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Abstract. We show that the Lie potential on the minimal semisim-
ple adjoint orbit On of sl(n + 1,C) coincides with toric potential on
T

∗Pn. We then study the corresponding Landau–Ginzburg models
in deformation families and give some examples of how the deforma-
tions affect the mirrors.
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1 Strategy

We show that the Lie theoretical potential on the minimal semisimple
adjoint orbit On of sl(n+1,C) as defined in [15] coincides with standard po-
tential on T

∗Pn associated with the Hamiltonian action of a 1-dimensional
algebraic torus C∗. More precisely, we show that (T∗Pn

, w) and (On, w)
are birationally equivalent. Having described this coincidence, we are then
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able to write a potential on the deformation family containing both T
∗Pn

and On, so that it can be upgraded to a deformation of Landau–Ginzburg
models. We then explore specific examples of Landau–Ginzburg models
and give examples of how their deformations affect their mirrors. The
proposed strategy here is to consider both deformations of varieties and
deformations of the potential, combining them to describe deformations of
LG models, obtaining families

LG ⟿ LG
′

where LG and LG
′ behave very differently dualitywise. Indeed, we will

have examples LG0 = (T∗P1
, w) that is a selfdual LG model defined on a

toric variety which is not affine, deforming to LG2 = (O1, w) which is a
nonselfdual LG model defined on a nontoric affine variety.

Landau–Ginzburg models on adjoint orbits of semisimple Lie algebras
fH ∶O(H0) → C were constructed by Gasparim–Grama–San Martin in
[15, 16]. We consider here the minimal case (as in Definition 2.6) which
we denote by LGn. These Landau–Ginzburg models were shown to sat-
isfy the conjecture of Katzarkov, Kontsevich and Pantev about three new
Hodge theoretical invariants that take into consideration the potential,
see [8, 18] and also [5] for some more features about Hodge diamonds of
compactifications.

It would be desirable to carry out the study of all deformations fami-
lies involving semisimple adjoint orbits of sl(n + 1,C). However, here we
will carry out details only for the case of minimal orbits, presenting more
details for the case of sl(2,C), which is already nontrivial, as we shall see.
Indeed, [4] showed that LG2 has no projective mirrors, and furthermore,
proved that the Fukaya–Seidel category of LG2 is equivalent to a proper
subcategory of the category of coherent sheaves on the second Hirzebruch
surface, which however is not realised by any complex subvariety. As a
consequence of [4] we know that there does not exist any projective vari-
ety whose category of coherent sheaves is equivalent to the Fukaya–Seidel
category of LG2. However, in [14], using the intrinsic mirror symmetry
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recipe of Gross and Siebert [19], Elizabeth Gasparim constructed in [14]
a Landau–Ginzburg mirror for LG2 which is geometrically extremely dif-
ferent from LG2. This nontrivial behaviour of duality of LG2 will be
contrasted to the selfduality of LG0.

2 Deformations

Definition 2.1. A Landau–Ginzburg model (LG) is a pair (X,w)
formed by a variety X and a holomorphic function w∶X → C (or P1)
called the superpotential.

To expand our families of examples, we will consider pairs (X,R) where
R∶X → C is a rational function, defined as R = f/g, then this rational
function can be considered as a map to P1 simply by making R = [f ∶ g],
see [6]. Then, such a map can then be promoted to an LG model by
blowing up the indeterminacy locus I of R, that is the set of points where
f = g = 0, and then R can be extended to a holomorphic map on X̃, the
blow-up of X at I. Therefore in the examples that follow, we wish to
consider rational potentials.

Definition 2.2. A rational Landau–Ginzburg model is a pair (X,R)
formed by a variety X and a rational function R∶X → P1 called the
superpotential.

From now on, by a LG model we mean a rational Landau–Ginzburg
model (note that this notion includes all LG models that have a holomor-
phic potential).

Definition 2.3. A (commutative) deformation family of a Landau–
Ginzburg model (X,w) is a smooth family of Landau–Ginzburg models
(Xt, wt), with t ∈ D ⊂ Cn an open ball containing 0, such that (X0, w0) =
(X,w). We call Xt a deformation of X0, denoted by (X0, w0) ⟿

(Xt, wt).
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For Landau–Ginzburg models considered in this text, the variety X

will be a noncompact Calabi–Yau. This is exactly the case for which
Katzarkov, Kontsevich and Pantev proved smoothness of the deformation
spaces [21].

Example 2.4. Consider T∗P1 with coordinates ([1, x], y) and the Landau–
Ginzburg models LG0 = (T∗P1

, w0), LG1 = (T∗P1
, w1) given by the func-

tions w0 = x + y + y
2

x
and w1 = 2x.

