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1 Introduction

In this work, we present a study of the spectrum of homogeneous linear
differential operators with constant coefficients on an open set Ω ⊂ Rn

given by

a(D) : Hs+m
0 (Ω;E) ⊂ Hs

loc(Ω;E) −→ Hs
loc(Ω;E), s ∈ R,

where Hs
loc(Ω;E) is the E−valued localized Sobolev space of order s on Ω

and Hs
0(Ω;E) is the closure of C∞c (Ω;E) with the topology of Hs(Rn;E)

for E a finite dimensional complex vector space. Our main result is the
following:

Theorem A. Let s ∈ R and m ∈ N. Consider a(D) : Hs+m
0 (Ω;E) ⊂

Hs
loc(Ω;E) → Hs

loc(Ω;E) an elliptic homogeneous linear differential oper-
ator of order m with constant coefficients. Then the spectrum does not
depend of s and moreover

σ(a(D)) = σ
(
a(D)

)
= σp

(
a(D)

)
= C.

1.1 Preliminary concepts and results

We begin by defining Fréchet spaces, their duals and their topology.

Definition 1.1. Let X be a topological vector space. We say that X is
said to be a Fréchet space if it is Hausdorff, complete and its topology is
given by a countable family of seminorms (pj)j∈N.

Some examples of Fréchet spaces are the Schwartz space S(Rn), the
set of smooth functions C∞(Ω) and the localized Sobolev spaces Hs

loc(Ω)

for s ∈ R, where Ω ⊂ Rn is an open set. We denote by X ′ the dual of the
Fréchet space X equipped with the weak* topology which is also generated
by a family of semi-norms.
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1.1.1 Sobolev spaces

Definition 1.2. Let Ω ⊂ Rn an open set. The Sobolev space H1(Ω) is
the set of function u ∈ L2(Ω) such that there exists gα ∈ L2(Ω) satisfying∫

Ω
u(x)∂αφ(x)dx = −

∫
Ω
gα(x)φ(x)dx, (1.1)

for all φ ∈ C∞(Ω) and |α| = 1.

The functions gα, usually denoted by ∂αu, are said to be the weak
α−derivatives of u. Moreover, the usual topology of H1(Ω) is determined
by the norm ‖u‖H1(Ω)

.
=

∑
0≤|α|≤1

‖∂αu‖L2(Ω). Given a natural number m ≥

2, the Sobolev space Hm(Ω) is defined inductively as the set of u ∈
Hm−1(Ω) such that ∂αu ∈ Hm−1(Ω) for each |α| = 1 and its usual topol-
ogy is defined by the norm ‖u‖Hm(Ω)

.
=

∑
0≤|α|≤m

‖∂αu‖L2(Ω) (if Ω = Rn we

will denote ‖ · ‖Hm(Ω) by ‖ · ‖Hm). We define Hm
0 (Ω) as the closure of

C∞c (Ω) in Hm(Ω) with the induced topology.
The next theorem, which can be seen in [3], gives an alternative way

to describe the space Hm(Rn) by using the Fourier transform.

Theorem 1.3. For each m ∈ N, the Sobolev space Hm(Rn) is char-
acterized by the set of u ∈ S ′(Rn) such that û is a measurable func-
tion with (1 + |ξ|2)m/2û ∈ L2(Rn). Furthermore, the norm ‖u‖m

.
=∥∥(1 + | · |2)m/2û

∥∥
L2(Rn)

is equivalent to ‖ · ‖Hm .

This result suggests a way to define Sobolev spaces for real values:

Definition 1.4. Let s ∈ R. We say a tempered distribution u ∈ S ′(Rn)

belongs to Hs(Rn) if (1 + | · |2)s/2û ∈ L2(Rn).

Given an open set Ω ⊂ Rn and s ∈ R we define the localized Sobolev
space of order s on Ω as

Hs
loc(Ω) =

{
u ∈ D′(Ω);φu ∈ Hs(Rn), ∀ φ ∈ C∞c (Ω)

}
.
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The space Hs
loc(Ω) is a Fréchet space and its semi-norms are given by

pj(u)
.
= ‖φju‖Hs , where φj = 1 in Ωj , φj ∈ C∞c (Ωj+1) and Ωj ⊂ Ω is a

sequence of open sets that exhaust Ω, precisely Ω = ∪j∈NΩj , Ωj ⊂ Ωj+1

and Ωj is compact for every j ∈ N. Finally we denote Hs
0(Ω) as the closure

of C∞c (Ω) with the topology of Hs(Rn) and clearly Hs
0(Ω) ⊂ Hs

loc(Ω).
Naturally we can defineHs

0(Ω;E) andHs
loc(Ω;E) for E a finite dimensional

complex vector space extending for each component.

