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1 Introduction

Killing forms appeared as a generalization of Killing vector fields; they
were introduced by Yano in 1951 (see [31]). Yano considered a p-form
defined on a Riemannian manifold (M, g) and extended the notion of
Killing vector field to this case, that is, a p-form η is Killing if it satisfies
the following equation

∇η(X1, X2, . . . , Xp+1) +∇η(X2, X1, . . . , Xp+1) = 0, (1.1)
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for all vector fields Xi, where ∇ denotes the Levi-Civita connection asso-
ciated to the metric g. In 1968, Tachibana renamed (1.1) in [29] as the
Killing-Yano equation. One year later in [30], he extended the concept of
Killing 2-forms to conformal Killing 2-forms. In the same year, Kashiwada
continued this generalization and defined conformal Killing (or conformal
Killing-Yano) p-forms for p ≥ 2 ([19]). A p-form η is called conformal
Killing if it exists a (p − 1)-form θ such that the following equation is
satisfied

∇η(X1, X2, . . . , Xp+1) +∇η(X2, X1, . . . , Xp+1) = 2g(X1, X2)θ (X3, . . . , Xp+1)

−
p+1∑
i=3

(−1)ig (X1, Xi) θ
(
X1, X3, . . . , X̂i, . . . , Xp+1

)
−

p+1∑
i=3

(−1)ig (X2, Xi) θ
(
X2, X3, . . . , X̂i, . . . , Xp+1

)
(1.2)

for X1, X2, . . . , Xp+1 vector fields and where X̂i means that Xi is omitted.
We will denote conformal Killing or conformal Killing-Yano forms by CKY
for short, similarly KY will mean Killing or Killing-Yano. We will call strict
CKY to CKY forms which are not KY.

An intuitive example of Killing 2-forms are given by nearly Kähler man-
ifolds (M, g, J) whose fundamental 2-form ω given by ω(X,Y ) = g(JX, Y )

is Killing. Similarly, the canonical 2-form of a Sasakian manifold is a strict
CKY 2-form ([27]).

The matematical development of these forms has taken interest in the
last 25 years, because they are considered a powerful tool in the general
relativity and supersymmetric quantum field theory. We recommend to
see [26] for more details.

In 2001, S. E. Stepanov motivated by the relationship between the
Maxwell equations of relativistic electrodynamics and conformal Killing
2-forms, studied the geometry of the space of conformal Killing p-forms
in [28]. Then in 2003, U. Semmelman in [27] introduced a different point
of view, he described a conformal Killing p-form as a form in the kernel
of a first order elliptic differential operator. Equivalently, a p-form η is
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conformal Killing on a n-dimensional Riemannian manifold (M, g) if it
satisfies for any vector field X the following equation

∇Xη =
1

p+ 1
X⌟dη − 1

n− p+ 1
X∗ ∧ d∗η, (1.3)

where X∗ is the dual 1-form of X, d∗ is the co-differential operator and
⌟ is the contraction. If η is co-closed, i.e. d∗η = 0, then (1.3) is equi-
valent to (1.1) and η is a Killing-Yano p-form. If instead η is closed, i.e.
dη = 0, then Semmelmann called such η a ∗-Killing p-form. Note that
the Hodge ∗-operator applied to a conformal Killing p-form determines a
conformal Killing (n− p)-form on M . In particular, the Hodge ∗-operator
interchanges closed and co-closed conformal Killing forms on M .

Semmelmann proved that a conformal p-form (p ̸= 3, 4) on a compact
manifold with holonomy G2 is parallel. He also showed that the vector
space of CKY p-forms on a n-dimensional connected Riemannian manifold
has dimension at most

(
n+2
p+1

)
; and there are no conformal Killing forms on

compact manifolds of negative constant sectional curvature.
For a compact simply connected symmetric space M , it was shown in

[7] that M admits a non-parallel Killing p-form, p ≥ 2, if and only if it is
isometric to a Riemannian product Sk × N , where Sk is a round sphere
and k > p. Another important result states that every Killing-Yano p-
form on a compact quaternion Kähler manifold is parallel for any p ≥ 2,
see [23]. In [24] a description of conformal Killing p-forms on a compact
Riemannian product was given, proving that such a form is a sum of forms
of the following types: parallel forms, pull-back of Killing-Yano forms on
the factors, and their Hodge duals.

In order to look for new examples of Riemannian manifolds (M, g)

carrying conformal Killing p-forms, a good tool is to consider the case
when the Riemannian manifold is a Lie group endowed with a left-invariant
metric. If we focus on left-invariant forms, then this invariant requirement
makes (1.1) (or (1.3)) look more tractable.

Most of the work done about invariant CKY forms is focused on 2-
forms on 2-step nilpotent Lie groups, flat Lie groups, and Lie groups with
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bi-invariant metrics. We briefly explain the main works by chronological
order.

In 2012, Barberis, Dotti and Santillán began to study left-invariant
Killing 2-forms on Lie groups with left-invariant metric in [6]. In 2015,
Andrada, Barberis and Dotti ([1]) worked on conformal Killing 2-forms
and obtained some results on Lie groups with bi-invariant metric, 2-step
nilpotent Lie groups and also gave a clasification of 3-dimensional metric
Lie algebras admitting a conformal Killing 2-form. In the years 2018-2019,
Andrada and Dotti continued with invariant CKY 2-forms on Lie groups
in [3]. They showed a new construction of metric Lie algebras carrying
strict conformal Killing 2-forms (CKY not KY). They fully analyzed the
case of almost abelian Lie algebras admitting CKY 2-forms. Then in [4],
they studied Killing 2-forms on 2-step nilpotent Lie groups, proving that
non-degenerate Killing 2-forms appear only on complex 2-step nilpotent
Lie groups with a left-invariant metric.

In 2019 del Barco and Moroianu described Killing 2- and 3-forms on 2-
step nilpotent Lie groups in [10]. They used the de Rham decomposition
and reduced the problem to analyzing only the irreducible components.
Their work generalizes some results in [4]. In particular, they showed that
Killing 2-forms are in correspondence with bi-invariant orthogonal com-
plex structures. In that work they also studied Killing 3-forms, and they
proved that left-invariant Killing 3-forms on irreducible 2-step nilpotent
metric Lie algebras only exist when the corresponding Lie group is natur-
ally reductive. They also looked into the vector space of invariant Killing
2-forms and 3-forms, and classified 2-step nilpotent Lie groups carrying
a left-invariant Riemannian metric with non-zero Killing 2-forms (up to
dimension 8) or Killing 3-forms (up to dimension 6).

In 2020, the same authors classified 2-step nilpotent Lie groups en-
dowed with left-invariant Killing forms of arbitrary degree when the cen-
ter of the group is at most 2-dimensional, see [12]. Then, in [13], they
proved that for 2-step nilpotent Riemannian Lie groups with dimension of
the center greater than or equal to 4, every conformal Killing 2- or 3-form
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is Killing. They also showed that the only 2-step nilpotent Lie groups
with center of dimension at most 3 admitting left-invariant strict CKY 2-
and 3-forms are the Heisenberg Lie groups and their trivial 1-dimensional
extensions endowed with any left-invariant metric and the simply connec-
ted Lie group corresponding to the free 2-step nilpotent Lie algebra on 3
generators, with a particular 1-parameter family of metrics.

Finally, in [18] we presented genuine examples of 5-dimensional Lie
groups carrying invariant conformal Killing 2-forms which are not a linear
combination of a KY 2-form and the Hodge dual of KY forms. We also
showed a classification of 5-dimensional metric Lie algebras that admits
conformal Killing 2-forms when the dual of the 1-form θ in (1.2) is in the
center or when it is orthogonal to the center.

Before closing the introduction, let us to introduce the notation for
CKY forms in this invariant setting.

1.1 Left-invariant CKY forms on Lie groups

Let G be a Lie group and g its Lie algebra of left-invariant vector fields.
It is known that there is a linear isomorphism between g and TeG where
e is the identity in G. Consider a left-invariant Riemannian metric g on
G, that is L∗

ag = g, where La denotes the left translation by a ∈ G. There
is a well-known correspondence between left-invariant metrics on G and
inner products on g ∼= TeG defined as ⟨·, ·⟩ := ge(·, ·).

Every left-invariant metric g defines a unique Levi-Civita connection
∇ on G, which is left-invariant and for every x, y, z ∈ g it has the following
simple expression:

2⟨∇xy, z⟩ = ⟨[x, y], z⟩ − ⟨[y, z], x⟩+ ⟨[z, x], y⟩. (1.4)

In particular, it is easy to see that for any x ∈ g, the endomorphism
∇x : g → g is skew-symmetric with respect to ⟨·, ·⟩.