Using the potential wt = 2x + t(x + y + y
2

x
) on Xt = T

∗P1 we obtain
the deformation

LG0 ⟿ LG1 .

Definition 2.5. Let G be a Lie group and g its Lie algebra. The adjoint
orbit of an element H0 ∈ g is

O (H0) = Ad(G) ⋅H0 = {gH0g
−1

∶ g ∈ G}.

In all examples considered here H0 is a diagonal matrix. Since we work
with complex semisimple Lie groups G, the orbit Ad(K) ⋅ H0 of a com-
pact subgroup K < G is a flag manifold isomorphic to a homogeneous
manifold G/P , where P is a parabolic subgroup of G.

Following [8, Def. 1.1], we have:

Definition 2.6. Let On be the adjoint orbit of H0 = Diag(n,−1, . . . ,−1)
in sl(n + 1,C), we call it the minimal orbit.

The minimal adjoint orbit On is diffeomorphic to the cotangent bundle
of the projective space Pn [16, Thm. 2.1]. On is a nontoric Calabi–Yau
manifold.

Example 2.7. Let LG2 = (O1, fH), where O1 is the semisimple adjoint
orbit of the Lie algebra sl(2,C), obtained by choosing H0 = Diag(1,−1).

Lemma 6.3 describes O1 as a deformation of T∗P1, explicitly presenting

the deformation family. We put on O1 the potential given by f (x y

z −x
) =

2x. Observe that this potential coincides with the potential w defined on
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T
∗P1 in Example 2.4, forming LG1. Defining the same potential 2x on

every element of the family, we obtain a deformation of Landau–Ginzburg
models

LG1 ⟿ LG2 .

We will present a more detailed approach to this deformation family in
Example 6.5, including a partial compactification.

Remark 2.8. The choice of potential on O1 comes from the following

construction. We choose H = H0 = (1 0

0 −1
) , and then the adjoint orbit

O1 = Ad(SL(2))H0 = {gH0g
−1

∶ g ∈ SL(2)}

is the (smooth) affine hypersurface in C3 given by the equation x
2 + yz −

1 = 0. The potential fH ∶O1 → C defined by A ↦ ⟨H,A⟩ gives simply
fH(A) = 2x.

As a real manifold, O1 is diffeomorphic to T
∗P1. Now we recall Lemma

2.1 of [4] which shows the existence of a Lagrangian submanifold of the
adjoint orbit of sl(2) that is diffeomorphic to P1. Observe this is not
granted a priori since the symplectic structure of O(H0) is not that of
T
∗P1. However, O1 is affine, hence it does not contain an algebraic sub-

variety isomorphic to P1.

Example 2.9. Observe that in Example 2.4 we varied the potential while
keeping the underlying manifold fixed, whereas in Example 2.7 we varied
the manifold while keeping the potential. Combining them, we obtain a
deformation that changes both, namely

LG0 ⟿ LG2 .

We then wish to compare the mirrors of LG0 and LG2, and we will see
that they behave very differently. Since T

∗P1 is a toric variety, we can use
toric duality for LG0.
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3 Toric duality

Definition 3.1. An n-dimensional variety X is called toric if it satisfies
the following two properties:

• there exists an action of the torus (C∗)n ×X → X, and

• the Zariski closure of X is the torus: (C∗)n = X.

For basic notions of toric varieties see [13]. The polytope representing
a toric variety is the convex figure obtained by drawing the complement
of the torus, i.e., X − (C∗)n. More precisely, it is the image of X by
the moment map, which is, by the theorems of Atiyah and Guillemin–
Sternberg, the convex hull of the image of the fixed points of the torus
action.

Example 3.2. P1 × P1 is depicted by a square .

Example 3.3. P2 is depicted by a triangle .

Example 3.4. T
∗P1 is depicted by .

For the case when X is a toric variety, Clarke [12] showed that one can
state a generalised version of the Homological Mirror Symmetry conjec-
ture of Kontsevich [22] as a duality between LG models. He also showed
that this construction generalises the dualities due to Batyrev–Borisov [3],
Berglung–Hübsch [9], Givental [14], and Hori–Vafa [20]. Given a toric LG
model (X, f), the construction in [12] produces a dual LG model (X∨

, f
∨).

We recall some definitions from [12]. Associated to a toric Landau–
Ginzburg model is its linear data:

1. the linear data Div, and

2. the linear data Mon.
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[12] uses a more refined version of this data, which includes the compacti-
fied Kähler class and for duality requires the kopasectic condition, but we
will not need such details here. The dual toric Landau-Ginzburg model is
obtained by exchanging Div and Mon, that is

Div(X) = Mon(f∨), Div(X∨) = Mon(f).

