-0002-3008-2815
https://orcid.org/0000-0001-9195-2231
https://orcid.org/0000-0003-0475-4494


138 E. Loubeau, L. Rodríguez Díaz, H. Sá Earp

1 Introduction

The existence of special algebraic and geometric structures on spheres
is a long-standing matter of mathematical inquiry, arguably dating back
to Cartan’s seminal proof that high-dimensional spheres cannot be Lie
groups. In particular, the existence of global frame fields, or parallelisms,
on odd-dimensional spheres has been shown by Kirchhoff in 1947 to bear
relation to almost complex structures on their even-dimensional equato-
rial sphere. Since then, a fruitful classification programme spanned over
almost two decades, to which Borel-Serre, Kervaire and Bott–Milnor (in-
dependently), and Adams added crucial contributions:

1. [6] Sn+1 is a Lie group =⇒ n = 0, 2.

2. [12] Sn is almost complex =⇒ Sn+1 is parallelisable.

3. [3] Sn is almost complex =⇒ n = 0, 2, 6.

4. [11, 4] Sn+1 is parallelisable =⇒ n = 0, 2, 6.

5. [1] Sn+1 is an H-space ⇐⇒ n = 0, 2, 6 (Adams)

NB.: Of course (2)&(4) =⇒ (3), but the historical timeline worked out
differently.

This successful line of investigation culminates at the specificity of the
problem of parallelisation on the spheres S3 and S7, which correlates to
the study of almost complex structures (ACSs) respectively on S2 and S6.
Moreover, it acquires additional texture from the perspective of differential
topology, once we pose the integrability question about those structures,
even if only to low-order obstructions. For a parallelism, it takes the
form of global constancy of its structure functions, ie. of constant torsion,
whereas for an almost complex structure it amounts to the vanishing of
its Nijenhuis tensor. The situation on S3 ≃ SU(2) is completely under-
stood, and a smooth constant parallelism can be explicitly gathered from
any three independent left-invariant vector fields given by its Lie group
structure, as well as being directly associated to the canonical (integrable)
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complex structure on S2. Meanwhile, a similar narrative is far from clear
on S7, where indeed it stumbles upon the famous Hopf problem: whether
a(n integrable) complex structure exists at all on S6. If such a structure
could exist, then it makes sense to ponder what consequences that would
bear upon the torsion of the corresponding parallelism on S7, since after
all the latter does not admit a Lie group structure.

For the history of the Hopf problem, we refer the reader to the excellent
survey [2]. Our central motivation here is the fact that the construction of
Kirchhoff frames is an example of simple mathematics yielding thought-
provoking conclusions, intertwining geometry, algebra and topology. In
particular, we feel that a number of interesting connections in this story
have been somewhat estranged by maths curricula over the past decades,
and it might be a good moment to refresh the topic under a modern light.
For example, although the relation between the associator and the Nijen-
huis tensor in the case of the classical almost complex structure induced by
the octonions is probably well-known to experts, it is not well-documented,
cf. [15, Remark 2.3]. We should also mention that a contemporary perspec-
tive on {e}-structures, seen as homogeneous sections defining a (trivial)
reduction of the frame bundle, as well as their torsion and their infinitesi-
mal deformations, can be found in [16, 8].

The material is organised as follows. In §2 we review the relations
between parallelisms and algebraic structures on spheres, as multiplicative
spaces. In particular, we explain how the non-associativity of the octonions
is in a precise sense ‘to blame’ for the non-constancy of the canonical
parallelism on S7 and for the non-integrability of the standard ACS on
S6. In §3, we review Kirchhoff’s construction of global frames on a sphere
from an ACS on the equator, with a few additions such as a class of
spherical metrics on S7 which are particularly compatible with Kirchhoff
frames, and a computation of their torsion therewith. Finally, in §4 we
address the Hopf problem, explaining how the hypothetical integrability
of an ACS on S6 could lead to a contradiction, by way of an analytical
argument yielding an integrable parallelism on S7.
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2 Parallelisms on spheres and algebraic structures

2.1 When does a parallelism come from a Lie group
structure?

Each smooth global frame σ = {X1, · · · , Xn} on a manifold M in-
duces a flat (zero curvature) connection Γ, corresponding to the covariant
derivative defined by

∇Z

(∑
f iXi

)
:=
∑

Z(f i)Xi, for Z ∈ X (M).

The global structure equations of Γ in the frame σ are:

dωi = 1
2T

i
jk ω

j ∧ ωk, (2.1)

where {ω1, · · · , ωn} is the dual coframe of {X1, · · · , Xn}. The torsion
tensor of Γ is given by

T (Xj , Xk) =
n∑

i=1

T i
jkXi = −[Xj , Xk]. (2.2)

Furthermore the torsion tensor of Γ is parallel if and only if the structure
functions T i

jk : M → R are constant. More generally, a tensor field on
M is parallel with respect to Γ if and only if it has constant components
with respect to the frame field {X1, · · · , Xn}. Equation (2.2) resembles the
way in which one defines the structure constants of a Lie algebra, i.e., (2.1)
looks like the Maurer-Cartan equation; this is not a coincidence, since Lie
groups are always parallelisable. Moreover, the following converse states
which parallelisms come from a Lie group structure on M :

Theorem 2.1 ([9], Theorem 5). Let M be a simply connected manifold
admitting a complete flat linear connection with torsion invariant under
parallel translation. Then M admits a Lie group structure such that left-
translations induce the original connection.