A p-form ω on G is left-invariant if L∗
aω = ω for all a ∈ G, and

every left-invariant p-form ω can be identified with an element in Λpg∗.
Conversely, every element in Λpg∗ defines a left-invariant p-form on G.
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Since the differential operator d and the co-differential operator d∗ pre-
serve left-invariance, they define linear operators on Λ∗g∗, which we denote
with the same symbols for simplicity. In particular, the linear operator
d : Λpg∗ → Λp+1g∗ is the Lie algebra differential, and d∗ is the metric
adjoint of d as soon as g is unimodular. Therefore, an element ω ∈ Λpg∗

corresponds to a left-invariant conformal Killing form on (G, g) if and only
if

∇xω =
1

p+ 1
x ⌟ dω − 1

n− p+ 1
x∗ ∧ d∗ω, (1.5)

for all x ∈ g, where x⌟ denotes the contraction with the vector x, and x∗

denotes the 1-form dual to x. We have that a Killing p-form is a co-closed
p-form satisfying (1.5). Similarly, a ∗-Killing p-form is a closed p-form
satisfying (1.5). Moreover, a strict CKY p-form is a CKY p-form which is
not Killing. The space of solutions of the CKY equation (1.5) is denoted
by CKp(g, ⟨· , · ⟩), similarly we have Kp(g, ⟨· , · ⟩) and ∗Kp(g, ⟨· , · ⟩) the space
of Killing p-forms and the space of ∗-Killing p-forms respectively.

2 CKY 2-forms in metric Lie algebras

In this section we will recall the most relevant results about CKY
2-forms contained in [1, 3, 6]. Consider a left-invariant CKY 2-form ω

on a Lie group G endowed with a left-invariant metric g, it induces an
endomorphism T on G defined by ω(X,Y ) = g(TX, Y ) for X,Y vector
fields, then T is also left-invariant. In particular, this induces a skew-
symmetric endomorphism on g, which we still denote by T . Thus, the
study of left-invariant CKY 2-form is reduced at the Lie algebra level
(g, ⟨·, ·⟩), where ⟨·, ·⟩ is the inner product induced by g.

Moreover, CKY equation (1.5) is equivalent to the following expression
at the Lie algebra level.

⟨(∇xT ) y, z⟩+ ⟨(∇yT )x, z⟩ = 2⟨x, y⟩θ(z)− ⟨y, z⟩θ(x)− ⟨x, z⟩θ(y), (2.1)

for some θ ∈ g∗. A skew-symmetric endomorphism T that satisfies (2.1)
will be called a conformal Killing-Yano (CKY) tensor on g. We denote by
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ξ the unique element of g such that

θ(x) = ⟨ξ, x⟩ (2.2)

for all x ∈ g, and we will refer to ξ as the vector associated to θ. Moreover,
if g is unimodular, then ξ ∈ g′ = [g, g] as a consequence of [1, Lemma 2.3].
Note that a strict CKY tensor is equivalent to requiring that θ ̸= 0.

In order to find strict examples of 2-forms CKY, the authors in [3]
studied some properties of those metric Lie algebras carrying such 2-forms.
In [3, Proposition 4.1] they proved that the composition θ ◦ T = 0. As a
consequence they obtained that Tξ = 0, see [3, Corollary 4.2], and showed
a strong algebraic restriction to the existence of a strict CKY tensor.

Theorem 2.1. [3, Theorem 4.3] Let T be a conformal Killing Yano tensor
on the metric Lie algebra (g, ⟨·, ·⟩) If θ ̸= 0 then dim g is odd and T |ξ⊥ :

ξ⊥ → ξ⊥ is a linear isomorphism. Moreover ξ⊥ is stable by the operator
adξ.

It follows from the above theorem that if the dimension of g is even,
then T is KY, see [3, Corollary 4.4]. In particular, in the 4-dimensional
case, any CKY tensor is parallel, according to [3, Corollary 4.5]. This last
fact has been proved in a general way in [2], where it is showed that every
4-dimensional Riemannian manifold with a CKY 2-form of constant norm
must be parallel.

The next theorem, which is one of the main results in [3], allows us
to construct examples of (n + 1)-dimensional metric Lie algebras admit-
ting CKY tensors starting with a KY tensor with some properties in a
n-dimensional metric Lie algebra.

Theorem 2.2. [3, Theorem 4.6 and Theorem 4.8] Let S be an invertible
KY tensor on the metric Lie algebra (h, [·, ·], ⟨·, ·⟩) such that the 2-form
µ(x, y) = −2⟨S−1x, y⟩ is closed. Set g := h⊕µ Rξ the central extension of
h by the 2-form µ, that is the vector space h ⊕ Rξ equipped with the Lie
bracket [·, ·]µ defined by

[h, ξ]µ = 0, [x, y]µ = [x, y] + µ(x, y)ξ, x, y ∈ h; (2.3)
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the inner product on g is defined by extending the one on h by ⟨h, ξ⟩ = 0,
with |ξ| > 0 arbitrary. Then, the endomorphism T of g given by T |h = S

and Tξ = 0 is a strict CKY tensor on g.
Conversely, any metric Lie algebra (g, ⟨·, ·⟩) admitting a strict CKY

tensor T with associated vector ξ in the center is obtained in this way,
where h = ξ⊥, S := T |h, and the Lie bracket on h is the h-component of
the Lie bracket on g. Moreover, the center of g is generated by ξ.

The first natural examples can be constructed using 4-dimensional met-
ric Lie algebras admitting a invertible Killing (thus parallel) tensor S. In
[17, Section 3] a full classification of all non-abelian 4-dimensional metric
Lie algebras (h, ⟨·, ·⟩) that carry parallel skew-symmetric endomorphisms
was made. Moreover, this classification is up to isometric isomorphisms
and for each fixed metric Lie algebra all parallel skew-symmetric tensors
are given up to equivalence, where, two parallel skew-symmetric tensors H1

and H2 are said to be equivalent if there exists an isometric isomorphism
of Lie algebras such that

φ : g → g such that φH1 = H2φ. (2.4)

Notice that an invertible parallel tensor induces a 2-form µ as in The-
orem 2.2, which is always closed, see [3, Corollary 2.2]. Using the classi-
fication of invertible parallel tensors in dimension 4 and Theorem 2.2, we
constructed 5-dimensional metric Lie algebras carrying a CKY tensor in
[18, Theorem 3.2]. Moreover, a classification of these 5-dimensional metric
Lie algebras was obtained. In Section 3 we exhibit this classification.

2.1 Bi-invariant metrics

We recall that a bi-invariant metric on (G, g) is a metric which is
invariant under left and right translations. It was proved in [22] that a
left-invariant metric on a connected Lie group is bi-invariant if and only
if the linear transformation adx is skew-symmetric for all x ∈ g. It is also
known that a compact Lie group always admits a bi-invariant metric. We
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summarize next the most relevant results of CKY tensors on Lie groups
admitting a bi-invariant metric.

Lemma 2.3. [6, Lemma 4.6] Let (G, g) be a Lie group with a bi-invariant
metric. If T is a skew-symmetric tensor on g, then T is a KY tensor if
and only if T |[g,g] = 0. In particular, a compact semisimple Lie group has
no non trivial KY tensor.

In the particular case of SU(2), there is a stronger condition. Indeed,
there are no non-trivial KY tensors for any left-invariant metric on SU(2),
not just the bi-invariant one.

Theorem 2.4. [6, Theorem 4.7] For any left-invariant metric g on SU(2),
all Killing-Yano tensors are trivial.

In [1] the authors also consider compact Lie groups with a bi-invariant
metric and they prove a very strong restriction for the existence of a strict
CKY tensor.

Theorem 2.5. [1, Theorem 3.1] Let G be a n-dimensional compact Lie
group equipped with a bi-invariant metric g. If there exists a CKY tensor
which is not KY then n = 3 and g is isomorphic to su(2).

2.2 Flat Lie groups

Given a Lie group G, an inner product ⟨·, ·⟩ on its Lie algebra g induces
a left-invariant flat metric if and only if:

1. there exists a decomposition g = a ⊕ u, where u is an abelian ideal
of g and its orthogonal complement a is an abelian subalgebra.

2. the endomorphisms adx are skew-symmetric for all x ∈ a.

In particular, g is unimodular. Moreover, ∇u = 0 for all u ∈ u, and
dim g′ ≥ 2 if g is not abelian.

In [3], the authors considered a CKY 2-forms on non-abelian Lie groups
with flat left-invariant metric, and they proved that every CKY tensor is
parallel.
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Lemma 2.6. [3, Lemma 6.1] Let G be a non-abelian Lie group with a
flat left-invariant metric. If T is a left-invariant CKY tensor, then T is
parallel.

Sketch of proof. The idea of the proof is to consider ξ as in (2.2), then
ξ ∈ g′ ⊂ u. If ξ ̸= 0, using the CKY condition (2.1) and the fact that
∇u = 0, it is easy to see that u = Rξ. This is not possible since dim g′ ≥ 2,
and therefore ξ = 0 and T is a KY tensor. To show that T is in fact
parallel, it reduces to check that (∇a)b = 0 for all a, b ∈ a, which is a
direct computation.