The matrix Mon describes the infinitesimal action on monomials, for
details see [12]. The matrix Div encodes the divisor of the character-to-
divisor map. In particular, the Chow group of X is the cokernel of Div(X).
In our examples the rows of Div will represent the divisors of X and the
rows of Mon will represent the monomials appearing in the potential f .

Definition 3.5. If there is an isomorphism (X∨
, f

∨) ≃ (X, f), then the
LG model is called selfdual.

We now give some elementary examples of toric duality. Using the work
of Clarke in [12], Callander, Gasparim, Jenkins and Silva [11] considered
mirror symmetry for Landau–Ginzburg models defined over vector bundles
on projective spaces, showing that both the cotangent bundle of P1 and
the resolved conifold admit potentials that form a self-mirror LG model.

Example 3.6 (LG0 ⇔ LG0). For the case of T∗P1 using the potential
x + y + y

2

x
one obtains a LG model that is dual to itself [11, Prop. 6.2] as

depicted in Figure 3.1. Self-duality of this LG model is verified by simply
pointing out that in this case the toric data is

Mon = Div =

⎛
⎜⎜⎜⎜
⎝

1 0

−1 2

0 1

⎞
⎟⎟⎟⎟
⎠
.

Example 3.7. (A nontrivial duality) We now see a nontrivial duality
(Y, g) = (X, f)∨. Consider the Landau–Ginzburg models (X, f) = (P2

, x+

y+x
−1+ y

−1) and (Y, g) = (P1×P1
, x+ y+x

−1
y
−1) as depicted in Figure

3.2.
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x + y +
y
2

x x + y +
y
2

x

Figure 3.1: Selfdual LG0 model

Since the Div matrix is given by the inward normals of the moment
polytope, we have:

DivX =

⎛
⎜⎜⎜⎜
⎝

1 0

0 1

−1 −1

⎞
⎟⎟⎟⎟
⎠
, DivY =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0

0 1

−1 0

0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

To see that (Y, g) is dual to (X, f) just observe that Mong = DivX , and
DivY = Monf .

Example 3.8. (Hyperkähler families) The birational isomorphism consid-
ered here could be considered in a much broader context. In fact, if instead
of considering cotangent bundles of projective spaces, we considered cotan-
gent bundles of generalised flag manifolds, then we could consider families
of hyperkähler structures; we recall the definition.

A hyperkähler structure on the Riemannian manifold (M, g) is ex-
pressed using three almost complex structures I, J,K satisfying

I
2
= J

2
= K

2
= IJK = −1,

such that any linear combination aI + bJ + cK with a
2 + b

2 + c
2
= 1 is a

Kähler structure on M , whose corresponding complex structures may be
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x + y +
1
xy x + y +

1
x +

1
y

Figure 3.2: Nontrivial toric duality

regarded as a deformation of M . All hyperkähler manifolds are Ricci-flat
and consequently Calabi–Yau manifolds.

Families of hyperkähler structures containing both cotangent bundles of
flag manifolds and adjoint orbits were studied by Kronheimer [24], Biquard
[10], and Kovalev [23], we briefly recall some of their results. Let G be a
complex semisimple Lie group with Lie algebra g and let H denote the
stabiliser of an element of g. Kovalev’s theorem [23, Thm. 1.1] describes
a family of hyperkählerian structures on G/H. In particular, this family
contains a complex structure for which the quotient G/H is isomorphic
to a semisimple adjoint orbit of G. More explicitly, the adjoint orbit
Ad(G) ⋅ H0 occurs as a deformation of the cotangent bundle of the flag
manifold Ad(K) ⋅H0, where K is a compact subgroup of G.

Many interesting examples can be obtained using the adjoint orbit
O(H0) of an element of the Cartan subalgebra H0 ∈ h ⊂ g. Suppose we
take g = sl(n,C), hence we would have a flag manifold

F = Ad(SU(n)) ⋅H0

of SU(n) and a diffeomorphism

O(H0) = Ad(SL(n)) ⋅H0 ≃ T
∗F
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to the cotangent bundle of F, where the flag manifold is isomorphic a
homogeneous manifold of the form

F = SU(n)/S(U(d1) ×U(d2) ×⋯×U(dk))

with d1 + d2 +⋯+ dk = n, see [2].

4 LG models from Lie theory

In this section we develop the description of the Lie theoretical poten-
tial on adjoint orbits in local coordinates, so that it can be compared with
the toric potential. We first recall some results from [15] and [16]. Let g

be a complex semisimple Lie algebra with Cartan subalgebra h, and hR

the real subspace generated by the roots of h. Let Π be the set of all roots
of g. An element H ∈ h is called regular if α (H) ≠ 0 for all α ∈ Π.