The above theorem was proved by Chern [7, Section 5, page 128], in
terms of an {e}-structure on M . Generalisations of this result to not
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necessarily simply-connected manifolds have been proved many times in
the literature, e.g., Wolf [23, Proposition 2.5] within the context of absolute
parallelisms. All of those are rooted, one way or another, on Cartan’s local
equivalence method, see Sternberg [20, Theorem 2.4, Chapter V].

Proposition 2.2 ([23], Proposition 2.5). Let σ be a smooth parallelism on
a connected manifold M . The following statements are equivalent:

(i) σ has complete associated connection and parallel torsion;

(ii) M has the structure of the coset space G/D = {Dg : g ∈ G}, for a
connected Lie group G and a discrete subgroup D ⊂ G, such that σ

is induced by left-translations of G.

In general, a linear connection on a compact manifold is not necessarily
complete. However, as the geodesics of the associated connection Γ consist
of the integral curves of the vector fields {X1, · · · , Xn}, compactness of M
implies that Γ is complete. In a local coordinate patch (U, x1, · · · , xn),
we can write the vector fields Xj =

∑
X l

j
∂
∂xl and the dual forms ωj =∑

ωj
l dx

l, where (ωj
l ) is the inverse matrix of

(
X l

j

)
) in terms of the local

basis of vectors fields and differential forms. The structure functions may
then be computed by the formula:

T i
jk =

n∑
r,s=1

Xr
jX

s
k

(
∂ωi

s

∂xr
− ∂ωi

r

∂xs

)
. (2.3)

2.2 The octonions and the classical parallelism of the 7-
sphere

Let us briefly discuss the parallelism of S7 induced by the octonions,
in the light of Hicks’ Theorem 2.1. The next proposition explains how
orthogonal multiplications define vector fields on spheres.

Proposition 2.3 ([5], Proposition 7.3.1). Suppose we have a map ν :

Rk+1 × Rn+1 → Rn+1, linear in the first factor and continuous in the
second factor, satisfying:
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i) ν(v, z) = 0 implies z = 0 or v = 0,

ii) there exists e ∈ Rk+1 such that ν(e, z) = z for all z ∈ Rn+1,

then Sn admits k independent vector fields.

The proof can be found in [5] and, though stated for bilinear maps
ν, it only uses linearity in the first factor. As a corollary of the above
Proposition, the multiplications in the complex, quaternion, and octonion
numbers induce parallelisms on S1,S3 and S7, respectively. For instance,
fix the canonical basis of O given by the identity 1 and seven imaginary
octonions ei, i = 1, · · · , 7, satisfying the multiplication rule

eiej = −δij + aijkek,

where the structure constants aijk are totally skew-symmetric. Using
Proposition 2.3, we construct seven linearly independent vector fields Xi

on the sphere S7 ⊂ O of unit octonions as follows:

Xi(x) = eix for x ∈ S7, i = 1, · · · , 7.

Let us compute the structure functions of this global frame. Note that
multiplication in this particular case is linear in both factors, therefore the
Lie brackets [Xi, Xj ] can be computed by the commutator of the corre-
sponding linear maps.

[Xi, Xj ](x) = ei(ejx)− ej(eix) (2.4)

= 2aijkekx− 2[ei, ej , x]

= 2 (aijk − ⟨[ei, ej , x], ekx⟩)Xk(x),

where [a, b, c] := (ab)c− a(bc) is the associator, ⟨a, b⟩ := 1
2

(
ab̄+ bā

)
is the

standard inner product, and conjugation is defined by 1̄ = 1, ēi = −ei and
ab = b̄ā.

Remark 2.4. While the non-commutativity of the octonions causes the
non-vanishing of the torsion, their non-associativity causes the non-constancy
of the structure functions of the classical parallelism of S7. Compare to
Remark 2.7, below.
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Remark 2.5. We used the alternativity of the octonionic product to prove
the second equality in (2.4). Compare to Remark 2.8, below.

Remark 2.6. Note the structure functions coincide with the structure
constants of the algebra at the North and South poles, i.e., at 1 and −1

in O. Compare to Remark 3.8, below.

2.3 The octonions and the induced almost complex
structure on the 6-sphere

Let us briefly recall how the multiplication in the octonions induces
an almost complex structure on S6. As we will see in §3, Kirchhoff’s con-
struction is modeled on this, in fact its proof reverses this process, by
reconstructing the ‘multiplication’ of R8 from the almost complex struc-
ture, see also Remark 3.10 and Section 4.2.