In [6], the authors had characterized invariant KY tensors on a flat
Lie group, which are in fact parallel, as a consequence of the last lemma.
Indeed, they proved in [6, Theorem 4.1] that on a Lie group endowed with a
flat left-invariant metric, a skew-symmetric endomorphism T on its metric
Lie algebra (g, ⟨·, ·⟩) is KY (thus parallel) if and only if [Tx, z] = [adx, T ] =

0 for all x, z ∈ a. In particular, any KY tensor on a (g, ⟨·, ·⟩) given by

T =

(
T1 0

0 T2

)
where T1 is a skew-symmetric endomorphism on a and T2 is a skew-
symmetric endomorphism on u such that conmutes with ady for all y ∈ a,
will produce an example of a parallel tensor on (g, ⟨·, ·⟩).

As an example, in [6, Proposition 4.5] the authors considered the Lie
algebra e(2)×e(2)1, where with the orthonormal basis {e1, e2, e3, e4, e5, e6}
such that

[e5, e1] = e2, [e5, e2] = −e1, [e6, e3] = e4, [e6, e4] = −e3.

In this case a parallel tensor can be written as

T =


0 −a

a 0

0 −b

b 0

0 −c

c 0

 , a, b, c ∈ R.

1e(2) is the Lie algebra of the isometry group of the Euclidean plane (see Table 3.1).
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2.3 Almost abelian Lie algebras

We recall that a Lie group G is said to be almost abelian if its Lie
algebra g has a codimension one abelian ideal. Such a Lie algebra will be
called almost abelian, and it can be written as g = Rf1 ⋉adf1

u, where u

is an abelian ideal of g, and R is generated by f1. Accordingly, the Lie
group G is a semidirect product G = R ⋉ϕ Rd for some d ∈ N, where the
action is given by ϕ(t) = et adf1 . We point out that an almost abelian Lie
algebra is nilpotent if and only if the operator adf1 |u is nilpotent.

Regarding the isomorphism classes of almost abelian Lie algebras, one
can show that (see [15]):

Lemma 2.7. Two almost abelian Lie algebras g1 = Rf1 ⋉adf1
u1 and

g2 = Rf2⋉adf2
u2 are isomorphic if and only if there exists c ̸= 0 such that

adf1 and c adf2 are conjugate.

In [3] the authors studied CKY 2-forms on almost abelian Lie groups,
and they proved that only in dimension 3 it is possible to find examples of
strict CKY 2-forms. Moreover, if it is a KY 2-form, then it is parallel.

Theorem 2.8. [3, Theorem 6.2] Let g be an almost abelian Lie algebra
equipped with an inner product and a CKY tensor T .

1. If θ ̸= 0 then dim g = 3, then g is isomorphic to h3 or to aff(R)×R,
where h3 is the 3-dimensional Heisenberg Lie algebra and aff(R) is
2-dimensional non abelian Lie algebra (see Table 3.1).

2. If θ = 0 then T is parallel.

3 CKY 2-forms on low dimension

In this section we exhibit the classifications of CKY 2-forms on non-
abelian metric Lie algebras in dimensions 3, 4, and 5.
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3.1 Dimension 3

We summarize the classification obtained in [1, Section 5] in the Table
3.1. In the last column of Table 3.1, the letter P means “parallel”. Note
also that CKY 2-forms in a 3-dimensional Lie algebra are ∗-dual of CKY
1-forms, which are equivalent to Killing vectors.

Lie algebra Lie bracket metric ω CKY, KY or P

e(2) [f3, f1] = f2, [f3, f2] = −f1 gt =

 t 0 0

0 t 0

0 0 t

, t > 0 f1 ∧ f2 P

su(2) [f1, f2] = f3, [f2, f3] = f1, [f3, f1] = f2 gt =

 1 0 0

0 1 0

0 0 t

, t > 0 f1 ∧ f2 CKY

sl(2,R) [f1, f2] = −f3, [f2, f3] = f1, [f3, f1] = f2 gt =

 1 0 0

0 1 0

0 0 t

, t > 0 f1 ∧ f2 CKY

h3 [f1, f2] = f3 gq =

 1 0 0

0 1 0

0 0 q2

, q > 0 f1 ∧ f2 CKY

aff(R)× R [f1, f2] = f2 g1,t =

 1 0 0

0 1 + t2 t

0 t 1

, t ≥ 0 f1 ∧ f2 P if t = 0

CKY if t ̸= 0

Table 3.1: CKY tensors on non abelian 3-dimensional Lie algebras

Remark 3.1. According to [1] all these 2-forms are closed and in the case
where ω is strict CKY, their Hodge dual are contact forms.

3.2 Dimension 4

In [3, Corollary 4.5], the authors concluded that any CKY tensor in
a 4-dimensional metric Lie algebra is parallel. This is also a consequence
of a more general result, [2, Lemma 3.7] shows that every CKY 2-form of
constant norm on a 4-dimensional Riemannian manifold is always parallel.
On the other hand, a classification of parallel tensors on 4-dimensional
metric Lie algebras has been done in [17]. We exhibit this classification in
the Table ??. The basis {e1, f1, e2, f2, ξ} is orthogonal and |ξ| = 1.
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Lie algebra Lie bracket metric parallel 2-form ω

R× e(2) [e1, e2] = −f2, [e1, f2] = e2 |ei|2 = |fi|2 = t a1e
1 ∧ f1 + a2e

2 ∧ f2

t > 0 a1, a2 ≥ 0

R2 × aff(R) [e2, f2] = f2 |ei|2 = |fi|2 = t a1e
1 ∧ f1 + a2e

2 ∧ f2

t > 0 a1, a2 ≥ 0

r′4,λ,0 with λ > 0 [e1, f1] = λf1, [e1, f2] = e2 |ei|2 = |fi|2 = t a1e
1 ∧ f1 + a2e

2 ∧ f2

[e1, e2] = −f2 t > 0 a1, a2 ≥ 0

aff(R)× aff(R) [e1, f1] = f1, [e2, f2] = f2

|ei|2 = t, |fi|2 = ts a1e
1 ∧ f1 + a2e

2 ∧ f2

s, t > 0, s ≤ 1 a1, a2 ≥ 0 if s < 1

a1 ≥ a2 ≥ 0 if s = 1

d4, 1
2

[e1, f1] = e2, [f2, e1] =
1
2e1 |ei|2 = |fi|2 = t c(e1 ∧ f1 − e2 ∧ f2)

[f2, f1] =
1
2f1, [f2, e2] = e2 t > 0 c > 0

d4,2 [e1, f1] = e2, [f2, e1] = e1 |ei|2 = |fi|2 = t c(e1 ∧ f2 + f1 ∧ e2)

[f2, f1] = −1
2f1, [f2, e2] =

1
2e2 t > 0 c > 0

d′
4, δ

2

with δ > 0 [e1, f1] = e2 [f2, e1] =
1
2e1 −

1
δf1 |ei|2 = |fi|2 = t c

(
e1 ∧ f1 − e2 ∧ f2

)
[f2, f1] =

1
δ e1 +

1
2f1, [f2, e2] = e2 t > 0 c ̸= 0

Table 3.2: Parallel 2-forms on non-abelian 4-dimensional Lie algebras. The 2-form ω is given
in the metric dual basis of 1-forms {e1, f1, e2, f2}.

3.3 Dimension 5

We studied in [18, Theorem 3.2] 5-dimensional metric Lie algebras
admitting CKY 2-form in two cases, namely when ξ ∈ z (see (2.2)) and
thus, the dimension of the center z is one, or when dim z > 1.

In the first case we used Theorem 2.2 and the classification of parallel
skew-symmetric tensors made in Table ?? to construct 5-dimensional met-
ric Lie algebras with 1-dimensional center admitting a CKY 2-form whose
co-differential lies in the dual of the center, that is, ξ ∈ z.

Theorem 3.2. [18, Theorem 3.2] Let (g, ⟨· , · ⟩) be a 5-dimensional metric
Lie algebra. If (g, ⟨· , · ⟩) admits a strict CKY tensor T with associated
vector ξ ∈ z, then (g, ⟨· , · ⟩) is isometrically isomorphic to one and only
one of the metric Lie algebras in Table 3.3. Moreover, the CKY tensor
T is uniquely determined, up to scaling, by the corresponding metric Lie
algebra and it is given in the last column of Table 3.3 (as a 2-form).