1.1.2 Elliptic homogeneous differential operators

Let a(D) : C∞(Ω;E) → C∞(Ω;F ) a homogeneous linear differential
operator of orderm with constant coefficients given by a(D) =

∑
|α|=m

aα∂
α,

with aα ∈ L(E;F ) where E and F are finite dimensional complex vector
spaces. We denote by a(ξ) : E → F the symbol of the operator a(D) by

a(ξ) =
∑
|α|=m

aαξ
α, ξ ∈ Rn.

We say that a(D) is elliptic if the symbol a(ξ) is injective for ξ 6= 0.

Remark 1.5. Observe that if a(D)as before is elliptic follows by defini-
tion that there exists a multi-index |β| = m such that aβ ∈ L(E;F ) is
injective. Indeed, by definition, the symbol a(ξ) is injective for each ξ 6= 0,
so choosing ξ := ej 6= 0 the j-canonical vector in Rn and βj := m · ej for
any 1 ≤ j ≤ n we have a(ej) = aβj : E → F injective.

Next we present an important definition in this work extended for
vector values.

Definition 1.6. ([4]) Given m ∈ R, a linear operator A : C∞c (Ω;E) →
C∞(Ω;F ) is said to be an operator of orderm on real scales of vector valued
localized Sobolev space if A extends to a linear operator As : Hs+m

0 (Ω;E) ⊂
Hs+m
loc (Ω;E)→ Hs

loc(Ω;F ) for every s ∈ R.

Examples of operators of order m on real scales of localized Sobolev
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space are given by the class of pseudodifferential operators in the Hörman-
der class p(x,D) ∈ OpSm1,0(Ω) (see [4, Theorem 5.19]) defined by

a(x,D)u(x) =

∫
e2πix·ξa(x, ξ)û(ξ)dξ, u ∈ S ′(Rn), (1.2)

where û is the Fourier transform of u (also denoted by Fu) associated to
the class of symbols a = a(x, ξ) ∈ Sm1,0(Ω×Rn) given by a smooth function
satisfying the following estimates

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β 〈ξ〉m−|β| , α, β ∈ Zn+

with 〈ξ〉 := (1+|ξ|2)1/2. Clearly a homogeneous linear differential operator
a(D) with order m defined previously belongs to the class OpSm1,0(Ω).

1.1.3 Closed operators and spectrum

Consider a Fréchet space X and a linear operator A : D(A) ⊂ X → X.
Analogous to Banach spaces we present the following definitions:

Definition 1.7. The graph of A is the set

G(A) = {(u,Au) : u ∈ D(A)} ⊂ X ×X.

The operator A is said to be a closed operator if its graph G(A) ⊂ X ×X
is a closed set.

Definition 1.8. We say that A is a closable, if there exists a closed linear
operator A : D

(
A
)
⊂ X → X, with D(A) ⊂ D

(
A
)
and Au = Au, for

each u ∈ D(A).

Definition 1.9. LetX be a complex Fréchet space and A : D(A) ⊂ X −→
X be a linear operator. The resolvent set of A, denoted by ρ(A), is the
set of all λ ∈ C such that:

(a) The operator λ−A : D(A) ⊂ X −→ X is injective.

(b) The range of λ−A : D(A) ⊂ X −→ X is dense in X.
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(c) The inverse (λ−A)−1 : R(λ−A) ⊂ X −→ X is continuous.

If λ ∈ ρ(A), the operator (λ−A)−1 : R(λ−A) ⊂ X −→ X is called the
resolvent of A on λ. We denote the spectrum of A by σ(A) := C \ ρ(A).

For a closed operator A, we classify the spectrum in three types:

(a) Point Spectrum: the set of λ ∈ C such that λ−A is not injective
denoted by σp(A);

(b) Residual Spectrum: the set of λ ∈ C such that λ−A is injective
with R(λ−A) 6= X denoted by σr(A);

(c) Continuous Spectrum: the set of λ ∈ C such that λ − A is
injective, R(λ−A) = X but (λ − A)−1 : R(λ − A) → X is not
continuous denoted by σc(A).