Let ℑO ⊂ O denotes the hyperplane of imaginary octonions orthogonal
to 1 ∈ O, and let S6 ⊂ ℑO be the sphere of unit imaginary octonions.
Right-multiplication by y ∈ S6 induces an orthogonal linear map Ry :

O → O such that (Ry)
2 = −1. Moreover, Ry maps 1 7→ y and y 7→

−1, hence it preserves the 2-plane spanned by 1 and y, as well as its
orthogonal 6-plane, which can be identified with TyS6 ⊂ O. It follows that
Ry induces an almost complex structure on S6. Now we are going to show
that its Nijenhuis tensor can be expressed in terms of the associator of the
octonions O.

The Nijenhuis tensor can be computed by:

N(X,Y ) = d(JY )(JX)− d(JX)(JY )− dY (X) + dX(Y )

− J (d(JY )(X)− dX(JY ))− J (dY (JX)− d(JX)(Y )) .

To see this, note that in Euclidean space we can compute the Lie bracket
of vector fields X,Y : S6 → R7 by

[X,Y ] = dY (X)− dX(Y ),

where dX and dY denote respectively the differentials of X and Y , as
maps. By definition JaYa = Ya · a, where a ∈ S6 and Y is a vector field on
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S6. Differentiating, we get

d(JY )(JX) = J (dY (JX)) + Y · JX,

J (d(JY )(X)) = (−1)dY (X) + J(Y ·X).

Then
N(X,Y ) = Y · JX −X · JY − J(Y ·X) + J(X · Y ).

For b, c ∈ TaS6 we get:

Na(b, c) = c · (b · a)− b · (c · a)− (c · b) · a+ (b · c) · a = 2[a, b, c]. (2.5)

Remark 2.7. Therefore the non-associativity of the octonions is respon-
sible for the non-integrability of the almost complex structure J . Compare
to Remark 2.4.

Remark 2.8. To establish the last equality in (2.5) we used the fact that
the algebra of octonions is alternative. Compare to Remark 2.5.

3 Kirchhoff’s theorem: old and new

3.1 Statement and proof

Now we state Kirchhoff’s theorem and then survey its proof, which
is fairly straightforward but maybe not so widely remembered nowadays,
cf. [12], [13, Theorem V], see also Kobayashi-Nomizu [14, Chapter IX,
Example 2.6].

Theorem 3.1 ([12], Theorem 4). If the sphere Sn admits an almost com-
plex structure, then Sn+1 is parallelisable.

We need to exhibit a field σ of linear frames on Sn+1. Let J be an
almost complex structure on the equatorial sphere Sn. Fix a subspace
Rn+1 ⊂ Rn+2 in the ambient vector space and a unit vector e := e0 ∈ Rn+2

perpendicular to Rn+1, in the standard Euclidean inner-product. Denote
by Sn and Sn+1 the unit spheres in Rn+1 and Rn+2 respectively.
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Lemma 3.2. At each y ∈ Sn, the almost complex structure Jy can be
extended to a map J̃y : Rn+2 → Rn+2 such that J̃2

y = −I. Moreover, if Jy
is compatible with the inner product on Sn, then J̃y ∈ SO(n+ 2).

Proof. Given y ∈ Sn denote by Vy the n-dimensional vector subspace of
Rn+2 parallel to the tangent space Ty(Sn) in Rn+2 and Jy the linear endo-
morphism of Vy corresponding to the linear endomorphism of Ty(Sn) given
by J . Define a linear transformation J̃y : Rn+2 → Rn+2 by J̃y(e) = y,
J̃y(y) = −e and J̃y(z) = Jy(z) for z ∈ Vy. It follows from J2 = −I that
J̃2
y = −I.

Let x ∈ Rn+2, then it can be written uniquely as follows:

x = αe+ βy, α, β ∈ R, β ≥ 0, and y ∈ Sn. (3.1)

We will refer to y as the equatorial projection of x. Define the linear
transformation:

σ̃x : Rn+2 → Rn+2, σ̃x := αI + βJ̃y. (3.2)

Lemma 3.3. The map σ̃x is an automorphism of Rn+2. Moreover, if
x ∈ Sn+1 and Jy is compatible with the inner product on Sn, then σ̃x ∈
SO(n+ 2).
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Proof. It is straightforward to check that 1
α2+β2 σ̃

t
x = 1

α2+β2 (αI − βJ̃y) =

σ̃−1
x , which yields the claim when α2 + β2 = 1.

When x ∈ Sn+1, note also that σ̃x(e) = x, and denote each restriction
of σ̃x to Rn+1 by

σx := σ̃x|Rn+1 , x ∈ Sn+1.

Lemma 3.4. When x ∈ Sn+1, each linear frame σx : Rn+1 → Tx(Sn+1) is
an isomorphism.

Proof. Recall that Rn+1 is spanned by y (the equatorial projection of x)
and Vy. Clearly σ±e = ±I : Rn+1 → T±eSn+1, respectively. For a point
x ∈ Sn+1

× := Sn+1 \ {±e} and a vector v ∈ Rn+1 = Ry ⊕ Vy, using the
standard inner-product of Rn+2 and recalling that ⟨y, e⟩ = 0, we obtain

σx(v) = αv − β⟨v, y⟩e+ βJ̃x(v
⊥),

where v⊥ ∈ Vy. Note that σx(y) = αy − βe and σx(v) = αv + βJ̃x(v)

when v ∈ Vy. Observe that as v⊥ ∈ Vy then J̃x(v
⊥) ∈ Vy, so J̃x(v

⊥) is
orthogonal to both y and e, hence to x = αe+ βy.

