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Abstract. We deal with solvability in Denjoy-Carleman classes of
complex vector fields defined on Ω = R × S1, given by L = ∂/∂t +

(a(x, t)+ib(x, t))∂/∂x, b 6≡ 0, near the characteristic set Σ = {0}×S1.
We assume that L vanishes of first order along Σ and that a certain
invariant associate to L is an irracional number.
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1 Introduction

Let M = {mj}j∈Z+ be a sequence of real numbers satisfying the fol-
lowing assumptions:

(M.1) (initial condition) m0 = m1 = 1;

(M.2) (logarithmic convexity) m2
j ≤ mj−1 ·mj+1, ∀j ≥ 1;
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(M.3) (moderate growth) supj,k

(
mj+k

mj ·mk

)1/(j+k)

≤ H, for some H > 1.

Let Ω = R× S1, where S1 is the unit circle.
We say that a complex-valued function f ∈ C∞(Ω) is ultradifferen-

tiable of class M if for each compact set K ⊂ Ω there are constants
C, h > 0 such that

|Dαf(x)| ≤ C · h|α| ·m|α| · |α|!, ∀x ∈ K, ∀α ∈ Z2
+.

We denote EM(Ω) the space of ultradifferentiable functions of classM in
Ω. Such classes of functions are called Denjoy-Carleman classes of Romieu
tipe. For more about Denjoy-Carleman classes see, for instance, [8], [14],
and [17].

The space EM(Ω) is a ring (with usual operations); also, it is closed
for composition and for derivation.

Classical spaces of ultradifferentiable functions are the so-called Gevrey
spaces. For s ≥ 1, the s-Gevrey space is the set of ultradifferentiable
functions of class M = {j!s−1} in Ω, usually denoted by Gs(Ω). Hence,
G1(Ω) is the space of real-analytic functions on Ω. For more about Gevrey
functions see [15].

Let
L = ∂/∂t+ (a(x, t) + ib(x, t))∂/∂x, b 6≡ 0, (1.1)

be a complex vector field defined on Ω, where a and b are real-valued
functions of classM.

The characteristic set of the structure associated with L, denoted here
by C(L), is the set of all points (x, t) ∈ Ω where L fails to be elliptic, that
is:

C(L) = {(x, t) ∈ Ω ; L(x,t) and L(x,t) are linearly dependent}.

A characteristic point p is said to be of finite type k ∈ Z+ if there exists
an iterated Lie bracket of L and L of length k which is nonzero at p, and
k is minimal with this property. Otherwise, p is said to be of infinite type.
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Let Σ = {0} × S1. Throughout this paper we will assume S1 3 t 7→
(a + ib)(0, t) ≡ 0, and b(x, t) 6= 0 for x 6= 0 and for all t ∈ S1. Hence,
C(L) = Σ and each point in Σ is of infinite type.

Note that under such assumptions L satisfies the well-known Nirenberg-
Treves condition (P) for (smooth) local solvability (see [4] and [13]) and,
furthermore, near the characteristic set Σ we may write

(a+ ib)(x, t) = xn(a0(x, t) + ib0(x, t)), n ≥ 1, in Ωε = (−ε, ε)× S1,

(1.2)
where a0, b0 ∈ EM(Ωε), with 0 < ε < 1.

In this paper we will deal with the solvability of the equation Lu = f

in classes of ultradifferentiable functions, in a full neighborhood of Σ, and
we will be concerned with the situation where

n = 1,

∫ 2π

0
a0(0, t)dt = 0, b0(0, t) 6= 0 for all t ∈ S1 , (1.3)

and the Meziani number λ (an invariant attached to L (see [12])) satisfies

λ
.
=

∫ 2π

0
b0(0, t)dt ∈ R \Q . (1.4)

It is a follow-up to the paper [1], where the problem was considered in
Gevrey classes.

Motived by [1], we will consider the following notion of solvability:
given a sequence of real numbersM = {mj}j∈Z+ satisfying (M.1)-(M.3),
and assuming that coefficients of L are in EM(Ω), we say that L is EM−sol -
vable at Σ if for any f belonging to a subspace of finite codimension of
EM(Ω) there exists a solution u ∈ EM to the equation Lu = f defined in
a neighborhood of Σ.

It was showed in [1] that:

Theorem 1.1. Let s ≥ 1. Let L be a complex vector field defined on Ω

in the form (1.1). Assume that the coefficients of L are in Gs(Ω) and
satisfy (1.2), (1.3), and (1.4). Then, L is not Gs-solvable at Σ.
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Theorem above is related to results in [3] and [6], where solvability was
studied both in the smooth and in the real-analytic cases.