Choose H0 ∈ h and a regular element H ∈ hR, the height function
fH ∶O (H0) → C with respect to H, defined by

fH (x) = ⟨H,x⟩, x ∈ O (H0) ,

has a finite number of isolated singularities and defines a symplectic Lef-
schetz fibration on O(H0), [15, Thm. 3.1]. This heigh function will give
rise to the expression of what we call the Lie potential.

We now describe the potential on the adjoint orbit in detail, writing its
description in each coordinate chart by a polynomial map. The construc-
tion of this intermediate step also clarifies why the potential gives rise to
a Lefschetz fibration, which is by definition locally a quadratic polynomial
map.

Given H0 ∈ hR, let

n
+
H0

= ∑
α(H0)>0

gα and n
−
H0

= ∑
α(H0)<0

gα
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be the sums of the eigenspaces of ad (H0) associated to the positive and
negative eigenvalues, respectively. The subspaces n

±
H0

are nilpotent sub-
algebras. If G is a Lie group with Lie algebra g then the subgroups
N

±
H0

= exp n
±
H0

are closed and the set

N
−
H0

ZH0
N

+
H0

= N
−
H0

N
+
H0

ZH0

is open and dense in G where ZH0
is the centraliser of H0 in G and the

product

(y, x, h) ∈ N
−
H0

×N
+
H0

× ZH0
↦ yxh ∈ N

−
H0

N
+
H0

ZH0

is a diffeomorphism. Consider now the adjoint orbit O (H0) = Ad (G)H0 =

G/ZH0
. The set Ad (N−

H0
N

+
H0

ZH0
)H0, denoted just by N

−
H0

N
+
H0

ZH0
⋅H0

satisfies
N

−
H0

N
+
H0

ZH0
⋅H0 = N

−
H0

N
+
H0

⋅H0

since ZH0
⋅H0 = H0. Given that N

−
H0

N
+
H0

ZH0
is open and dense in G it

follows that N−
H0

N
+
H0

⋅H0 is open and dense in O (H0). Moreover, the map

(y, x) ∈ N
−
H0

×N
+
H0

↦ yx ⋅H0 ∈ N
−
H0

N
+
H0

⋅H0

is a diffeomorphism.
On the other hand, exp∶ n±H0

→ N
±
H0

is a diffeomorphism. Therefore,

(Y,X) ∈ n
−
H0

× n
+
H0

↦ e
ad(Y )

e
ad(X)

⋅H0 ∈ N
−
H0

N
+
H0

⋅H0

defines a coordinate chart of O (H0), around H0 (with open and dense
image).

The goal here is to describe the Lefschetz fibration on O (H0) defined
by fH (x) = ⟨H,x⟩ in this coordinate chart. A similar description also
exists for coordinate charts around the singularities wH0, w ∈ W. As
described in the lecture notes of San Martin [26], the expressions for fH

in these coordinate charts are polynomial functions, in fact, homogeneous
polynomials of degree 2.
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Theorem 4.1. [26] The map fH is polynomial.

Proof. If X ∈ n
+
H0

then [X,H0] = −ad (H0)X ∈ n
+
H0

and since n
+
H0

is
nilpotent, there exists n ≥ 1 such that

e
ad(X)

H0 = H0 + g
+ (X)

where g
+ ∶ n+H0

→ n
+
H0

is the polynomial map

g
+ (X) =

n

∑
k=1

1

k!
ad (X)k (H0) .

Now, if Y ∈ n
−
H0

, then similarly [Y,H0] = −ad (H0)Y ∈ n
−
H0

. Moreover,
n
−
H0

is nilpotent and ad (Y ) is nilpotent. Thus, there exists m ≥ 1 such
that

e
ad(Y )

e
ad(X)

H0 = H0 + g
− (Y ) +

m

∑
j=0

n

∑
k=1

1

j!

1

k!
ad (Y )j ad (X)k (H0) (4.1)

where g
−∶ n−H0

→ n
−
H0

is the polynomial map

g
− (Y ) =

m

∑
j=1

1

j!
ad (Y )j (H0) .

These expressions show that fH (ead(Y )
e
ad(X)

H0) is polynomial in X and
Y given that fH is the restriction of the linear map x ↦ ⟨H,x⟩.

Now, observe that fH (g− (Y )) = 0 and consequently

fH (ead(Y )
e
ad(X)

H0) = ⟨H,H0⟩ + ⟨H,∗⟩,

where ∗ is the part of the double summation in Equation (4.1) belonging
to h.