It is then straightforward to verify that σx indeed maps into TxSn+1:

⟨σx(v), x⟩ = ⟨αv − β⟨v, y⟩e+ βJ̃x(v
⊥), x⟩

= α⟨v, x⟩ − β⟨v, y⟩⟨e, x⟩+ β⟨J̃x(v⊥), x⟩

= αβ⟨v, y⟩ − αβ⟨v, y⟩

= 0.

Finally, σx is a linear map and, as J̃2
x = −In+1, σx is an isomorphism

J̃x(σx(v)) = αJ̃x(v) + βJ̃2
x(v)

= αJ̃x(v)− βv

so v = ασx(v) + βJ̃x(σx(v)). and σx is an isomorphism from Rn+1 to
Tx(Sn+1).
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Remark 3.5. Kirchhoff’s theorem does not assume any property of the
almost complex structure J .

Remark 3.6. If moreover J is an almost Hermitian structure, i.e., com-
patible with some Riemannian metric g on Sn (this is always possible),
then the theorem above can be found in [19, Theorem 41.19]. Steenrod
noted that in this case the global frame σ̃ is in fact orthogonal, that is,
σ̃x (σ̃x)

t = I, for x ∈ Sn+1. More generally, we have σ̃x (σ̃x)
t = ∥x∥2I,

for x ∈ Rn+2. This will be used in Section 4.2. In what follows, ∥x∥ will
denote the Euclidean norm of x.

Remark 3.7. The vector fields {Xi(x) := σx(ei)}i=1,··· ,n+1 defining the
parallelism in Theorem 3.1 are given explicitly by

Xi(x) = x0ei − xie0 + β(x)Jy (ei − ⟨y, ei⟩y) ,

where {ei}i=0,··· ,n+1 is the canonical basis of Rn+2.

Remark 3.8. The linear frame σ is smooth at all points of Sn+1 except
at e and −e, where it is merely Lipschitz continuous. The following ap-
proximation theorem, originally proved in somewhat outdated language by
Steenrod [19, Theorem 6.7], guarantees that every continuous section of a
smooth fibre bundle can be approximated arbitrarily closely (in a suitable
topology) by a smooth section:

Theorem 3.9. [18, Chap. III, Prop. 5.11 & 5.12] Let E → X be a smooth
vector bundle over a smooth manifold X. Denote by F the C0(X)-module
of (continuous) sections X → E, and let ∥.∥ : F → C0(X) be any Eu-
clidean norm. For any strictly positive function ϵ ∈ C0(X) and continuous
section σ : X → E, there is then a smooth section σ̂ : X → E such that
∥σ̂ − σ∥ < ϵ. In particular, if there is a continuous nowhere-vanishing
section σ : X → E, there is also a smooth nowhere-vanishing section
σ̂ : X → E.

Therefore, unless otherwise mentioned, we may assume σ is a smooth
linear frame that coincides on Sn+1

× := Sn+1 \ {e,−e} with the one con-
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structed in the above theorem, except at a small neighbourhood of the
poles; we will refer to it in this case as the smooth Kirchhoff frame.

Remark 3.10. We can use Proposition 2.3 to conclude that Sn+1 is paral-
lelisable, by Kirchhoff’s theorem, since the map ν : Rn+1 × Rn+1 → Rn+1

defined by ν(v, z) := σ̃zv satisfies the hypotheses of Proposition 2.3.

Example 3.11. Let us illustrate the construction in the familiar n = 2

case, when the standard vector cross-product on R3 defined by quaternion
multiplication induces an (almost) complex structure J on S2. At the poles
we have σ±e0 = ±I; at any other x ̸= ±e0, we have β = 1 − x20 ̸= 0 and
the equatorial projection is y = 1

β (x− x0e0) ∈ S2, so

y =
1

1− x20


0

x1

x2

x3

 , [Jy] =
1

1− x20


0 0 0 0

0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0

 .

The induced Kirchhoff frame on S3 is obtained explicitly as follows:

X1(x) = x0e1 − x1e0 + (1− x20)Jy(e1)

=


−x1

x0

0

0

+


0 0 0 0

0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0



0

1

0

0

 =


−x1

x0

x3

−x2


X2(x) = x0e2 − x2e0 + (1− x20)Jy(e2)

=


−x2

0

x0

0

+


0 0 0 0

0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0



0

0

1

0

 =


−x2

−x3

x0

x1


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X3(x) = x0e3 − x3e0 + (1− x20)Jy(e3)

=


−x3

0

0

x0

+


0 0 0 0

0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0



0

0

0

1

 =


−x3

x2

−x1

x0


ie.,

σx =


x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0

 ∈ SO(4).