Now, for a sequenceM = {mj}j∈Z+ consider the following property:

(M.4) there is a constant A > 1 such that for all p ≥ 1,

∞∑
j=p

mj

mj+1 · (j + 1)
≤ A mp

mp+1

A sequence of real numbers M = {mj}j∈Z+ satisfying (M.1)-(M.4) is
said to be strongly regular.

It is easy to see that the sequence M = {mj}j∈Z+ , given by mj =

(j!)s−1, is strongly regular.
It follows from [16] that

Proposition 1.2. Let M = {mj}j∈Z+ be a strongly regular sequence.
Then, there are real numbers 1 < s < σ such that Gs(Ω) ⊂ EM(Ω) ⊂
Gσ(Ω).

Hence, as a consequence of theorem 1.1 and proposition 1.2, we obtain:

Theorem 1.3. Let M = {mj}j∈Z+ be a strongly regular sequence. Let L
be a complex vector field defined on Ω in the form (1.1). Assume that the
coefficients of L are in EM(Ω) and satisfy (1.2), (1.3), and (1.4). Then,
L is not EM-solvable at Σ.

By using properties of strongly regular sequences and arguing as in
[1], in this present paper we give an alternative proof of the theorem 1.3.
For this purpose we extend to ultradifferentiable classes of functions, given
by strongly regular sequences, some results previously obtained to Gevrey
classes in [1]. We present examples and some useful properties of the
class of functions (for more examples and properties see, for instance, [5]).
Also, we show that a certain Diophantine condition arised from analytic
solvability (see [3] and [6]) revels to be (actually) a necessary condition of
M-solvability for any sequenceM satisfying (M.1)-(M.3).
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2 Properties, examples and useful results

For a sequence M = {mj}j∈Z+ satisfying (M.1)-(M.3) we have the
well-known properties:

(a) {mj}j∈Z+ and {(mj)
1/j}j∈Z+ are non-decreasing sequences;

(b) mk ·mj−k ≤ mj , for all k, j ∈ Z+, j ≥ k

It follows from (M.3) that for j ≥ 2,(
mj

mj−1m1

)1/j

≤ H;

hence, for 2 ≤ k ≤ j we obtain

m
1/(k−1)
k ≤ Hk/(k−1) ·m1/(k−1)

k−1 ≤ H2 ·m1/(j−1)
j−1 ≤ H2 ·m1/(j−1)

j .

Therefore, it follows from [9] the following version of inverse mapping the-
orem:

Theorem 2.1 (Inverse Mapping Theorem). Let M = {mj}j∈Z+ be a
sequence of real numbers satisfying (M.1)-(M.3). Let U be an open subset
of Rn, p ∈ U and f ∈ EM(U,Rn). If df(p) : Rn → Rn is an isomorphism,
then there exists a neighborhood V of p and an open subset W ⊂ Rn such
that f : V →W is a diffeomorphism of class EM.

Example 2.2. Let σ > 0. The sequence given by mj = [ln(j + e− 1)]σj ,
j ∈ Z+, satisfies (M.1)-(M.3).

Next we will present examples of strongly regular sequences.

Example 2.3. The sequenceM = {mj}j∈Z+ given by m0 = m1 = 1 and

mj = j!α [ln(e+ j)]βj , for j ≥ 2,

where α > 0 and β ≥ 0, is strongly regular. Indeed, properties (M.1)-(M.3)
are easy to check. We will show (M.4). For p ≥ 2 we have
∞∑
j=p

mj

mj+1 · (j + 1)
=

∞∑
j=p

j!α [ln(e+ j)]βj

(j + 1)!α [ln(e+ j + 1)]β(j+1) (j + 1)
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=

∞∑
j=p

1

(j + 1)α+1 [ln(e+ j + 1)]β
·
(

ln(e+ j)

ln(e+ j + 1)

)βj

≤
∞∑
j=p

1

(j + 1)α+1 [ln(e+ j + 1)]β

≤
∫ ∞
p

1

xα+1 [ln(e+ x)]β
dx

=

[
− 1

αxα [ln(e+ x)]β

]∞
p

−
∫ ∞
p

β [ln(e+ x)]−β−1

αxα(e+ x)
dx

≤ 1

αpα [ln(e+ p)]β

=
1

α
·
(
p+ 1

p

)α
·
(

ln(e+ p+ 1)

ln(e+ p)

)β(p+1)

· p!α [ln(e+ p)]βp

(p+ 1)!α [ln(e+ p+ 1)]β(p+1)

≤ 1

α
· 2α · eβ · mp

mp+1
,

since(
ln(e+ p+ 1)

ln(e+ p)

)(p+1)

≤
(
e+ p+ 1

e+ p

)(p+1)

≤
(

1 +
1

1 + p

)(1+p)

≤ e .