Note that all these Lie algebras in Table 3.3 admit a Sasakian struc-
ture for some choice of the parameters. Indeed, these Sasakian structures
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Lie algebra Metric strict CKY 2-form ω

(g3, ⟨· , · ⟩t,a1,a2)

[E1, E2] = −E3

[E1, E3] = E2

[E1, E4] = −E5

[E2, E3] = −E5

a1, a2, t > 0



t 0 0 0 0

0 t 0 0 0

0 0 t 0 0

0 0 0
a21t

a22
0

0 0 0 0 4t2

a22


a21t
a2

e14 + a2te
23

(g2, ⟨· , · ⟩t,a1,a2)

[E1, E2] = E2 − E5

[E3, E4] = −E5

a1, a2, t > 0



t 0 0 0 0

0 t 0 0

0 0 a21t 0 0

0 0 0 t
a22

0

0 0 0 0 4t2

a22


ta2e

12 +
ta21
a2

e34

(g
1
λ
8 , ⟨· , · ⟩t,a1,a2)

[E1, E4] = −E1 − E5

[E2, E3] = −E5

[E2, E4] =
1
λE3

[E3, E4] = − 1
λE2

λ, a1, a2, t > 0


(a1λa2

)2t 0 0 0 0

0 t 0 0

0 0 t 0 0

0 0 0 t
λ2 0

0 0 0 0 4t2

a22

 −a21t
a2

e14 − a2te
23

(g4, ⟨· , · ⟩s,t,a1,a2)

[E1, E2] = E2 − E5

[E3, E4] = E4 − E5

t, s > 0, s ≤ 1

a1, a2 > 0 if s < 1, or
a1 ≥ a2 > 0 if s = 1


t 0 0 0 0

0 ta21 0 0 0

0 0 ts 0 0

0 0 0
ta22
s 0

0 0 0 0 4t2

 ta21e
12 + ta22e

34

(g5, ⟨· , · ⟩t,c)

[E1, E2] = E3 − E5

[E1, E4] = −1
2E1

[E2, E4] = −1
2E2

[E3, E4] = −E3 + E5

t, c > 0


t 0 0 0 0

0 t 0 0 0

0 0 t 0 0

0 0 0 t 0

0 0 0 0 4t2

c2

 tc(e12 − e34)

(g6, ⟨· , · ⟩t,c)

[E1, E2] = E3

[E1, E4] = −2E1

[E2, E3] = −E5

[E2, E4] = E2

[E3, E4] = −E3

t, c > 0


t+ 4t2

c2
0 0 0 4t2

c2

0 t 0 0 0

0 0 t 0 0

0 0 0 4t 0
4t2

c2
0 0 0 4t2

c2

 tc(2e14 + e23)

(gδ7, ⟨· , · ⟩t,c)

[E1, E2] = E3 − E5

[E1, E4] = − δ
2E1 + E2

[E2, E4] = −E1 − δ
2E2

[E3, E4] = −δE3 + δE5

δ, t > 0, c ̸= 0


t 0 0 0 0

0 t 0 0 0

0 0 t 0 0

0 0 0 δ2t 0

0 0 0 0 4t2

c2

 tc(e12 − δe34)

(h5, ⟨· , · ⟩a1,a2)

[E1, E2] = E5

[E3, E4] = E5

a1, a2 > 0



a21 0 0 0 0

0 1
a22

0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 4
a22


a21
a2
e12 + a2e

34

Table 3.3: The metrics are given in the basis {E1, E2, E3, E4, E5} and the strict CKY 2-forms

are given in the metric dual basis {e1, e2, e3, e4, e5} where eij = ei ∧ ej .



A survey on conformal Killing forms on Lie groups 79

are obtained when the parallel skew-symmetric tensors on h = ξ⊥ are in
addition complex structures (for example the Sasakian structure on g3 is
obtained with a1 = a2 = 1 in the first row of Table 3.3). Therefore, The-
orem 3.2 recovers the classification of Sasakian 5-dimensional Lie algebras
made in [5, Section 3.1].

In [5], the authors also showed that the simply connected Lie group
associated to the unimodular Lie algebra g3 admits lattices, that is, co-
compact discrete subgroups. The other unimodular Lie algebra in Table
3.3 is h5, and it is known that the Heisenberg Lie group H5 with Lie algebra
h5 also admits lattices.

We also studied the space of solutions of CKY 2-forms CK2(g, ⟨· , · ⟩)
for those metric Lie algebras. From Theorem 3.2 we have that there is
only one strict CKY 2-form, up to scaling. Indeed, any non-zero multiple
of a strict CKY tensor is again a strict CKY tensor. In the next result,
we showed that each metric Lie algebra in Table 3.3 does not admit any
other CKY 2-forms, including KY 2-forms and strict CKY 2-forms whose
co-differential is not necessary in the dual of the center.

Theorem 3.3. [18, Theorem 6.2] Let (g, ⟨· , · ⟩) be a 5-dimensional metric
Lie algebra admitting a strict CKY 2-form, such that its co-differential
lies in the dual of the center, then K2(g, ⟨· , · ⟩) = 0 and ∗K2(g, ⟨· , · ⟩) =

CK2(g, ⟨· , · ⟩) is 1-dimensional. In particular, (g, ⟨· , · ⟩) does not admit
non-zero parallel tensors.

For the second case, that is dim z > 1, we classified in [18, Theorem
3.2] the 5-dimensional metric Lie algebras with center of dimension greater
than one admitting strict CKY tensors. In addition, we determined all pos-
sible CKY tensors on these metric Lie algebras. In particular, we exhibited
the first examples of CKY 2-forms on metric Lie algebras which do not
admit any Sasakian structure.

It is easy to see that if a metric Lie algebra admits a strict CKY tensor
and dim z > 1, then ξ ⊥ z [18, Lemma 4.1]. Moreover, if g is 5-dimensional,
then dim z ≤ 3. We proved in [18, Lemma 5.1] that a 5-dimensional metric
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Lie algebra (g, ⟨· , · ⟩) with dim z = 3 does not admit any strict CKY tensor.
Therefore, the only interesting case is dim z = 2. In this case we showed
that:

Theorem 3.4. [18, Theorem 5.4] Let (g, ⟨· , · ⟩) be a 5-dimensional metric
Lie algebra with dim z > 1. If (g, ⟨· , · ⟩) admits a strict CKY tensor, then
(g, ⟨· , · ⟩) is isometrically isomorphic to one and only one of the metric Lie
algebras in Table 3.4. Moreover, the CKY tensor is uniquely determined
by the metric, up to scaling.

Lie algebra Metric strict CKY 2-form

(L5,9, ⟨· , · ⟩r) :

[X,E] = Z1, [Y,E] = Z2,

[X,Y ] = E, r > 0


r2 0 0 0 0

0 r4 0 0 0

0 0 r4 0 0

0 0 0 1 0

0 0 0 0 1


6r3z1 ∧ z2

−2r(z1 ∧ x∗ + z2 ∧ y∗)

+4
rx

∗ ∧ y∗

(
R2 × su(2), ⟨· , · ⟩r,s

)
:

[E,X] = Y,

[X,Y ] = E

[Y,E] = X,

a4 =
s2−r2

s , s > r > 0



1
a24

0 0 0 0

0 1 0 r√
a34s

0

0 0 1 0 − r√
a34s

0 r√
a34s

0
r2+a24
a34s

0

0 0 − r√
a34s

0
r2+a24
a34s



2(s2+2r2)
r2s

z1 ∧ z2−
6r

(s2−r2)3/2
(z1 ∧ y∗ + z2 ∧ x∗)

−2(s2+2r2)
s(s2−r2)3

x∗ ∧ y∗

(
R2 × sl(2,R), ⟨· , · ⟩r,s

)
:

[E,X] = Y

[X,Y ] = −E

[Y,E] = X

a4 =
s2−r2

s , r > s > 0



1
a24

0 0 0 0

0 1 0 r√
|a4|3s

0

0 0 1 0 r√
|a4|3s

0 r√
|a4|3s

0
r2+a24
|a4|3s 0

0 0 r√
|a4|3s

0
r2+a24
|a4|3s



2(s2+2r2)
r2s

z1 ∧ z2+
6r

(r2−s2)3/2
(z1 ∧ y∗ − z2 ∧ x∗)

−2(s2+2r2)
s(s2−r2)3

x∗ ∧ y∗

Table 3.4: Notation: {e, z1, z2, x∗, y∗} is the metric dual basis of {E,Z1, Z2, X, Y }.

Sketch of proof. Let (g, ⟨· , · ⟩) a 5-dimensional metric Lie algebra with cen-
ter z of dimension 2 admitting an strict CKY tensor T . We can decompose
g = z ⊕ z⊥ with ξ ∈ z⊥, and ξ⊥ = z ⊕ (z⊥ ∩ ξ⊥). Consider the operators
T |ξ⊥ and adξ |ξ⊥ according to this decomposition. Then, taking an or-
thonormal basis of ξ⊥ we have that the Lie brackets on g are encoded in a
3× 5 matrix (since dim z = 2) and T can be written as a skew-symmetric
matrix determined by 6 variables (since Tξ = 0).
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After solving the CKY equation we reduce the structure constants to
only two parameters r, s, and T is uniquely determined by r, s. Equival-
ently, (g, ⟨· , · ⟩) is isometrically isomorphic to one and only one (gr,s, ⟨· , · ⟩)
with Lie brackets

[ξ, x] = rz1 + a4y, [ξ, y] = rz2 − a4x, [x, y] = sξ, (3.1)

where r, s > 0, and a4 =
s2−r2

s . The 2-form associated to T is given by

ω =
2(s2 + 2r2)

r2s
z1 ∧ z2 +

2

r
(z1 ∧ x∗ + z2 ∧ y∗) +

4

s
x∗ ∧ y∗.

It can be shown that gr,s are unimodular for all r, s and (gr,s, ⟨· , · ⟩)
are pairwise non-isometrically isomorphic for r, s > 0. Finally, we consider
three cases in order to get the final reduction. Indeed, if r = s we obtain
that (gr,s, ⟨· , · ⟩) is isometrically isomorphic to (L5,9, ⟨· , · ⟩r). Simillarly, if
s > r > 0 we obtain (R2 × su(2), ⟨· , · ⟩r,s) and if r > s > 0 we obtain
(R2 × sl(2,R), ⟨· , · ⟩r,s).