These ideas lead to the following question, regarding the Hopf prob-
lem. Assume, for a moment, that S6 admits an integrable almost complex
structure J . By Kirchhoff’s Theorem 3.1, this induces a parallelism on the
sphere S7, and we have the explicit form of the corresponding global frame
in terms of J .

Question 1. To what extent does the integrability condition on J on S6

amount to the constancy of the structure functions of the smooth Kirchhoff
frame defining the parallelism on S7?

We will return to this Question in §4.1. Notice finally that, even if in
general the structure functions of the Kirchhoff frame are not constant, we
can certainly aim at expressing the full torsion tensor for this {e}-structure
on the punctured sphere S7× in terms of the almost complex structure J

on S6.

3.2 Example: Kirchhoff frames on S7

We will now specialise the language of Kirchhoff’s proof to the context
of the unit sphere S7 ⊂ R8 and its (equatorial) sphere S6 := {x ∈ S7 |
x8 = 0} and fill in some of the details of the previous section. We still
denote the North pole by the vector e := (1, 0, . . . , 0) ∈ S7.
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We assume that S6 is equipped with an almost complex structure J ,
that is for any y ∈ S6, Jy : TyS6 → TyS6 with J2

y = −I. Given x ∈ S7, we
write

x = cosϕ e+ sinϕ y,

for the zenith angle ϕ ∈ [0, π] and the equatorial projection y ∈ S6. We
denote by Vy the tangent space TyS6 of S6 at the point y, so that

TyS7 = Ry ⊕ Vy.

At each point x ∈ S7 ⊂ R8, we extend the almost complex structure J on
S6 to J̃ : R8 → R8 by

J̃x(e) = y, J̃x(y) = −e, J̃x(z) = Jy(z), ∀z ∈ Vy.

Note that J̃2
x = −I8. This definition could easily be extended into an

almost complex structure on R8.
Setting α = cosϕ and β = sinϕ, the Kirchhoff frame is defined at each

point x ∈ S7 by

σx : R7 → TxS7

v 7→ σx(v) = αv + βJ̃x(v).

The Kirchhoff frame assumes a particularly simple form in spherical
coordinates. At any given y ∈ S6, let {fi}i=1,...,6 be a basis of Vy, so
that {y, fi}i=1,...,6 spans R7 ∈ R8. Now, introducing the zenith coordinate
vector ∂ϕ = −βe + αy, we obtain a basis of TxS7× as {∂ϕ, fi}i=1,...,6, in
which the Kirchhoff frame field is expressed as the (7× 7)-matrix:

−1 0 . . . 0

0
... Jy

0

 (3.3)

Remark 3.12. While the matrix expression (3.3) of the Kirchhoff frame
field is simple enough, it is written with respect to a moving frame – which
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will change from point to point. An alternative choice is to consider now
the canonical basis (up to order) E = {e0 = e, e1, . . . , e7} of R8. For a
point x = αe + βy ∈ S7, with equatorial projection y = (0, y1, . . . , y7) ∈
S6 ⊂ R7, we know that J̃x(e0) = J̃x(e) = y and

J̃x(ei) = J̃x

(
⟨ei, y⟩y + (ei − ⟨ei, y⟩y)

)
= yiJ̃x(y) + J̃x

(
(ei − ⟨ei, y⟩y)

)
= yiJ̃x(y) + Jy

(
(ei − ⟨ei, y⟩y)

)
, for i = 1, . . . , 7.

since ei −⟨ei, y⟩y ∈ Vy. Therefore, in the basis E, the operator J̃x is given
by the (8× 8)-matrix:

[J̃x]E =


0 −y1 · · · − y7

y1
... [Jy ◦ γy]
y7


where [Jy ◦ γy] is the matrix of the operator Jy ◦ γy : R7 → R7 in the basis
{e1, . . . , e7}, and

γy =


1− y21 −y1y2 . . . −y1y7

−y1y2 1− y22 . . . −y2y7
...

...
. . .

...
−y1y7 −y2y7 . . . 1− y27

 : v 7→ v − ⟨v, y⟩y ∈ Vy ⊂ R7

is an orthogonal projection. Then the Kirchhoff frame field reads [σx]E =

α I8 + β[J̃x]E .

3.3 A metric on S7 adapted to generalised Kirchhoff
parallelisms

All the classical discussion so far considers S6 ⊂ S7 as round spheres
in the Euclidean metric of R8. Let us now try and address the same con-
struction from the more general perspective of spherical metrics g̃ induced
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on a smooth 7-sphere by an arbitrary Hermitian metric g on its equatorial
6-sphere, compatible with a given almost complex structure J .

Suppose, without loss of generality up to homotopy, that the embed-
ding of (S6, g) in R7 is star-shaped with respect to the origin. Then g has
a natural polar extension metric over R8, obtained in the following way.
Let

S̃7 := {x = cosϕ e+ sinϕ y | y ∈ S6, ϕ ∈ [0, π]}.

be the new unit 7-sphere, which is homotopic in R8 to the standard Eu-
clidean S7. Then, for any point p ∈ R8, we define r = |p|g̃ by p =: rx,
where x ∈ S̃7 is unique by assumption, and let

g̃ := dr2 + r2dϕ2 + r2(sin2 ϕ)g.