Remark 2.4. For β = 0 the classM is the Gevrey classs of order α+ 1.

Condition (M.4) is called strong non-quasianalyticity and implies, in
particular, the well-known Denjoy-Carleman condition of non-quasianalyticity

(M.4)’
∞∑
j=0

mj

mj+1 · (j + 1)
< ∞ ;

hence, EM(Ω) contains non-zero function f which is flat at a point (x0, t0) ∈
Ω.

Recall that a sequence of real numbesM = {mj}j∈Z+ satisfying (M.4)’
is said be non-quasianalytic; outherwise,M is said be quasianalytic.

The next example shows that (M.4) is stronger than (M.4)’.
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Example 2.5. Let M = {mj}j∈Z+ be given by mj = [ln(j + e − 1)]σj ,
j ∈ Z+. Then, M is quasianalytic for 0 < σ ≤ 1, and non-quasianalytic
for σ > 1. On the other hand, M is not strongly non-quasianalytic for
any σ > 0.

LetM = {mj}j∈Z+ and N = {nj}j∈Z+ be sequences of real numbers
satisfying (M.1)-(M.3). We say thatM � N if the following condition is
satisfied

sup
j∈Z+

(
mj

nj

)1/j

<∞.

IfM� N and, also, N �M, we denoteM≈ N .
It is easy to verify that � is reflexive and transitive; hence, ≈ is an

equivalence relation.
It follows from [17] that EM(Ω) ⊂ EN (Ω) if and only ifM� N .

Example 2.6. G1(Ω) ⊂ EM(Ω) for any sequence M satisfying (M.1)-
(M.3).

Example 2.7. If 1 ≤ s ≤ σ then Gs(Ω) ⊂ Gσ(Ω) .

Example 2.8. Let s ≥ 1 and let M be given in example 2.3, with α =

s− 1. Then, Gs(Ω) ⊂ EM(Ω).

Example 2.9. Let M = {mj}j∈Z+ and Mσ = {(mj)
σ}j∈Z+ , with 0 <

σ < 1. Then, EMσ(Ω) ⊂ EM(Ω). Indeed, for 0 < σ < 1 we have

sup
j∈Z+

(
mσ
j

mj

)1/j

≤ 1.

For strong non-quasianalitic sequences we have the following version
of Borel’s theorem (see [14] - Theorem 2.1 (a)(ii); also, [17]):

Theorem 2.10. Let M be a strongly regular sequence. Let {αJ}J∈Z2
+
be

a sequence in C, satisfying

|αJ | ≤ B|J |+1 ·m|J | · J !, (2.1)

for some constant B > 0. Then, there is f ∈ EM(R2) such that ∂Jf(0, 0) =

αJ .
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Note that the sequenceM = {mj}j∈Z+ given in example 2.3 satisfies
the following property: Mσ = {(mn)σ}n∈Z+ is strongly regular for any
σ > 0. Actually, as can be seen below, this property is satisfied for any
strongly regular sequence.

Lemma 2.11. [16, Lema 1.3.4] Let M = {mj}j∈Z+ be a strongly re-
gular sequence. Then, for any real number σ > 0, the sequence Mσ =

{(mj)
σ}j∈Z+ is strongly regular.

3 Solvability results

Let M = {mj}j∈Z+ be a sequence of real numbers satisfying (M.1)-
(M.3).

Let L be given by (1.1). Assume that the coefficients of L are in EM(Ω)

and satisfy (1.2)-(1.4).
Let f ∈ EM(Ω) and assume that there is u ∈ EN (Ω), with M � N ,

solution to Lu = f in a neighborhood of Σ. Then,∫ 2π

0
f(0, t)dt =

∫ 2π

0
Lu(0, t)dt =

∫ 2π

0

∂u

∂t
(0, t)dt = 0 . (3.1)

Since the invariant λ given by (1.4) is an irrational number, (3.1) is the
unique compatility condition for the equation Lu = f (see, for instance,
[7]).

Define
FM = {f ∈ EM ; f satisfies (3.1)} .

ForM� N , we say that L is (N ,M)-solvable at Σ if for any f ∈ FM
there exist u ∈ EN (Ω) solution to Lu = f in a neighborhood of Σ.