Example 4.2. Let g = sl (n + 1,C) and choose H0 such that the flag FH0

is the projective space Pn. We take

H0 = Diag(n,−1, . . . ,−1).
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In such a case, if X ∈ n
+
H0

, then

X = ( 01×1 v

0 0n×n
) ,

with v ∈ Rn, whereas Y ∈ n
−
H0

if and only if Y T
∈ n

+
H0

. If X ∈ n
+
H0

, then

e
ad(X)

H0 = H0 + [X,H0] = H0 −X.

Consequently, if Y ∈ n
−
H0

, then

e
ad(Y )

e
ad(X)

H0 = H0 −X + Y − [Y,X] + 1

2
[Y, Y − [Y,X]]

= −X + (H0 − [Y,X]) + (Y −
1

2
[Y, [Y,X]])

because [Y,H0] = Y , given that the last term has already been assembled
into the sum n

+
H0

⊕ zH0
⊕ n

−
H0

where zH0
is the centraliser of H0.

Now, if H = Diag(λ1, . . . , λn+1), then H is orthogonal to both n
+
H0

and
n
−
H0

(Cartan–Killing); thus

fH (ead(Y )
e
ad(X)

H0) = ⟨H,H0⟩ − ⟨H, [Y,X]⟩
= ⟨H,H0⟩ + ⟨H, [X,Y ]⟩.

We write

X = ( 01×1 x

0 0n×n
) Y = ( 01×1 0

y
T

0n×n
)

with x = (x1, . . . , xn) and y = (y1, . . . , yn). Since the Cartan–Killing
product is ⟨A,B⟩ = 2(n + 1)tr (AB) for matrices in sl(n + 1), it follows
that

fH (ead(Y )
e
ad(X)

H0) =

= 2(n + 1) [tr(HH0)+ (λ1 − λ2)x1y1 +⋯+ (λ1 − λn+1)xnyn]

which is a degree 2 polynomial.
Similar calculations go through if we replace H0 by w ⋅H0: if w = (1j),

then n
+
w⋅H0

consists of matrices having nonzero entries only on row j (0 in
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the diagonal), whereas n
−
w⋅H0

consists of nonzero entries only in column j.
Thus, if (x1, . . . , xn) and (y1, . . . , yn) are the entries on row and column
j, respectively, then

fH (ead(Y )
e
ad(X) (w ⋅H0)) =

= 2(n + 1) [tr (H(w ⋅H0)) + (λj − λ1)x1y1 +⋯+ (λj − λn+1)xnyn] .

Example 4.3. Let H = Diag(1, 0,−1), H0 = Diag(2,−1,−1) ∈ sl(3,C)
and choose w = (123) ∈ W. Then w ⋅H0 = Diag(−1, 2,−1) and w

2 ⋅H0 =

Diag(−1,−1, 2), so that

⟨H,H0⟩ = 2(n + 1)tr (HH0) = 18,

⟨H,w ⋅H0⟩ = 2(n + 1)tr (H(w ⋅H0)) = 0,

⟨H,w
2
⋅H0⟩ = 2(n + 1)tr (H(w2

⋅H0)) = −18.

Note that the constant term of the expression changes according to the
choice of critical points.

Definition 4.4. We call the expression of fH written on a chart around
H0 the Lie potential on On ⊂ sl(n + 1,C). It is given by

fH(H0) = tr(HH0) + (λ1 − λ2)x1y1 +⋯+ (λ1 − λn+1)xnyn. (4.2)

Example 4.5. Consider g = sl (n + 1,C) and choose H0 so that the flag
FH0

is the Grassmannian Grk (n + 1). Calculations are similar to the ones
for the projective space. The main difference is that the decomposition is
given by blocks of size k and n − k + 1, so that the elements of n+H0

are
matrices of the form

( 0k×k v

0 0(n−k+1)×(n−k+1)
) .

Similarly,

e
ad(Y )

e
ad(X)

H0 = H0 −X + Y − [Y,X] + 1

2
[Y, Y − [Y,X]]

= −X + (H0 − [Y,X]) + (Y −
1

2
[Y, [Y,X]])
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and fH (ead(Y )
e
ad(X)

H0) = ⟨H,H0 − [Y,X]⟩ is a degree 2 polynomial.

These 2 examples can be easily generalised to all cases when the eigen-
values of ad (H0) are 0 and ±1. Analogous calculations show that

e
ad(Y )

e
ad(X)

H0 = −X + (H0 − [Y,X]) + (Y −
1

2
[Y, [Y,X]])

and hence fH (ead(Y )
e
ad(X)

H0) = ⟨H,H0−[Y,X]⟩ is a degree 2 polynomial
in the variables X and Y .