Note that σ(A) = σp(A) ∪ σr(A) ∪ σc(A).

The next result presented in [5] allows us to study the spectrum of a
closable operator A by means of the spectrum of its closure A

Theorem 1.10. Consider X a Fréchet space. If A : D(A) ⊂ X −→ X is
closable then

(i) ρ(A) =
{
λ ∈ C : λ−A : D(A) −→ X is bijective};

(ii) σ(A) = σ
(
A
)
, where A : D

(
A
)
⊂ X −→ X is its closure.

2 Closure of an elliptic homogeneous differential
operator

The goal of this section is to calculate the closure of an elliptic ho-
mogeneous linear differential operator with constant coefficients a(D) of
order m ≥ 1 on Hs

loc(Ω;E). We start constructing a convenient method of
approximation (see [3] by motivation) in the scalar case.

Let Ω ⊂ Rn be an open set and s ∈ R. Given a function u ∈ Hs
loc(Ω),

consider the natural extension
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ue(x) =

{
u(x), ifx ∈ Ω

0, ifx ∈ Rn \ Ω.

Now let (Ωj)j∈N a sequence of open bounded sets with Ω =
⋃
j∈NΩj ,

Ωj ⊂ Ωj+1 and d(Ωj ,R
n \ Ω) ≥ 2/j. Consider gj(x) = χΩj (x) · ue(x),

where χΩj is the characteristic function of Ωj , and uj = φj ? gj , where
φj(x) = jnφ(jx) with φ ∈ C∞c (B1(0)), φ ≥ 0 and

∫
Rn φ(x)dx = 1. Clearly

gj ∈ Hs(Rn) and uj ∈ C∞c (Ω).

Theorem 2.1. Let s ∈ R and u ∈ Hs
loc(Ω). For each j ∈ N the sequence

uj
.
= φj ? (χΩjue) ∈ C∞c (Ω) converges to u in Hs

loc(Ω).

In order to prove the Theorem 2.1 we will need some ingredients. The
first is a version of Minkowski’s inequality for integrals in Hs norm.

Lemma 2.2. Suppose that f : Rn × Rn → C is a measurable function
and let s ≥ 0. If f(·, y) ∈ Hs(Rn) for a.e. y ∈ Rn and the function
y 7→ ‖f(·, y)‖Hs(Rn) is in L1(Rn) then f(x, ·) ∈ L1(Rn) for a.e. x ∈ Rn,
the function x 7→

∫
f(x, y)dy is in Hs(Rn) and moreover∥∥∥∥∫ f(·, y)dy

∥∥∥∥
Hs

≤
∫
‖f(·, y)‖Hsdy.

Proof. Given a measurable function f : Rn × Rn → C satisfying the hy-
potheses of the theorem we may define

g(ξ, y) = (1 + |ξ|2)s/2
∫
Rn

e−2πixξf(x, y)dx,

which is well defined for a.e. y ∈ Rn. It follows that g(·, y) ∈ L2(Rn)

for a.e. y ∈ Rn and ‖g(·, y)‖L2 = ‖f(·, y)‖Hs is in L1(Rn), so by the
Minkowski’s inequality for integrals

ξ 7→
∫
Rn

g(ξ, y)dy :=

∫
Rn

(1 + |ξ|2)s/2
(∫

Rn

e2πixξf(x, y)dx

)
dy

is in L2(Rn) for a.e. ξ ∈ Rn and
∥∥∫ g(·, y)dy

∥∥
L2 ≤

∫
‖g(·, y)‖L2 .
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Now observe that x 7→
∫
Rn f(x, y)dy is in L2(Rn) a.e. x ∈ Rn, because

f(·, y) ∈ Hs(Rn) ⊂ L2(Rn) for s ≥ 0, then (1+|ξ|)s/2F
[∫
Rn f(·, y)dy

]
(ξ) =∫

Rn g(ξ, y)dy, thus∥∥∥∥∫ f(·, y)dy

∥∥∥∥
Hs

=

∥∥∥∥∫ g(·, y)dy

∥∥∥∥
L2

≤
∫
‖g(·, y)‖L2dy =

∫
‖f(·, y)‖Hsdy

as we wanted to prove.