The same arguments used in the proof of the necessity of Proposi-
tion 3.2 of [6] can be used to prove that:

Proposition 3.1. Let M and N be sequences of real numbers satisfying
(M.1)-(M.3). Assume thatM� N . Let L be a complex vector field defined
on Ω in the form (1.1). Assume that the coefficients of L are in EM(Ω)
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and satisfy (1.2)-(1.4). If L is (N ,M)-solvable at Σ then L is equivalent,
via a N diffeomorphism, to a non-vanishing multiple of

Lλ = ∂/∂t+ iλx∂/∂x . (3.2)

.

Proof. In order to keep this work as self-contained as possible we will
include here the arguments used in [6].

Let Z(x, t) = x1/λeit be defined in Ω. For x 6= 0 we have LλZ = 0,
and dZ 6= 0; that is, Z is a first integral of Lλ in Ω \ Σ.

We will look for a diffeomorfism in the form

x 7→ xX(x, t), t 7→ −t+ T (x, t) (3.3)

such that
W (x, t)

.
= (xX)1/λei(−t+T )

satisfies LW = 0.
We may write

(a+ ib)(x, t) = x(a0(x, t) + ib0(x, t)) , in Ωε = (−ε, ε)× S1,

where a0, b0 ∈ EM(Ωε), with 0 < ε < 1.
For x ∈ (−ε, ε) a simple calculation shows that

L{λ−1 lnx− it} = −i+ λ−1(a0 + ib0)(x, t)
.
= f(x, t).

Moreover, by using our assumptions we have∫ 2π

0
f(0, t)dt = −2πi+ 2πi = 0 ; (3.4)

in particular, the function f belongs to EM(Ωε) and satisfies (3.1). Hence,
by our solvability assumption, there is u ∈ EN (Ω) such that

Lu = −(−i+ λ−1(a0 + ib0)(x, t))

in Ωδ = (−δ, δ)× S1, for some 0 < δ ≤ ε.
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For (x, t) ∈ Ωδ define

W (x, t)
.
= exp{λ−1 lnx− it+ u(x, t)} = x1/λe−it+u(x,t) ;

be simple calculations we obtain LW = 0.
Finally, define the functions

X(x, t)
.
= exp{λReu(x, t)}, and T (x, t)

.
= Imu(x, t).

Note that

W (x, t) = (xeλReu)1/λei(−t+Imu) = x1/λe−it+u = (xX)1/λei(−t+T ) .

Now, for (x, t) ∈ Ωδ define

F (x, t)
.
= (xX(x, t),−t+ T (x, t)).

The determinant of the jacobian matrix of F for points (0, t) ∈ Σ is given
by

det(JF )(0, t) = eλReu(0,t)

(
−1 + Im

∂u

∂t
(0, t)

)
= eλReu(0,t)

(
−1 + (1− λ−1b0(0, t))

)
= −λ−1eλReu(0,t)b0(0, t) 6= 0 .

Hence, by theorem 2.1, F defines a local diffeomorfism of class N for any
(0, t) ∈ Σ. Moreover, F|Σ is injective, since

∂(−t+ T )

∂t
(0, t) = −1 + (1− λ−1b0(0, t)) < 0.

We claim that there is 0 < δ′ < δ such that F|(−δ′,δ′)×S1
is injective.

Indeed, assume by contradiction that for each j ∈ Z+, with j ≥ δ−1, there
are pj , qj ∈

(
−1
j ,

1
j

)
× S1, with pj 6= qj and F (pj) = F (qj). In particular,

{pj}, {qj} are sequences in the compact set [−δ, δ]× S1. Hence, there are
subsequences {pjk} ⊂ {pj} and {qjk} ⊂ {qj} such that pjk → (0, t′) and
qjk → (0, t′′). Furthermore, F (0, t′) = limF (pjk) = limF (qjk) = F (0, t′′)

and, by the injectivity of F|Σ , we have t′ = t′′. Let U be a neighborhood
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of (0, t′) for which F|U is a diffeomorfism. We have pjk , qjk ∈ U , for k
suficiently large. Hence, F (pjk) = F (qjk) and, consequently, pjk = qjk ,
which is a contradiction.

Therefore, F|(−δ′,δ′)×S1
: (−δ′, δ′) × S1 → F ((−δ′, δ′) × S1) is a diffeo-

morfism of class N , which concludes the proof.

Before we present our solvability result, we prove the following technical
lemma:

Lemma 3.2. Let M = {mj}j∈Z+ be a strongly regular sequence and let
a > 0. Then, there is a strongly regular sequence N = {nj}j∈Z+, with
N �M, such that for any f ∈ EN (R), flat at x = 0, the function g(x) =

f(xa) belongs to EM(R).