Remark 4.6. In further generality, given a complex Lie algebra, we may
choose a set of positive roots Π+ and simple roots Σ ⊂ Π

+ with correspond-
ing Weyl chamber a

+. A subset Θ ⊂ Σ defines a parabolic subalgebra pΘ

with parabolic subgroup PΘ and a flag manifold FΘ = G/PΘ. An element
HΘ ∈ cla

+ is characteristic for Θ ⊂ Σ if Θ = {α ∈ Σ ∶ α (HΘ) = 0}. Let
ZΘ = {g ∈ G ∶ Ad (g)HΘ = HΘ} be the centraliser in G of the character-
istic element HΘ. The adjoint orbit O (HΘ) = Ad (G) ⋅HΘ ≈ G/ZΘ of the
characteristic element HΘ is diffeomorphic to the cotangent bundle T

∗FΘ

[16, Thm. 2.1].

Remark 4.7. In the specific case of the minimal orbit, there is a very
useful compactification to a product or projective spaces, which goes as
follows. The diagonal action of SL (n + 1,C) in Pn×Gr (n, n + 1) ≃ Pn×Pn

has two orbits, an open one and a closed one. The open orbit is isomorphic
to the adjoint orbit On = Ad (G) ⋅ HΘ with HΘ = Diag(n,−1, . . . ,−1)
and is formed by the pairs of transversal elements in Pn × Gr (n, n + 1).
The closed orbit is isomorphic to the flag FΘ∩Θ∗ . Since Θ ∩ Θ

∗ is the
complement of {α12, αn,n+1} it follows that FΘ∩Θ∗ = F (1, n).

5 Toric potential vs Lie potential

Cotangent bundles of projective spaces and their Lagrangian skeleta
were studied in [7] from the viewpoint of their duality with bundles on
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collars of local surfaces. Starting with a Hamiltonian action of T = C∗ on
T
∗Pn expressed in the open chart V0 = {x0 ≠ 0} by

T ⋅ V0 = {[1, t−1x1, . . . , t−nxn], (ty1, . . . , tnyn)}

we obtain a Hamiltonian vector field T
∗Pn

X(x1, . . . , xn, y1, . . . , yn) = (−x1, . . . ,−nxn, y1, . . . , nyn),

as described in [7, Prop. 3.1]. Taking T
∗Pn with the canonical symplectic

form ω, the corresponding potential h therefore satisfies

dh(Z) = ω(X,Z),

for all vector fields Z ∈ X(T∗Pn). In V0 coordinates, writing

x = (x1, . . . , xn),y = (y1, . . . , yn),a = (a1, . . . , an),b = (b1, . . . , bn),

we obtain a differential equation

(∂h
∂x

∂h

∂y
) (a

b
) =

n

∑
i=1

dxi ∧ dyi ((−x1, . . . ,−nxn, y1, . . . , nyn), (a1, . . . , an, b1, . . . , bn))

= −2∑ ixibi + iyiai,

whose solutions are:

hc = c − 2x1y1 − . . . − 2nxnyn = c +
n

∑
i=1

−2ixiyi, (5.1)

for c ∈ C. See [7] for the expression of hc on the other charts. In Section 6 we will
consider n = 1, in which case there are two charts.

Definition 5.1. We call hc a toric potential on T
∗Pn.

Theorem 5.2. For each n ∈ N, there exist matrices H,H0 ∈ sl (n + 1,C) and a constant
c ∈ C such that the Lie potential on the minimal adjoint orbit On and the toric potential
on the cotangent bundle T

∗Pn coincide on dense open charts, that is fH = hc.

Proof. Take H0 = Diag(n,−1, . . . ,−1) ∈ sl (n + 1,C) ,

H =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Diag (−n, . . . ,−4,−2, 0, 2, 4, . . . , n) if n is even,

Diag (−n, . . . ,−3,−1, 1, 3, . . . , n) if n is odd



Birationally equivalent Landau–Ginzburg models 271

and c = −n2 − n.
On the Lie side, we have:

fH(H0) = tr(HH0) + (λ1 − λ2)x1y1 +⋯+ (λ1 − λn+1)xnyn,

where the eigenvalues of H = Diag(λ1, . . . , λn+1) satisfy λ1 − λj = −2(j − 1), so that

fH(H0) = −n
2
− n − 2x1y1 −⋯− 2nxnyn.

On the toric side,

hc = c − 2x1y1 − . . . − 2nxnyn

= −n
2
− n − 2x1y1 −⋯− 2nxnyn.