For u ∈ D′(Rn) and y ∈ Rn we define τyu ∈ D′(Rn) by 〈τyu, φ〉 :=

〈u, τ−yφ〉, for all φ ∈ C∞c (Rn) where τ−yφ(x) = φ(x− y).

Lemma 2.3. The translation τy : Hs(Rn) → Hs(Rn) is an isometry.
Moreover ‖u− τyu‖Hs → 0 as y → 0.

Proof. If u ∈ S ′(Rn) and ψ ∈ S(Rn) notice that (τyu)∧ satisfies

〈(τyu)∧, ψ〉 = 〈u, τ−yψ̂〉 = 〈u, (e−2πixyψ)∧〉 = 〈e−2πixyû, ψ〉,

so (τyu)∧ = e−2πixyû. Finally given u ∈ Hs(Rn) we have that

(1 + |ξ|)s/2|(τyu)∧(ξ)| = (1 + |ξ|)s/2|e−2πixyû(ξ)| = (1 + |ξ|)s/2|û(ξ)|

which implies that ‖(τyu)∧‖Hs = ‖u‖Hs , i.e., τy is an isometry. The second
part follows by Dominated Convergence Theorem.

Given ϕ` ∈ C∞c (Ω) from the seminorms of Hs
loc(Ω), now we are going

to calculate ‖ϕ`(uj − u)‖Hs . Let s ≥ 0 therefore it follows that

ϕ`(uj − u)(x) =

∫
B1/j

φj(y)[ϕ`(u− τ−yu)](x)dy, (2.1)

for x ∈ Ω`+1, j ≥ l + 1 and j sufficiently large. Indeed, first note that

(ϕ`uj)(x) = ϕ`(x)[φj ? (χΩju)](x) = ϕ`(x)

∫
B1/j(0)

φj(y)(χΩju)(x− y)dy.

For x ∈ Ω`+1, since supp ϕ` ⊂ Ω`+1 and y ∈ B1/j(0), there exists
j0 ∈ N such that for all j ≥ max {j0, l + 1} we have that x − y ∈ Ω`+1 +
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B1/j(0) ⊂ Ωj so χΩj (x − y) = 1 and consequently ϕ`(x)(χΩju)(x − y) =

(ϕ`τ−yu)(x). So we conclude that

(ϕ`uj)(x) =

∫
B1/j

φj(y)(ϕ`τ−yu)(x)dy. (2.2)

Since Hs(Rn) ⊂ L2(Rn) for s ≥ 0 and
∫
B1/j

φj(y)dy = 1, then we may
write

(ϕ`u)(x) =

∫
B1/j

φj(y)(ϕ`u)(x)dy. (2.3)

Combining (2.2) and (2.3) we obtain the identity (2.1).
Equipped with the above tools we can extend the results [1, Lemma

2.11 and Theorem 2.12] and prove the convergence of the above sequence
for all s ∈ R.

Proof of Theorem 2.1. First suppose s ≥ 0 and the control

‖ϕ`(u−τ−yu)‖Hs ≤ ‖ϕ`u−τ−y(ϕ`u)‖Hs +‖(ϕ`−τ−yϕ`)(τ−yu)‖Hs , (2.4)

since [τ−y(ϕ`u)](x) = (τ−yϕ`)(x)(τ−yu)(x). Note that supp (τ−yϕ`) ⊂
Ω`+1 +B1/j(0) ⊂ Ω`0 for some l0 ∈ N, then

(ϕ` − τ−yϕ`)(τ−yu) = (ϕ` − τ−yϕ`)(ϕ`0+1τ−yu).

Since ϕ`0 = 1 in Ω`0 then

‖(ϕ` − τ−yϕ`)(τ−yu)‖Hs = ‖(ϕ` − τ−yϕ`)(ϕ`0τ−yu)‖Hs

≤ Cs‖(ϕ` − τ−yϕ`)‖Hs ‖(ϕ`0τ−yu)‖Hs ,

for some Cs > 0 (note that ϕ` − τ−yϕ` ∈ C∞c (Ω) then there is not the
restriction s > n/2 for the product in Hs). Thus ϕ`0τ−yu = τ−y [(τyϕ`0)u]

which implies that ‖ϕ`0τ−yu‖Hs = ‖ (τyϕ`0)u‖Hs .