It is important to point out that these 5-dimensional metric Lie al-
gebras exhibited in Theorem 3.4 represent the first explicit examples of
Lie algebras carrying strict CKY 2-forms and not admitting any Sasakian
structure. Note also that L5,9 is a 3-step nilpotent Lie algebra.

Moreover, the simply connected Lie groups associated to the Lie algeb-
ras in Table 3.4 admit lattices, and therefore they can be used to produce
examples of compact manifolds admitting invariant CKY tensors. Indeed,
lattices in the simply connected Lie group associated to L5,9 were studied
in [21]. Therefore, any nilmanifold obtained as a quotient of the simply
Lie group connected Lie group with Lie algebra L5,9 admits a CKY tensor
induced by T , but does not admit any Sasakian structure, since it is shown
in [9] that the only nilmanifolds admitting a Sasakian structure (not ne-
cessarily invariant) are quotients of the Heisenberg group.

For the compact manifold T2×S3 obtained from R2×su(2,R), where S3

is the 3-dimensional sphere and T2 is the 2-dimensional torus, we know that
this Lie group does admit Sasakian structures (which are non-invariant),
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see [8]. Finally, the Lie group SL(2,R) × R2 admits lattices (see [25]),
but it is not known in this case if the induced compact manifolds admit
non-invariant Sasakian structures.

On the other hand, for those 5-dimensional metric Lie algebras ex-
hibited in Theorem 3.4 we also analyzed the space of solutions of CKY
2-forms CK2(g, ⟨· , · ⟩) and we obtained:

Theorem 3.5. [18, Theorem 6.5] For any metric Lie algebras (g, ⟨· , · ⟩) in
Theorem 3.4, we have that K2(g, ⟨· , · ⟩) = 0 and ∗K2(g, ⟨· , · ⟩) = 0 whereas
CK2(g, ⟨· , · ⟩) is 1-dimensional.

Sketch of the proof. Let (g, ⟨· , · ⟩) be any metric Lie algebra from Theorem
3.4. We proved in that theorem that there is only one, up to scaling, strict
CKY 2-form for (g, ⟨· , · ⟩). Moreover, it is not hard to see that this strict
CKY 2-form is never closed, thus it is not ∗-Killing. To complete the proof
we need to see that (g, ⟨· , · ⟩) does not admit any KY tensor.

Assume T is a KY tensor on (g, ⟨· , · ⟩) thus T preserves z and z⊥ and
therefore T induces a KY tensor on h = gr,s/z which is isomorphic to
h3, su(2) or sl(2,R). This contradicts the fact that any 3-dimensional
metric Lie algebra admitting a KY 2-form is isomorphic to R × aff(R)
or e(2) according to Table 3.1.

4 Nilpotent Lie groups

If we restrict ourselves to nilpotent Lie groups, we have the following
important result about the geometry of nilpotent Lie groups. It states that
the de Rham decomposition of (N, g) corresponds to the decomposition of
(n, ⟨· , · ⟩) into irreducible orthogonal ideals. It was shown first in [11,
Corollary A.4] for 2-step nilpotent Lie groups, and it was generalized later
in [12] to nilpotent Lie groups of arbitrary nilpotency degree.

Theorem 4.1. [12, Theorem 2.4] Let (N, g) be a connected and simply
connected nilpotent Lie group endowed with a left-invariant Riemannian
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metric, and consider its de Rham decomposition

(N, g) = (N0, g0)× (N1, g1)× · · · × (Nr, gr),

where (N0, g0) is the Euclidean space and (Ni, gi) are irreducible Rieman-
nian manifolds. Then each (Ni, gi), with i = 1, . . . , r, is (isometric to) a
connected, simply connected irreducible nilpotent Lie group endowed with a
left-invariant metric. In particular, the Lie algebra n of N is a direct sum
of orthogonal ideals

(n, ⟨· , · ⟩) = (a, ⟨· , · ⟩0)⊕
m⊕
i=1

(ni, ⟨· , · ⟩i), (4.1)

where a = TeN0 is abelian and ni = TeNi is nilpotent, non-abelian and
irreducible for i = 1, . . . , r.

We also recall two results regarding left-invariant KY p-forms on Lie
groups. The first proposition is a Lie group analogue of a result proved
in [24] about the decomposition of Killing forms on a product of compact
Riemannian manifolds. Let (N1, g1), (N2, g2) be Lie groups endowed with a
left-invariant metric and consider N = N1×N2 endowed with the product
metric. Then n = n1 ⊕ n2 is an orthogonal direct sum of ideals, where
ni = TeN . Let α =

∑
l αl with αl ∈ Λln∗1 ⊗ Λk−ln∗2 for l = 0, . . . , k, then

we have:

Proposition 4.2. [12, Proposition 3.2] A left-invariant k-form α is a
Killing form on (N, g) if and only if α0 and αk are Killing forms on N2

and N1 respectively, and αl is a parallel form on N for each l = 1, . . . , k−1.

The last result was proved first in [10] for left-invariant Killing 2-and
3-forms on 2-step nilpotent Lie groups and extended later in [12] to forms
of arbitrary degree and to arbitrary Lie groups.

The second result is about parallel forms and shows that:

Proposition 4.3. [12, Proposition 3.3] Let (N, g) be a de Rham irreducible
connected and simply connected (non-abelian) nilpotent Lie group endowed
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with a left-invariant metric. Then the only parallel differential forms on
(N, g) are the constants and the constant multiples of the volume form. In
particular, (N, g) does not admit Kähler structures.

As a consequence, it is shown the following decomposition result for
left-invariant Killing forms on nilpotent Lie groups.

Corollary 4.4. [12, Corollary 3.5] Every left-invariant Killing form on a
connected and simply connected nilpotent Lie group is the sum of Killing
forms on its de Rham factors, and a left-invariant parallel form. The
latter is a linear combination of wedge products of volume forms of some
of the irreducible de Rham factors and of any left-invariant form on the
flat factor.

4.1 2-step nilpotent metric Lie algebras

A 2-step nilpotent Lie algebra n is a non-abelian Lie algebra such that
ad2x = 0 for all x ∈ n. Equivalently, n is 2-step nilpotent if its commutator
n′ = [n, n] is non-trivial and is contained in the center z of n ([n, [n, n]] = 0).
Let consider an inner product ⟨· , · ⟩ on n, then n can be written as n = z⊕v,
where v is the orthogonal complement of the center.

Let’s consider an inner product ⟨· , · ⟩ in n, then each z ∈ z defines a
skew-symmetric endomorphism j(z) : v → v given by

⟨j(z)x, y⟩ = ⟨z, [x, y]⟩, (4.2)

for all x, y ∈ v. Since n′ ⊂ z, the Lie algebra structure of n is completely
determined by the map j : z → so(v).

Let N be a simply connected Lie group corresponding to a 2-step nil-
potent Lie algebra n, and g the left-invariant metric of N induced by ⟨· , · ⟩.
The Levi-Civita connection on (N, g) defines a linear map ∇ : n → so(n)

which by Koszul’s formula (1.4) satisfies

∇xy =
1

2
([x, y]− ad∗x y − ad∗y x),
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for all x, y ∈ n, where ad∗x denotes the adjoint of adx with respect to
g. Now, using the endomorphism j in (4.2), we have that the covariant
derivative satisfies

{ ∇xy = 1
2 [x, y], for x, y ∈ v

∇xz = ∇zx = −1
2j(z)x, for x ∈ v, z ∈ z

∇zz
′ = 0, for z, z′ ∈ z.

(4.3)

In [10] the authors proved that v =
∑

z∈z Im j(z). The linear map j :

z → so(v) is injective if and only if the commutator of n coincides with its
center, n′ = z. On the other hand, if a = ker j and a⊥ is its orthogonal
complement in z, then a is an abelian ideal of n and n0 := v ⊕ a⊥ is a
2-step nilpotent ideal of n, such that n′0 = n′ = a⊥. Since the Levi-Civita
connection is zero on elements from a, see (4.3), then a corresponds to the
flat Riemannian factor in the de Rham decomposition on N .