By Theorem 5.2 the value c = −n2−n is preferable for our purposes here. Therefore,
using coordinates ([1, x1], y1) for the cotangent bundle T

∗P1, we write the potential

h−2∶T
∗P1

→ C

as
h−2 = −2x1y1 − 2.

Definition 5.3. Two Landau–Ginzburg models are called birationally equivalent
if their domains are birationally equivalent varieties and their potentials coincide on
Zariski open sets.

A rigorous version of our theorem may be stated as:

Theorem 5.4. For each n ∈ N, there exist matrices H,H0 ∈ sl (n + 1,C) and a constant
c ∈ C such that the LG models (On, fH) and (T ∗Pn

, hc) are birationally equivalent.

Proof. By Theorem 5.2, the expressions of fH and hc for the potentials fH and hc

coincide on Zariski open sets.

6 Deformations and their mirrors

Example 6.1 (LG0 ⟿ LG1). We consider T
∗P1 with coordinates [1, x], y and the

family of potentials

LGt = t(x +
1
x +

y
2

x ) + (1 − t)(2x).
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Then we have that the initial LG model LG0 is selfdual as shown in Example 3.6, while
the final LG model is defined by LG1 = (T ∗P1

, 2x) which has the toric data

Div =

⎛
⎜⎜⎜⎜
⎝

1 0

−1 2

0 1

⎞
⎟⎟⎟⎟
⎠
, Mon = (1 0).

Now, inverting the matrices by toric duality gives us the LG
∨
1 model

Div = (1 0) Mon =

⎛
⎜⎜⎜⎜
⎝

1 0

−1 2

0 1

⎞
⎟⎟⎟⎟
⎠

defined on a variety with torus (C∗)2 and a single divisor, in this case a C∗ × C. We
conclude that this family takes a selfdual LG model to another very far from selfdual.

LG0 ⟿ LG1

= /∼
LG

∨
0 ⟿ LG

∨
1 .

Our next objective is to describe how duality works for the deformation family

LG1 = (T ∗P1
, hc) ⟿ LG2 = (O2, fH).

We will use the deformation of the Hirzebruch surfaces F2 to F0 in Lemma 6.2, extending
it to a deformation of partially compactified Landau–Ginzburg models in Example 6.5

(F2,h) ⟿ (F0, f).

The Hirzebruch surface F2 embeds in P1 × P3, as the set of points

([x0, x1], [y0, y1, y2, y3]) ∈ P1
× P3

satisfying the equation
x0(y1, y2) = x1(y2, y3),

see [25]. We can cover F2 with four coordinate charts, U = {(z, u) ∈ C2}, V = {(ξ, v) ∈
C2}, U ′

= {(z, µ) ∈ C2}, V = {(z, η) ∈ C2} with the following changes of coordinates:

ξ = z
−1
, v = z

2
u, µ = u

−1
, η = v

−1
.

We will make use of the following result:

Lemma 6.2. F2 deforms to F0.
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Figure 6.1: F2 deforms to F0

Proof. The deformation family M taking F2 to F0 is given by

{x0(y1, y2) = x1(y2 + ty0, y3)} = Mt ⊂ P1
× P3

.

In coordinates:

(z, u, t) ↦ ([1, z], [1, z2u + tz, zu, u], t)
(z, µ, t) ↦ ([1, z], [µ, z2 + tzµ, z, 1], t)
(ξ, v, t) ↦ ([ξ, 1], [1, v, ξv − t, ξ

2
v − tξ], t).

(ξ, η, t) ↦ ([ξ, 1], [η, 1, ξ − tη, ξ
2
− tξη], t).

The deformation from F2 to F0 is given by

{x0(y1, y2) = x1(y2 + ty0, y3)} = Mt ⊂ P1
× P3

,

x0y1 = x1y2 + tx1y0

x0y2 = x1y3

Lemma 6.3. T
∗P1 deforms to O2.

Figure 6.2: T
∗P1 deforms to O2

Proof. We will use the family π∶M → C given in Lemma 6.2 deforming the Hirzebruch
surface F2 to F0, written as the points ([x0, x1], [y0, y1, y2, y3], t) ∈ P1×P3×C satisfying
the equation

x0(y1, y2) = x1(y2 + ty0, y3).

Here π
−1(0) ≃ F2 and for t ≠ 0 we have that π

−1(t) ≃ F0 ≃ P1 × P1.
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The orbit O2 may be written in coordinate charts as U = {(z, u) ∈ C2} and V =

{(ξ, v) ∈ C2} with transition function

(ξ, v) ↦ (z−1, z2u + tz),

where we have z =
x1

x0
, ξ =

x0

x1
, u = y3, and v = y1. The family M → C deforming T

∗P1

to O2 admits an embedding
j∶M → M (6.1)

given by

(z, u, t) ↦ ([1, z], [1, z2u + tz, zu, u], t)
(ξ, v, t) ↦ ([ξ, 1], [1, v, ξv − t, ξ

2
v − tξ], t).