Furthermore, by the exaustion of Ω there exists l1 ∈ N such that
supp [τyϕ`0 ] ⊂ Ω`0+1 + B1/j(0) ⊂ Ω`1 for |y| < 1/j and j ≥ l1 which
implies τyϕ`0 = (τyϕ`0)ϕ`1 and

‖ (τyϕ`0)u‖Hs = ‖ (τyϕ`0)ϕ`1u‖Hs ≤

≤ Cs‖τyϕ`0‖Hs‖ϕ`1u‖Hs = Cs‖ϕ`0‖Hs‖ϕ`1u‖Hs .
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In other words, there exists Ks,l0 > 0 with ‖(τyϕ`0)u‖Hs ≤ Ks,l0‖ϕ`1u‖Hs .

Now, by the Lemma 2.3, for every ε > 0 there exists j0 ∈ N such that
for every j ≥ j0 we have ‖(ϕ` − τ−yϕ`)‖Hs ≤ ε(2Ks‖ϕ`1u‖Hs)−1 and

‖ϕ`u− τ−y(ϕ`u)‖Hs(Rn) ≤ ε/2 for every y ∈ B1/j(0).

Analogously ‖ϕ`u− τ−y(ϕ`u)‖Hs ≤ ε/2 and then from (2.4) we have

‖ϕ`(u− τ−yu)‖Hs ≤ ε (2.5)

for y ∈ B1/j(0) and j ≥ j0.
In order to conclude the theorem follows from the identity (2.1) and

Lemma 2.2 with f(x, y)
.
= φj(y)[ϕ`(u− τ−yu)](x) that

‖ϕ`(uj − u)‖Hs =

∥∥∥∥∫ f(·, y)dy

∥∥∥∥
Hs

≤
∫
‖f(·, y)‖Hsdy

Observe that f(·, y) ∈ Hs(Rn) for each y ∈ B1/j(0), because

‖f(·, y)‖Hs ≤ φj(y)‖ϕ`(u− τ−yu)‖Hs ≤ εφj(y)

and then y 7→ χB1/j(0)‖f(·, y)‖Hs is in L1(Rn) since
∫
φj(y)dy = 1 and

j ≥ j0. So ‖ϕ`(uj − u)‖Hs ≤ ε for j ≥ j0 por each ` ∈ N, thus uj → u in
the topology of Hs

loc(Ω) for s ≥ 0.

Now we are moving on to s < 0. SinceHs(Rn) is isomorphic to the dual
space of H−s(Rn) for s > 0, the proof follows by duality. If g ∈ H−sloc (Ω)

then gj
.
= φj ? (χΩjge) converges to g in H−sloc (Ω) when

〈ϕ`g, u〉 = lim
j→∞
〈ϕ`gj , u〉, ∀u ∈ Hs(Rn) and ` ∈ N.

Note that, for each ` ∈ N and u ∈ Hs(Rn) we have that

〈ϕ`gj , u〉 = 〈gj , ϕ`u〉 =
〈
g, χΩj

[
φ̃j ? (ϕ`u)

]〉
where φ̃j(x) := φj(−x), x ∈ Rn and j ∈ N. Moreover, for j suffi-
cient large supp [φ̃j ? (ϕ`u)] ⊂ Ω`+1 + B1/j(0) ⊂ Ω`+2 ⊂ Ωj and then
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χΩj

[
φ̃j ? (ϕ`u)

]
= φ̃j ? (ϕ`u). Since φ̃j ? v

Hs

−−→ v and taking v = ϕ`u we

have that φ̃j ? (ϕ`u)
Hs

−−→ ϕ`u and consequently

〈ϕ`gj , u〉 =
〈
g, φ̃j ? (ϕ`u)

〉
−→ 〈g, ϕ`u〉 = 〈ϕ`g, u〉

as j →∞, as desired.
Now we use the previous theorem to calculate the closure of an elliptic

homogeneous differential operator.

Theorem 2.4. Let a(D) : Hs+m
0 (Ω;E) ⊂ Hs

loc(Ω;E)→ Hs
loc(Ω;F ) be an

elliptic homogeneous linear differential operator with constant coefficients
of order m with s ∈ R and m ∈ N. Then its closure is given by

a(D) : Hs+m
loc (Ω;E) ⊂ Hs

loc(Ω;E) −→ Hs
loc(Ω;F )

with a(D) and a(D) are given by the same formula.