Notice in particular that g̃(e, y) = 0, for any y ∈ S6. We can then define
the group of isometries of (R8, g̃):

S̃O(8) = {A ∈ End(TR8) : Atg̃A = g̃}.

Please observe that this notation is merely suggestive, since the total space,
in this case, is not in itself a matrix Lie group. The compatibility condition
between g̃ and an almost complex structure J̃ on R8 is

g̃(u, v) = g̃(J̃u, J̃v) = utJ̃ tg̃J̃v,

which is equivalent to J̃ tg̃J̃ = g̃.

Lemma 3.13. If g is compatible with an almost complex structure J on
S6, then its polar extension g̃ is compatible with J̃ on R8, i.e.,

g̃(J̃u, J̃v) = g̃(u, v), ∀u, v ∈ TpR
8, p ∈ R8.

Proof. Let x = p
|p|g̃ = cosϕe+ sinϕy ∈ S̃7, with equatorial projection y ∈

S6. If both u, v ∈ TyS6, then the conclusion is immediate, because g̃|S6 = g.
If u ∈ (TyS6)⊥̃, then it is contained in the 2-plane Π := span{x, ∂ϕ} =

span{e, y}, and by definition J̃ : Π → Π is a rotation by 90 degrees. The
conclusion follows.
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Adopting slightly more convenient notation, we redefine the (basepoint-
dependent) transpose by At̃ = g̃−1Atg̃, and the corresponding orthonormal
frame bundle over S̃7 is characterised by pointwise projection onto the first
column:

S̃O(8) = {A ∈ End(TR8) : At̃ = A−1} π−→ (S̃7, g̃).

The associated bundle of Lie algebras is s̃o(8) := {B ∈ End(TR8|S̃7)) :

B t̃ = −B} = g̃−1so(8).

Example 3.14. The Kirchhoff almost complex structure J̃ on R8 is com-
patible with g̃ so

J̃ tg̃J̃ = g̃

therefore g̃J̃ + J̃ tg̃ = 0, so that J̃ is in so(8, g̃). Then the Kirchhoff frame
constructed from J is σ = αI + βJ̃ , with α2 + β2 = 1 takes values in
S̃O(8):

σtg̃σ =
(
αI + βJ̃ t

)
g̃
(
αI + βJ̃

)
= α2g + αβ

(
J̃ tg + gJ̃

)
+ β2J̃ tg̃J̃ = g̃.

3.4 Torsion of a parallelism

Our procedure to compute the torsion of parallelisms on S̃7 will follow
closely that which was carried out for the Euclidean 3-sphere in [16, §3.1],
and we refer the reader there for additional details. In particular, we
avoid repeating here the abstract definition of the torsion of a geometric
structure as the vertical differential of a homogeneous section.

The tangent space to the orthonormal frame bundle at z ∈ S̃O(8) is
given by:

TzS̃O(8) =
{1
2
(M − zM t̃z) : M ∈ GL(8,R)

}
= zs̃o(8). (3.4)

The vertical distribution at the identity of S̃O(8) is

VI := ker p∗ =
{
M ∈ s̃o(8) : M =

(
0 0

0 M̂

)
, M̂ ∈ s̃o(7)

}
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and, at z ∈ S̃O(8), Vz = zVI. Here we define

s̃o(7) := {C ∈ GL(7,R) : C t̃ = −C},

under the identification R7 = {p ∈ R8 : ⟨p, e⟩ = 0} = {p ∈ R8 : ϕ = π
2 }.

A g̃-orthonormal parallelism is a section

σ : S̃7 → S̃O(8)

x 7→ σ(x) = (x, σ1(x), . . . , σ7(x))

of the orthonormal frame bundle S̃O(8)
π−→ (S̃7, g̃). At each x ∈ S̃7, its

differential is given by

dσx : TxS̃7 → Tσ(x)S̃O(8)

X 7→ dσx(X) =: Proj
Tσ(x)S̃O(8)

(M)

with M = (X, dσ1(X), . . . , dσ7(X)). Therefore

dσx(X) = 1
2

(
M − σ(x)M t̃σ(x)

)
= σ(x).12

(
σ(x)t̃M −M t̃σ(x)

)
= σ(x)

(
0 −vt

v M̂

)
,

with M̂ ∈ s̃o(7) and v ∈ R7, so the torsion of the parallelism is the vertical
component

T (Xx) = dVσx(X) = σ(x)

(
0 0

0 M̂

)
.

Denoting g̃x by ⟨·, ·⟩, we have

σ(x)t̃M =


⟨x,X⟩ ⟨x, dσ1(X)⟩ . . . ⟨x, dσ7(X)⟩
⟨σ1, X⟩ ⟨σ1, dσ1(X)⟩ . . . ⟨σ1, dσ7(X)⟩

...
...