4.1.1 Space of p-forms

Note, that the orthogonal decomposition of a 2-step Lie algebra n =

z⊕ v also induces a decomposition of the space of p-forms on n

Λpn∗ =

p⊕
k=0

Λkv∗ ⊗ Λp−kz∗. (4.4)

Moreover, we have a further direct sum decomposition of Λpn∗ as follows
Λpn∗ = Λp

evn∗ ⊕ Λp
oddn

∗ where

Λp
evn

∗ =
⊕
k even

Λkv∗ ⊗ Λp−kz∗ and Λp
oddn

∗ =
⊕
k odd

Λkv∗ ⊗ Λp−kz∗. (4.5)

If a p-form α ∈ Λp
evn∗, then α is of even v-degree, and if α ∈ Λp

oddn
∗, then

α is of odd v-degree. Correspondingly, we have the space of CKY (KY)
p-forms of even or odd v-degree, that is,

Kp
ev(n, ⟨· , · ⟩) ⊂ CKp

ev(n, ⟨· , · ⟩) ⊂ Λp
evn

∗, (4.6)

Kp
odd(n, ⟨· , · ⟩) ⊂ CKp

odd(n, ⟨· , · ⟩) ⊂ Λp
oddn

∗.
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It can be shown that the even and odd components of every CKY form
are again CKY, therefore we have the space of CKY p-forms decomposed
into its even and odd parts, that is,

CKp(n, ⟨· , · ⟩) = CKp
ev(n, ⟨· , · ⟩)⊕ CKp

odd(n, ⟨· , · ⟩). (4.7)

Similarly, we have a decomposition of the space of KY p-forms

Kp(n, ⟨· , · ⟩) = Kp
ev(n, ⟨· , · ⟩)⊕Kp

odd(n, ⟨· , · ⟩). (4.8)

5 Killing 2-forms on 2-step nilpotent Lie algebras

The work of KY 2-forms on 2-step nilpotent Lie algebras began in [6],
a few years later it continued with the works of Andrada-Dotti in [4] and
del Barco-Moroianu in [12]. We start by recalling the main result in [6]:

Theorem 5.1. [6, Theorem 3.1] Let T be a skew-symmetric endomorphism
on a 2-step nilpotent Lie algebra n endowed with an inner product ⟨·, ·⟩.
Then T is a KY tensor if and only if T preserves the center and for all
x, y ∈ v, it holds:

[Tx, y] = [x, Ty] (5.1)

T [x, y] = 3[Tx, y] (5.2)

or equivalently

adx ◦T = adTx =
1

2
[T, adx]

Notice that if T preserves the center, it will also preserves v. The con-
ditions in Theorem 5.1 can be described in terms of the maps jz introduced
in (4.2), that is, a skew-symmetric endomorphism T on a 2-step nilpotent
metric Lie algebra (n, ⟨· , · ⟩) is Killing if and only if 1

3jTz = T ◦jz = −jz◦T ,
for all z ∈ z. Now, using Theorem 5.1, the next result follows.

Corollary 5.2. [6, Corollary 3.3] If T is a KY tensor on the (2n + 1)-
dimensional Heisenberg Lie algebra, then T is trivial.
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For complex Heisenberg Lie groups we have the next example in com-
plex dimension 3 which appears in [6].

Example 5.3. Consider the 3-dimensional complex Heisenberg group N

given by upper triangular complex 3×3 matrices with 1′s in the diagonal.
Taking the standard left-invariant Riemannian metric g, then n admits an
orthonormal basis {e1, e2, e3, e4, e5, e6} such that

[e1, e3] = −[e2, e4] = e5, [e1, e4] = [e2, e3] = e6,

the standard complex structure is defined by Je2i−1 = e2i for i = 1, 2, 3

and J2 = −I. In [6, Corollary 3.4] it is shown that the following non-
degenerate tensor T is a Killing-Yano tensor

T =



0 −3a

3a 0

0 −a

a 0

0 −a

a 0


, a ∈ R.

Moreover, it is the only left-invariant KY tensor on (N, g, J), up to scaling.

Remark 5.4. The KY tensor above is not parallel. Indeed, any left-
invariant invertible KY tensor on a 2-nilpotent Lie group is not parallel.
This is a consequence of [3, Theorem 5.1], which states that there are no
skew-symmetric parallel tensor on a Lie algebra g satisfying g′ ∩ z ̸= {0}.

In [6], the authors also considered a lattice Γ in N (discrete and co-
compact subgroup) given by upper triangular complex 3×3 matrices with
integer coefficients and 1′s in the diagonal. The compact manifold Γ\N is
known as the Iwasawa manifold, endowed with the induced left-invariant
metric admits a KY tensor. Finally, they exhibited a natural extension of
the complex Heisenberg group to higher dimensions and proved that the
corresponding 2-step nilpotent Lie algebras admit KY tensors.
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Motivated by this example of KY tensors on the complex 3-dimesional
Heisenberg Lie group, Andrada and Dotti studied KY tensors on 2-step
nilpotent Lie algebras in [4]. First, as a consequence of Theorem 5.1 it is
proved in [4, Corollary 3.2] that there are no nearly Kähler structures on
2-step nilpotent Lie algebras. Then, they showed that it is enough to study
invertible KY tensors on 2-step nilpotent Lie groups, this is a consequence
of the following result.

Theorem 5.5. [4, Theorem 3.3] Let (n, ⟨·, ·⟩) be a 2-step nilpotent metric
Lie algebra. If T is a KY tensor on n then:

1. n is isometrically isomorphic to a direct product of ideals n = n1×n2,
where T |n1 = 0, n2 is T -invariant and T |n2 is a KY tensor on n2.

2. T is parallel if and only if n2 is abelian. Moreover if z = n′ then
T = 0.

Remark 5.6. In a 2-step nilpotent metric Lie algebra carrying a KY
tensor, Ker T and Im T are ideals of n.

In [4, Proposition 3.5] the authors showed that any complex 2-step
nilpotent Lie group N endowed with a left-invariant Hermitian metric
admits a non-parallel invertible KY tensor. Moreover, such a tensor is
constructed using the bi-invariant complex structures on N . Indeed, if we
decompose orthogonally z = a ⊕ n′, then one can define a KY tensor by
T |v = J |v, T |n′ = 3J |n′ , T |a = T0, where T0 : a → a is any skew-symmetric
isomorphism of a.

Conversely, they proved that the only 2-step nilpotent Lie groups with
a left-invariant metric carrying a non-parallel invertible left-invariant KY
2-form are the complex Lie groups.

Theorem 5.7. [4, Theorem 3.7] If a 2-step nilpotent Lie group N equipped
with a left-invariant metric g admits an invertible left-invariant KY tensor
then N is a complex Lie group, that is, there exists a bi-invariant complex
structure. Moreover g is Hermitian with respect to this complex structure.
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They also showed that for 2-step nilpotent complex Lie groups G arising
from graphs the space of KY tensors is 1-dimensional, see [4, Theorem 4.1].
Furthermore, if the complex Lie group is connected then any non-zero KY
tensor is invertible, thus non-parallel. In [10, Proposition 4.9] this was
generalized to any irreducible 2-step nilpotent metric Lie algebra. Indeed,
it is proved that an irreducible 2-step nilpotent metric Lie algebra admits
(up to sign) at most one bi-invariant orthogonal complex structure.

Note that [4, Proposition 3.5] and Theorem 5.7 give a correspondence
between invertible left-invariant KY tensor and bi-invariant complex struc-
tures on 2-step nilpotent Lie algebras. This result was also proved by del
Barco and Moroianu in a different way.

Proposition 5.8. [10, Proposition 4.7] On an irreducible 2-step nilpotent
metric Lie algebra, there is a one to one correspondence between non-zero
KY 2-forms (up to scaling), and orthogonal bi-invariant complex struc-
tures.

We will explain the main ideas of both approaches to prove Theorem
5.7 and Proposition 5.8.

Sketch of proof. In Theorem 5.7 the strategy is to use the spectral decom-
position associated to a given Killing tensor T . Indeed, taking into the
account the decomposition n = z ⊕ v = a ⊕ n′ ⊕ v, and the fact that T

preserves them, there exist an orthonormal basis {ei, fi} for i = 1, . . . , n

with 2n = dim v such that Tei = aifi, Tfi = −aifi, with 0 < a1 ≤ a2 ≤
· · · ≤ an.

Then, the authors defined vi = span{ei, fi}, thus v = ⊕n
i=1vi. Using,

(5.1) it can be shown that for all i, [vi, vi] = 0; for each i there exists j such
that [vi, vj ] ̸= 0, thus ai = aj ; [vi, vj ] is 2-dimensional and T -invariant.

It suggests to define the set of integers {ij : j = 1, . . . , r} such that
i1 = 1, ij = min{k : ak ̸= aij−1}, and Wj =

⊕
i:ai=aij

vi ⊂ v. Moreover,
v =

⊕
j Wj and [Wj ,Wk] = 0 if j ̸= k. Then, nj = Wj⊕[Wj ,Wj ] are ideals

of n, n′ =
⊕

j [Wj ,Wj ], and n′ ⊕ v = ⊕jnj . Therefore, n is decomposed
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into a direct sum of orthogonal T -invariant ideals

n = a⊕ n1 ⊕ · · · ⊕ nr.

Now, it can be defined a bi-invariant complex structure on n such that: J |a
is any almost complex structure compatible with ⟨· , · ⟩, J |Wj = 1

aij
T |Wj

and J |[Wj ,Wj ] =
1

3aij
T |[Wj ,Wj ].

On the other hand, the main idea in Proposition 5.8 is to use the
de Rham decomposition in Theorem 4.1 to reduce the problem to the
irreducible case. Using [10, Proposición 4.1] a Killing 2-form α on (n, ⟨· , · ⟩)
can be decomposed as α = α0 + α2, where α0, α2 are 2-forms on z and v,
respectively.