Note that in these coordinates, t = 0 and y1 = y2 = y3 = 0 give the zero section of T ∗P1.

Claim 6.4. The section at infinity σ∞ is:

σ∞(z, t) = ([1, z], [0, z2, z, 1], t) on U,

σ∞(ξ, t) = ([ξ, 1], [0, 1, ξ, ξ2], t) on V.

Proof of the claim. Note that

[1, z2u + tz, zu, u] = [1/u, z2 + tz/u, z, 1]
[1, v, ξv − t, ξ

2
v − tξ] = [1/v, 1, ξ − t/v, ξ2 − tξ/v]

So, by taking the limit when u → ∞ and v → ∞, i.e., 1/u → 0 and 1/v → 0 we obtain
the section at infinity:

lim
u→∞

(z, u, t) ↦ ([1, z], [0, z2, z, 1], t),

lim
v→∞

(ξ, v, t) ↦ ([ξ, 1], [0, 1, ξ, ξ2], t).

Example 6.5. (LG1 ⟿ LG2) We now revisit the family LG1 ⟿ LG2 presented in
Example 2.7, commenting on the dual family.

Using Definition 5.1 with c = −2, n = 1 and coordinates [1, x1], y1 for the cotangent
bundle T

∗P1, the potential h−2∶T
∗P1

→ C can be written as

h−2([1, x1], y1) = −2x1y1 − 2, h−2([0, 1], v1) = −2.

As seen in Example 6.1, toric duality gives the dual LG∨
1 as defined over a variety having

a single divisor with a potential formed by 3 monomials, hence not isomorphic to LG1.
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2x 2x

Figure 6.3: LG1 to LG2

We now discuss the dual of the Landau–Ginzburg model LG2 = (O1, fH), where
O1 is the semisimple adjoint orbit of sl(2,C), together with the potential fH given by
the height function fH(x, y, z) = 2x. To start with, toric duality can not be applied in
this case, because the orbit O1 is not a toric variety. So, an entire new recipe is needed.

The recipe for intrinsic mirrors by Gross and Siebert [19] produces the desired dual
Landau–Ginzburg model, which was described in [14]. We summarise the construction.

The compactification mentioned in Remark 4.7, applied to the case when n = 1

gives P1 × P1
= O1 ∪∆ where ∆ is the diagonal. To construct the intrinsic mirror, we

start with the pair (P1 × P1
,∆). Since Gross and Siebert work under the hypothesis of

log geometry, we need a pair (X,D), where D is an anticanonical divisor. In this case,
an anticanonical divisor has type (2, 2). So, we choose an additional divisor ∆

′ of type
(1, 1) such that ∆ ∩∆

′
= {p1, p2} consists of 2 points.

Let X̃ denote the blow up of P1 × P1 at these 2 points. We then study the pair

(X̃,D) with D = D1 +D2 +D3 +D4

where D2 and D4 are the proper transforms of ∆′ and ∆ respectively, and D1 and D3

are the exceptional curves obtained from blowing up the 2 points; thus D
2
1 = D

2
3 = −1.

Calculating theta functions following the Gross–Siebert intrinsic mirror symmetry
recipe, [14] arrives at the variety given by

ϑ2ϑ4 = αϑ1 + βϑ
−1
1 + γ (6.2)

with potential ϑ2.
Changing to more standard algebraic coordinates x ∶= ϑ1, y ∶= ϑ2 and compactify-

ing the direction ϑ4 to P1 with coordinates [u ∶ v], our problem is then to study the
surface S ⊂ C∗ × C × P1

= {(x, y), [u ∶ v]} given by

S ∶= {uy = v(x + 1 + 1/x)}

with potential
y = v(x + 1 + 1/x)/u.

The Landau–Ginzburg model LG
∨
2 = (S, y) is the dual of LG2. Denoting by

Dsg LG
∨
2 the Orlov category of singularities of LG

∨
2 , [14, Sec. 3.3] proves the equiva-
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y

2x

N

S

Figure 6.4: LG2 and its mirror

lence
Dsg LG

∨
2 ≡ FukLG2 .

Note that here, LG∨
2 is quite different from LG2, for instance, the potential y has

the 2 singularities of LG∨
2 occurring on the same fibre of the potential, unlike the po-

tential 2x of LG2 for which the singularities occur in different fibres, as described in
Figure 6.

So that the mirror of the Landau–Ginzburg model geometrically resembles the ro-
tation by 90 degrees of the original one.
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