...
⟨σ7, X⟩ ⟨σ7, dσ1(X)⟩ . . . ⟨σ7, dσ7(X)⟩

 ,

and, since dσi(X) = XH + (∇̃Xσi)
V , several entries simplify as follows:

⟨x,X⟩ = ⟨σi, dσi(X)⟩ = 0, ⟨x, dσi(X)⟩ = −⟨σi, X⟩

⟨σi, dσj(X)⟩ = ⟨σi, ∇̃Xσj⟩, for i, j = 1, ..., 7.
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We obtain, cf. (3.4):

dσx(X) = σ(x)


0 −⟨σ1, X⟩ −⟨σ2, X⟩ −⟨σ3, X⟩

⟨σ1, X⟩ 0 ⟨σ1, ∇̃Xσ2⟩ ⟨σ1, ∇̃Xσ3⟩
⟨σ2, X⟩ ⟨σ2, ∇̃Xσ1⟩ 0 ⟨σ2, ∇̃Xσ3⟩
⟨σ3, X⟩ ⟨σ3, ∇̃Xσ1⟩ ⟨σ3, ∇̃Xσ2⟩ 0


∈ Tσ(x)S̃O(8)

⇒ dVσx(X) =

σ(x)



0 0 0 0 0

0 0 ⟨σ1, ∇̃Xσ2⟩ . . . ⟨σ1, ∇̃Xσ7⟩

0 ⟨σ2, ∇̃Xσ1⟩ 0
...

0
...

. . . ⟨σ6, ∇̃Xσ7⟩
0 ⟨σ7, ∇̃Xσ1⟩ . . . ⟨σ7, ∇̃Xσ6⟩ 0


In words, the typical (off-diagonal) elements of dVσ are the 1-forms:

(dVσ)ij = g̃(∇̃σj , σi), 1 ≤ i ̸= j ≤ 7.

Indeed, those are the Christoffel symbols of ∇̃ in the frame field σ, if we
care to raise an index etc, which are precisely the ‘structure functions’
introduced in §2.1. By Koszul’s formula, we find:

T k
ij := (dVi σ)

k
j = g̃(∇̃iσj , σk) =

∑
sign(ijk)g̃([σi, σj ], σk), 1 ≤ i, j ≤ 7.

(3.5)
In §4.1, we will specialise the above discussion to the particular case of
Kirchhoff frames.

Remark 3.15. An alternative approach to computing the torsion of a
parallelism is to consider it a section of the SO(7)-principal bundle of
orthonormal frames of (S7, g̃), ie. the Euclidean unit 7-sphere endowed
with the unusual Riemannian metric from (R8, g̃). While its total space
can no longer be seen as a matrix Lie group, its fibre of frames on the
point x ∈ S7 is equal to S̃O(7) = {A ∈ GL(7,R) : A−1 = g̃−1

x Atg̃x}. As
we work with the vertical part of the differential of σ, the computations
are the same.
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4 Reflections on the Hopf problem

4.1 Integrability on S6 and torsion of smooth Kirchhoff
parallelisms

Let us now address the issue raised in Question 1 and reason, for ar-
gument’s sake, under the outrageous assumption that J is actually an
integrable complex structure on S6. Around a given point y ∈ S6, one may
choose a local system of coordinates (U, {θ1, . . . , θ6}) such that

J∂θj = ∂θj+1
, for j = 1, 3, 5,

where we write ∂θj for ∂
∂θj

. Then, in a neighbourhood of x = αe+βy ∈ S̃7,
we have a local system of coordinates (ϕ, θ1, . . . , θ6). The Kirchhoff frame
field is then given by the image of the local frame {∂ϕ, ∂θ1 , . . . , ∂θ6} by the
matrix (3.3):

σ0 = σ(ϕ,θ1,...,θ6)(y) = ∂ϕ

σj = σ(ϕ,θ1,...,θ6)(∂θj ) = Jy(∂θj ), for j = 1, . . . , 6.

Proposition 4.1. The existence of a complex structure on S6 would induce
a smooth torsion-free parallelism on the punctured sphere S̃7×.

Proof. It becomes easy to compute the brackets of the vector fields of
the Kirchhoff frame field at any point where it is smooth, ie. away from
the poles, since our assumption that J is integrable implies that, for any
j = 1, . . . , 6, Jy(∂θj ) = ±∂θk , for some 1 ≤ k ≤ 6:

[σ0, σj ] = [∂ϕ, Jy(∂θj )] = ±[∂ϕ, ∂θk ]

= 0,

[σj1 , σj2 ] = [Jy(∂θj1 ), Jy(∂θj2 )] = ±[∂θk1 , ∂θk2 ]

= 0, for 1 ≤ j1, j2 ≤ 6.

Here we are simply using the fact that local coordinate vector fields com-
mute. Replacing the above vanishings in Koszul’s formula (3.5), we find

T k
ij = 0, ∀1 ≤ i, j ≤ 7,
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i.e. the generalised Kirchhoff parallelism induced on S̃7 by an integrable
almost complex structure J on S6 is torsion-free wherever smooth.