Let S be a symmetric endomorphism S associated to the Killing 2-
form α defined such that S preserves z and its ortogonal complement v,
and S|z = 1

9α0
2 and S|v = α2

2. The irreducibility condition on n, implies
S = λIdn. Moreover, λ < 0 if α ̸= 0. Then, the endomorphism J defined
by J |v = 1√

−λ
α2 and J |z = 1

3
√
−λ

α0 turns out to be a bi-invariant complex
structure on n.

Conversely, let J be an orthogonal bi-invariant complex structure on n.
The bi-invariance of J implies that it preserves the center and its ortogonal
complement. Defining α2 := J |v and α0 := 3J |z, α turns out to be a Killing
2-form.

Note that, in the argument of Andrada and Dotti, if we assume that n is
irreducible, then a = 0, r = 1 in the notation above, and the endomorphism
T (and J) can be written as

T =


0 −3aIp

3aIp 0

0 −aIq

aIq 0

 ,

where p = dim z and q = dim v, and therefore there is only one KY tensor,
up to scaling. This result was generalized by del Barco and Moroianu.
Indeed, exploiting the de Rham decomposition of (N, g) as in Theorem
4.1, they showed their main result concerning to KY 2-forms.
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Theorem 5.9. [10, Theorem 4.11] Let (N, g) be a simply connected 2-
step nilpotent Lie group endowed with a left-invariant Riemannian metric.
Then any invariant Killing 2-form is the sum of left-invariant Killing 2-
forms on its de Rham factors. Moreover, the dimension of the space of
left-invariant Killing 2-forms on (N, g), is

dimK2(N, g) =
d(d− 1)

2
+ r

where d is the dimension of the Euclidean factor in the de Rham decom-
position of (N, g), and r is the number of irreducible de Rham factors
admitting bi-invariant orthogonal complex structures.

As a consequence of this result a classification in low dimensions is
obtained.

Theorem 5.10. [10, Theorem 4.14] There exist exactly 14 isomorphism
classes of (non-abelian) 2-step nilpotent Lie algebras of dimension p ≤ 8

admitting an inner product for which the corresponding simply connected
Riemannian Lie group carries non-zero KY 2-forms: R2⊕h3, R3⊕h3, hC3 ,
R⊕ hC3 , R2 ⊕ h with h ∈ N5 or h ∈ N6.

In the above theorem Ni with i = 5, 6 denotes the set of isomorphism
classes of real 2-step nilpotent Lie algebras of real dimension i. Note that
dimN5 = 3 and dimN6 = 7.

6 Higher degree Killing forms on 2-step nilpotent
Lie algebras

We discuss here KY p-forms on 2-step nilpotent Lie algebras. We
split into two cases, namely p = 3 and then p > 3. The case p = 3 was
considered in [10], and its approach is the same as for 2-forms. The authors
first reduced the study of KY 3-forms on 2-step nilpotent Lie algebras to
the case where n has no abelian factor. Indeed, [10, Proposition 5.3] shows
that a KY 3-form on n is a sum of a Killing form on n0 and a 3-parallel
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form on a. Then, they considered only irreducible Lie algebras, since
[10, Proposition 5.6] shows that a KY 3-form on n is a sum of Killing forms
on each irreducible ideal. After that, the authors obtained the following
characterization of irreducible 2-step nilpotent Lie algebras admitting KY
3-forms. Recall the definition of the skew-symmetric endomorphism j(z) :

v → v associated to a 2-step nilpotent metric Lie algebras given in (4.2).

Proposition 6.1. [10, Proposition 5.8] An irreducible 2-step nilpotent Lie
algebra n admits a non-zero Killing 3-form if and only if the following
conditions hold:

1. j(z) is a subalgebra of so(v),

2. for each z ∈ z, the map z′ → j−1[j(z), j(z′)] is in so(z).

In this case the space of KY 3-forms is 1-dimensional.

The latter two conditions are related to the property of the correspond-
ing simply connected Riemannian Lie group to be naturally reductive. Re-
call that a homogeneous Riemannian manifold (M, g) is naturally reductive
if there is a transitive group G ⊂ Iso(M, g) and a reductive decomposition
g = h⊕m of the Lie algebra g of G, such that g([x, y]m, z)+g(y, [x, z]m) = 0,
for all x, y, z ∈ m.

The next result characterizes 2-step nilpotent Lie groups which are
naturally reductive in terms of the conditions in the last proposition. For
more details of this relation see [16].

Theorem 6.2. [10, Theorem 5.10] Let (N, g) be a simply connected 2-step
nilpotent Lie group without Euclidean factor (in the de Rham sense). Let n
denotes its Lie algebra and consider the orthogonal decomposition n = z⊕v.
Then N is naturally reductive if and only if n satisfies the conditions in
Proposition 6.1.

With all these ingredients the main result about KY 3-forms on 2-step
nilpotent Lie group can be stated.
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Theorem 6.3. [10, Theorem 5.11] Let (N, g) be a simply connected 2-
step nilpotent Lie group endowed with a left-invariant Riemannian metric.
Then any invariant Killing 3-form is the sum of left-invariant Killing 3-
forms on its de Rham factors. Moreover, the dimension of the space of
left-invariant Killing 3-forms on (N, g), is

dimK3(N, g) =
d(d− 1)(d− 2)

6
+ r

where d and r denote the dimension of the Euclidean factor and the num-
ber of naturally reductive factors in the de Rham decomposition of (N, g),
respectively.

Using the relation between 2-step nilpotent Lie algebras of naturally
reductive type and representations of compact Lie algebras shown in [20],
the authors concluded with a classification of 2-step nilpotent Lie algebras
of naturally reductive type of dimension ≤ 6.

Theorem 6.4. There exist exactly 8 isomorphism classes of (non-abelian)
2-step nilpotent Lie algebras of dimension ≤ 6 admitting an inner product
for which the corresponding simply connected Riemannian Lie group car-
ries non-zero Killing 3-forms: h3, R ⊕ h3, R2 ⊕ h3, h5, R3 ⊕ h3, h3 ⊕ h3,
R⊕ h5, n3,2 (the free 2-step nilpotent Lie algebra in dimension 5).

Remark 6.5. By comparing the results for KY 2 and 3-forms on 2-step
nilpotent Lie groups n we have that a 2-step nilpotent Lie group N endowed
with a left-invariant metric g which is de Rham irreducible cannot admit
non-zero Killing 2-forms and non-zero Killing 3-forms simultaneously [10,
Proposition 5.15]. In other words, a naturally reductive 2-step nilpotent
Lie group endowed with a left-invariant metric does not admit orthogonal
bi-invariant complex structures [10, Corollary 5.16].

Let us focus now on the case p > 3. In [12], the authors investigated
left-invariant Killing p-forms of arbitrary degree on simply connected 2-
step nilpotent Lie groups endowed with left-invariant Riemannian metrics.
They also classified them when the center has dimension at most 2.
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Let us to consider first the case of a non-abelian 2-step nilpotent Lie
algebra n with a center of dimension one. It is easy to prove that in this
situation, n is isomorphic to the Heisenberg Lie algebra, and the metric is
encoded in a matrix A such that A := j(ξ) ∈ so(v), so that j(z) = g(z, ξ)A

for every z ∈ z where ξ is a unit vector in z. The main result for this case
is:

Theorem 6.6. [12, Theorem 5.3] The space Kk(n, ⟨· , · ⟩) of Killing k-
forms on a 2-step nilpotent metric Lie algebra (n, ⟨· , · ⟩) with 1-dimensional
center is zero for k even and is 1-dimensional and generated by ξ∧A∧· · ·∧A
for any k odd with k ≤ dim(n), where A denotes the 2-form associated to
the skew-symmetric endomorphism A.

Consider now the case when the center of the 2-step nilpotent Lie
algebra n 2-dimensional. Let z1, z2 be an orthonormal basis of z and denote
by Ai := j(zi) ∈ so(v), for i = 1, 2. The main result here states that:

Theorem 6.7. [12, Theorem 6.2] The space Kk(n, ⟨· , · ⟩) of Killing k-
forms on a 2-step nilpotent metric Lie algebra (n, ⟨· , · ⟩) with 2-dimensional
center is zero for 4 ≤ k ≤ dim(n)− 1.

For KY 2- and 3-forms on a 2-step nilpotent Lie algebra the authors
obtained the following result:

Theorem 6.8. [12, Theorem 6.6] Let (n, ⟨· , · ⟩) be a 2-step nilpotent metric
Lie algebra with 2-dimensional center z. If (n, ⟨· , · ⟩) is irreducible, then
the space of Killing forms on (n, ⟨· , · ⟩) satisfies:

• K1(n, ⟨· , · ⟩) = z is 2-dimensional.

• K2(n, ⟨· , · ⟩) is 1-dimensional if n admit a bi-invariant ⟨· , · ⟩-orthogonal
complex structure, and zero otherwise.

• K3(n, ⟨· , · ⟩) is 1-dimensional if (n, ⟨· , · ⟩) is naturally reductive, and
zero otherwise.
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• Kk(n, ⟨· , · ⟩) = 0 for 4 ≤ k ≤ dim(n)− 1.