Proof. Let a(D) : D
[
a(D)

]
⊂ Hs

loc(Ω;E) −→ Hs
loc(Ω;F ) be the closure of

a(D) where

D
[
a(D)

]
=
{
u ∈ Hs

loc(Ω;E); ∃ (uj)j∈N ⊂ Hs+m
0 (Ω;E) and

f ∈ Hs
loc(Ω;F ) s.t. uj

Hs
loc−−−→ u and a(D)uj

Hs
loc−−−→ f

}
.

We claim that D
[
a(D)

]
= Hs+m

loc (Ω;E). If u ∈ D
[
a(D)

]
then there

exists a sequence (uj)j∈N ⊂ Hs+m
0 with uj

Hs
loc−−−→ u and a(D)uj

Hs
loc−−−→ f for

some f ∈ Hs
loc(Ω;F ). Thus, a(D)u = f in D′(Ω;F ) and as f ∈ Hs

loc(Ω;F )

follows from [2, Theorem 6.33], under ellipticity of a(D), which implies
that u ∈ Hs+m

loc (Ω;E).
Conversely, if u ∈ Hs+m

loc (Ω;E) we have that f := a(D)u ∈ Hs
loc(Ω;F ).

Let uj = ϕj?(χΩjue) for j ∈ N as Theorem 2.1 applied for each component
of u, then

uj
Hs+m

loc−−−−→ u =⇒ ∂αuj
Hs

loc−−−→ ∂αu =⇒ aα∂
αuj

Hs
loc−−−→ aα∂

αu

for |α| = m. Thus, a(D)uj
Hs

loc−−−→ a(D)u ∈ Hs
loc(Ω;F ) and the conclusion

follows.
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3 Proof of Theorem A

Let d := dimE and aβ ∈ L(E;E) invertible for β := m·e1 for simplicity
(see Remark 1.5). Consider the decomposition

a(D) = b(D) +
∑
α 6=β

aα∂
α

where b(D) = aβ
∂m

∂xm1
is a homogeneous differential operator with constant

coefficients of order m only in the variable x1.

We claim that for every λ ∈ C, the one dimensional differential operator
λIE−b(D) has a solution in C∞(R;E)\{0}. Since aβ is a complex matrix
invertible, there exists a basis of E such that aβ is upper triangular. After
change of coordinates, we may assume

aβ =


c11 c12 c13 . . . c1d

0 c22 c23 . . . c2d

...
...

...
. . .

...
0 0 0 . . . cdd


with cjk ∈ C for 1 ≤ j, k ≤ d and Πd

j=1cjj 6= 0. Thus a solution for
b(D)u = λu can be rewritten as

c11
∂mu1

∂xm1
+ c12

∂mu2

∂xm1
+ . . .+ c1d

∂mud
∂xm1

= λu1

c22
∂mu2

∂xm1
+ . . .+ c2d

∂mud
∂xm1

= λu2

...

cdd
∂mud
∂xm1

= λud,

where u(x) = (u1(x), . . . , ud(x)). Let f(s) = eξ0s and F (s) = (f(s), 0, . . . , 0)

where F : R → Cd and ξ0 is a complex root of p(t) = c11t
m − λ. Clearly

b(D)F = λF.
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Defining u(x1, . . . , xn) := F (x1) ∈ C∞(Ω;E)\{0} we have that ∂αu =

0 for α 6= β so

a(D)u = b(D)u+
∑
α 6=β

aα∂
αu = b(D)F = λF = λu,

i.e. [λIE − a(D)]u = 0 for u ∈ C∞(Ω;E) \ {0} and then λ ∈ σp
(
a(D)

)
.

Therefore

C ⊂ σp
(
a(D)

)
=⇒ σ

(
a(D)

)
= σp

(
a(D)

)
= C.

Combining the Theorem 2.4 and the Theorem A, analogous in [1] for
dimension one, we may conclude the following:

Corollary 3.1. Let s ∈ R. The Laplace operator ∆ : Hs+2
0 (Ω) ⊂ Hs

loc(Ω) −→
Hs
loc(Ω) and its closure ∆ : Hs+2

loc (Ω) ⊂ Hs
loc(Ω) −→ Hs

loc(Ω), have resol-
vent set empty and their spectra are the whole plane, in the other words

σ(∆) = σ
(
∆
)

= σp
(
∆
)

= C.
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