In the light of Remarks 3.5–3.10, applied to S6 ⊂ S̃7, Proposition 4.1
motivates the following observations:

Remark 4.2. If the associated connection of σ can be shown to be com-
plete, this would trigger from Wolf’s Proposition 2.2 the conclusion that
the 7-sphere punctured at its poles, away from which the Kirchhoff paral-
lelism is indeed smooth, is a ‘Lie group’ (possibly quotiented by a discrete
subgroup). This rather unimpressive conclusion opens however the follow-
ing analytical programme.

Remember that we only need that the torsion functions of a given
parallelism be constant, not necessarily vanishing, in order to guarantee
a Lie group structure on a simply-connected manifold. If this could be
achieved from the Kirchhoff parallelism on S̃7, under the initial assumption
of an integrable J on S6, then by contradiction Hopf’s problem would
be answered in the negative. Thus, first, one might try to extend this
torsion-free parallelism, along with its complete connection, over the poles
with nonconstant torsion concentrated around the polar caps. Then, one
may hope to deform it homotopically, eg. by a suitable geometric flow,
towards a smooth limit with constant torsion everywhere. As a teaser,
let us mention that Shi-type estimates for a general flow of {e}-structures
have a particularly amenable form, cf. [8, Remark 1.35]. In any event, this
would still be, of course, a very challenging problem.

Remark 4.3. Due to the nature of H-spaces, as we will discuss below, it
suffices to achieve through this process a continuous associative multipli-
cation on S7, in order to obtain a contradiction.
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4.2 H-space structures on spheres

We can rephrase Kirchhoff’s theorem as follows: if Sn admits an almost
complex structure J , then Sn+1 is a an H-space, ie. it admits a continuous
multiplication with a two-sided identity element. This is trivial at glance
because a parallelisable sphere is well-known to be an H-space [1]. The
point is that the induced multiplication on Sn+1 is written explicitly in
terms of J .

In what follows we keep the notation of Theorem 3.1. Let J be an
almost complex structure on S6, and let σ̃ be the global frame given by
Kirchhoff’s theorem. Define the map:

m : S7 × S7 −→ S7, m(x, y) := σ̃x (y) /∥σ̃x (y) ∥.

It follows from Kirchhoff’s theorem this map is a well defined multiplication
on S7 with e as two-sided identity. Thus every almost complex structure
J on S6 defines an H-space structure on S7. Moreover, recall that we can
always assume the given almost complex structure J is compatible with
some Riemannian metric g on S7. Then, using Remark 3.6, we can define
a multiplication on R8:

m̂ : R8 × R8 −→ R8, m̂(x, y) := σ̃x (y) ,

which satisfies the norm product rule ∥m̂(x, y)∥2 = ∥x∥2∥y∥2, and has
a two-sided identity e. The multiplication m̂ restricts to the H-space
multiplication m on S7. By a celebrated theorem of Adams [1], the only
spheres that admit an H-space structure are S0, S1, S3 and S7. However,
the next theorem by Wallace shows that S7 does not admit an associative
multiplication:

Theorem 4.4. [22, Corollary 2] If a compact manifold M admits a con-
tinuous, associative multiplication with identity, then it is a topological
group.

In fact, combining the above theorem with von Neumann’s solution of
Hilbert’s Fifth problem for compact groups [21] would imply that such M



Parallelisms on the 7-sphere 159

has actually a Lie group structure. A stronger result in this direction was
proved by James:

Theorem 4.5. [10, Theorem 1.4] There exists no homotopy-associative
multiplication on Sn unless n = 1 or 3.

As we have already seen in (2.5), the non-associativity of the octonions
causes the non-integrability of the almost complex structure induced on S6

by them. We would like to relate the (likely) non-existence of a complex
structure on S6 with the lack of associative – or more generally homotopy-
associative – multiplications on S7.

Question 2. Does the integrability of the almost complex structure J

imply the (homotopy-)associativity of the multiplications m and m̂?

Working with the multiplication m̂ instead of m has the advantage of
involving the additive structure of R8. As observed in Remark 2.8, we
employed the alternativity of the octonions in establishing the connection
between the Nijenhuis tensor and the associator. It would be reasonable
to expect the answer to Question 2 to involve a similar requirement. In
this regard, it is interesting to mention the following result, by Norman:

Theorem 4.6. [17, Corollary 9.3] Any multiplication on a sphere satisfies
the Moufang law, up to homotopy:

(x · y) (z · x) = (x (y · z))x.

Remark 4.7. In case J be the almost complex structure of S6 induced by
the octonions, Question 1 is related to Question 2. This happens because
J comes a priori from an ambient multiplication of R8, in other words, if
we interpret J as a map J̃ : S6 −→ SO(8,R), x 7−→ J̃x it extends as a
linear map between R8 and SO(8,R).

Remark 4.8. However, in the general case of an almost complex structure
on S6, Questions 1 and 2 stand at different levels and are not immediately
linked. Question 1 asks whether it is possible to integrate the parallelism,
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i.e., if there exists a multiplication the differential of which essentially
induces the global frame. Question 2 asks directly if the multiplication
induced by the global frame is (homotopy-)associative. This opens the
possibility to combine analytic-homotopic tools, such as geometric flows,
to study the problem in the same vein of Remark 4.2.
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