• Kk(n, ⟨· , · ⟩) = Λkn is 1-dimensional for k = dim(n).

If (n, ⟨· , · ⟩) = (n1, ⟨· , · ⟩1)⊕ (n2, ⟨· , · ⟩2) is reducible, with dim n1 ≤ dim n2,
then the space of KY forms on (n, ⟨· , · ⟩) satisfies:

• K1(n, ⟨· , · ⟩) = z is 2-dimensional.

• Kk(n, ⟨· , · ⟩) = 0 if k is even and 2 ≤ k ≤ dim(n).

• If k is odd and 3 ≤ k ≤ dim(n)−1, then Kk(n, ⟨· , · ⟩) is 2-dimensional
for k ≤ dim n1, 1-dimensional for dim n1 < k ≤ dim n2 and zero for
k > dim n2.

• Kk(n, ⟨· , · ⟩) = Λkn is 1-dimensional for k = dim(n).

7 Strict CKY forms on 2-step nilpotent Lie algeb-
ras

In this section, a description of CKY 2-forms on 2-step nilpotent Lie
algebras is given. The first result shows that the Heisenberg Lie algebra is
the only 2-step nilpotent one admitting strict CKY 2-forms. It was proved
first in [1, Theorem 4.1].

Theorem 7.1. [1, Theorem 4.1] A 2-step nilpotent Lie algebra g admitting
an inner product with a CKY tensor T which is not KY is isomorphic to
h2n+1, and if ξ generates the center of h2n+1, then T |z = 0 and T |v = λj−1

ξ ,
for some λ ̸= 0 and v = ξ⊥

Moreover, it was showed in Corollary 5.2 that there are no non-trivial
KY tensors on h2n+1. Recently, in [13] the authors obtained the following
similar result.

Theorem 7.2. [13, Theorem 4.1] Every CKY 2-form on a 2-step nilpo-
tent metric Lie algebra (g, ⟨· , · ⟩) is a Killing form, except when g is the
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Heisenberg Lie algebra, for every metric ⟨· , · ⟩. In this case CK2(g, ⟨· , · ⟩)
is 1-dimensional and K2(g, ⟨· , · ⟩) = 0

Remark 7.3. CK2(g, ⟨· , · ⟩) = K2(g, ⟨· , · ⟩) for any 2-step nilpotent Lie
algebra, except when g is the Heisenberg Lie algebra h2n+1, and in this case
CK2(h2n+1, ⟨· , · ⟩) = ∗K2(h2n+1, ⟨· , · ⟩). Such a description of conformal
Killing 2-forms does not hold on arbitrary metric Lie algebras. Indeed, in
[18] we show examples of metric Lie algebras carriying CKY 2-forms which
are not a linear combination of a KY and a ∗-KY 2-forms (see the 3-step
nilpotent Lie algebra L5,9 in Table 3.4).

The case of CKY 3-forms is more involved, it depends on the v-degree
of such 3-form (see (4.5)). Before stating the main result, we need to
introduce some notation. Let n3,2 be the 6-dimensional 2-step nilpotent
Lie algebra with Lie bracket given by

[x1, x2] = y3, [x2, x3] = y1, [x3, x1] = y2.

Now, we consider the 1-parameter family of metrics ⟨· , · ⟩λ, with λ ∈ R>0,
on n3,2 such that {x1, x2, x3, y1λ , y2λ , y3λ } is a ⟨· , · ⟩λ-orthonormal basis.

Theorem 7.4. [13, Theorem 5.6] Every CKY 3-form on a 2-step nilpotent
metric Lie algebra (g, ⟨· , · ⟩) is a Killing form, except when g = h2n+1 ×R
and ⟨· , · ⟩ is any metric, and when (g, ⟨· , · ⟩) is (n3,2, ⟨· , · ⟩λ) for some λ ∈
R>0. In both cases, CK3(g, ⟨· , · ⟩) is 2-dimensional and K3(g, ⟨· , · ⟩) is 1-
dimensional.

Remark 7.5. As a consequence of the proof of the last result, it can be
shown that for any 2-step nilpotent metric Lie algebra CK3(g, ⟨· , · ⟩) =

K3(g, ⟨· , · ⟩) except when g = h2n+1×R and ⟨· , · ⟩ is any metric, and when
(g, ⟨· , · ⟩) is (n3,2, ⟨· , · ⟩λ) where

CK3(h2n+1 × R, ⟨· , · ⟩) = CK3
ev(h2n+1 × R, ⟨· , · ⟩)

= K3
ev(h2n+1 × R, ⟨· , · ⟩)⊕ ∗K3

ev(h2n+1 × R, ⟨· , · ⟩)

CK3(n3,2, ⟨· , · ⟩) = CK3
ev(n3,2, ⟨· , · ⟩)⊕ CK3

odd(n3,2, ⟨· , · ⟩)

= K3
ev(n3,2, ⟨· , · ⟩)⊕ ∗K3

ev(n3,2, ⟨· , · ⟩)



A survey on conformal Killing forms on Lie groups 97

8 Open problems

In this section we will discuss interesting open problems on left-invariant
CKY forms.

8.1 CKY forms on 5-dimensional metric Lie algebras

According to [3, Corollary 4.4] CKY 2-forms which are not KY only
occur on odd-dimensional Lie algebras. Since the 3-dimensional case was
classified in [1], then the next natural step is dimension 5. As mentioned
before, in [18] we started with this case. However, we only classified 5-
dimensional metric Lie algebras admitting CKY 2-forms in the cases when
the vector ξ ∈ z and when ξ ⊥ z.

Open question: Determine the existence of CKY 2-forms on an ar-
bitrary 5-dimensional metric Lie algebra with 1-dimensional center, which
is not necessarily generated by ξ. In particular, it would be interesting to
study other metrics on those 5-dimensional Lie algebras in Table 3.3 and
determine if they admit a CKY 2-form with ξ /∈ z.

Open question: Are there examples of 5-dimensional metric Lie al-
gebras with trivial center admitting CKY 2-forms?

After that we could have a complete picture about CKY tensors on
5-dimension metric Lie algebras.

Open question: Study CKY p-forms on 5-dimensional metric Lie
algebras. Using the description of CKY 2-forms, it would be possible to
analyze CKY 3-forms by talking its ∗ dual operator. After that it remains
to analyze CKY 4-forms or equivalently, CKY vector fields.

8.2 3-step nilpotent metric Lie algebras

As far as we know, the only example of a 3-step nilpotent Lie algebra
carrying a CKY 2-form is (L5,9, ⟨· , · ⟩r) in Table 3.4, the only 3-step nilpo-
tent Lie algebra in dimension 5. Moreover, the CKY 2-form is not a linear
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combination of a KY 2-form and a ∗-dual of a KY 2-form. Therefore, it
would be very interesting to study its properties and behaviour.

Open question: Is it possible to generalize this example to higher
dimension?

8.3 Construction of CKY 2-forms

The main tool to construct examples of metric Lie algebras admitting
strict CKY 2-forms is Theorem 2.2. That result uses an invertible KY
tensor S such that the 2-form µ(x, y) = −2⟨S−1x, y⟩ is closed to produce
a CKY tensor. So far, all known examples of tensors S satisfying these
condition are parallel. Then, the next natural question arise.

Open question: Let S be an invertible KY tensor such that µ(x, y) =
−2⟨S−1x, y⟩ is closed. Is S parallel?

8.4 The compact case

We know from Theorem 2.5 that the existence of CKY tensors on
compact Lie groups equipped with a bi-invariant metric is only possible in
dimension 3, and indeed the Lie algebra is isomorphic to su(2).

Open question: Do there exist examples of compact Lie groups ad-
mitting a CKY tensor with general left-invariant metric?

8.5 The almost abelian case

As we mentioned before, CKY 2-forms on almost abelian Lie groups
were studied in [3]. They proved that only in dimension 3 is possible to
find examples of strict CKY 2-forms. Moreover, if it is a KY 2-form, then
it is parallel, see Theorem 2.8.

Open question: Are there invariant CKY p-forms with p > 2 on
almost abelian Lie groups?
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8.6 Homogeneous spaces

More generally, one can consider homogeneous spaces G/K endowed
with a G-invariant metric. It is possible to translate the definition of CKY
forms to (G/K, g) where g is a G-invariant metric. In this context, study
G-invariant CKY 2-forms on (G/K, g) is equivalent to study G-invariant
and skew-symmetric (1, 1)-tensors H : T (G/K) → T (G/K) such that

g ((∇XH)Y,Z)+g ((∇Y H)X,Z) = 2g(X,Y )θ(Z)−g(X,Z)θ(Y )−g(Y,Z)θ(X).

In [14] full flag manifolds SU(n)/T for every n ≥ 4 are analyzed. Despite
this result, and in contrast with the results we mentioned of CKY p-forms
on Lie groups, there are not many results of CKY p-forms on homogeneous
spaces with G-invariant metrics.

Open question: Look for examples of CKY p-forms on homogeneous
spaces. In particular, it would be interesting to analyze the existence of
CKY p-forms on flags manifolds and Grasmannian manifolds.
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