Proof. The function g is smooth since f is flat at x = 0. Also, we can
assume without loss of generality that 0 < a < 1, since otherwise we can
write a = mã, for some m ∈ Z+ and ã ∈ (0, 1), and g(x) = f(xa) = f̃(xã),
where f̃(y) = f(ym) defines a M function in R which is certainly flat at
x = 0 as well.

By using Faà di Bruno’s formula we obtain

g(`)(x) =
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
f (k)(xa)

∏̀
j=1

[
(xa)(j)

j!

]kj
,

where k = k1 + . . .+ k`.
Since (xa)(j) = a(a− 1) . . . (a− (j − 1))xa−j we have

|g(`)(x)| ≤
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
|f (k)(xa)|

∏̀
j=1

[
(j − 1)!(|x|a−j)

j!

]kj

≤
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
|f (k)(xa)||x|ka−` .

Let N be the positive integer number satisfying

`

a
≤ N + k <

`

a
+ 1 .
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Since f ∈ EN (R) is flat at y = 0 we can write

f (k)(y) = yNF (y),

where
|F (y)| ≤ CRN+knN+k

(N + k)!

N !
.

Hence,

|g(`)(x)| ≤
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
CRN+knN+k

(N + k)!

N !

≤
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
CRN+knN+k

2N+kN !k!

N !

≤
∑

k1+2k2+...+`k`=`

`!

k1! · · · k`!
CR`/a+1nN+k2

`/a+1k!

= 2C[(2R)1/a]``!
∑

k1+2k2+...+`k`=`

k!

k1! · · · k`!
nN+k .

Let q be the positive integer satisfying

1 <
1

a
≤ q < 1

a
+ 1.

Note that N + k ≤ q` and, hence,

nN+k ≤ nq`;

moreover, it follows from (M.3) that

nq` ≤ H(2+...+q)`nq` .

Hence, by taking the sequence N given by nj = m
1/q
j we obtain

|g(`)(x)| ≤ 2C[(2R)1/aH(2+...+q)/q]``!m`

∑
k1+2k2+...+`k`=`

k!

k1! · · · k`!
.

Finally, recalling that (see [10] - lemma 1.4.1; also, [2] - lemma 2.2)∑
k1+2k2+...+`k`=`

k!

k1! · · · k`!
= 2`−1
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we obtain
|g(`)(x)| ≤ C[2(2R)1/aH(2+...+q)/q]``!m` .

The next result is an adaptation of [3], Theorem 3.1.

Theorem 3.3. Let Lλ be given by (3.2) and defined on Ω, where λ ∈
R+ \ Q. Let M = {mj}j∈Z+ be a strongly regular sequence. Then there
exists a function f ∈ EM(Ω), satisfying∫ 2π

0
f(0, t)dt = 0 ,

such that Lλu = f has no smooth solutions defined near Σ.

Proof. It is enough to construct f near Σ. Again we denote Ωε = (−ε, ε)×
S1, where ε > 0; also,

Ω+
ε = (0, ε)× S1, Ω−ε = (−ε, 0)× S1.

Let Z(x, t) = |x|1/λeit, which defines a continuous function on Ω = R×S1

that is real-analytic away from Σ. Simple computations show that on Ω\Σ
we have

∂Z

∂x
=

1

λx
Z 6= 0,

∂Z

∂t
= iZ ;

in particular LλZ = 0. That is, Z is a first-integral for Lλ on Ω \ Σ.
Moreover, Z(Σ) = {0} and Z(Ω+

ε ) = Z(Ω−ε ) = D(0, ε1/λ). Furthermore,
Z̄(x, t) = |x|1/λe−it; hence, LλZ̄ = −2iZ̄ on Ω \ Σ.

Therefore, the pushforward of the equations

Lλu = f on Ω±ε

via the first integral Z lead us

−2iz̄
∂ũ±

∂z̄
= f̃± on D(0, ε1/λ) \ {0} ,

where for each g ∈ C∞(Ω±ε ) we denote g̃± = g◦Z−1 ∈ C∞(D(0, ε1/λ)\{0}).
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Now letN = {nj}j∈Z+ be as in Lemma 3.2 (relative toM and a = λ−1)
and take the the formal power series in z ∈ C given by

∞∑
j=0

njj!z
j , (3.5)

which diverges everywhere off z = 0. It follows from theorem 2.10 that
there exists g ∈ EN (C) whose Taylor series at z = 0 is given by (3.5);
hence, ∂g/∂z̄ ∈ EN (C) is flat at z = 0. We let

f(x, t) =

−2ixλe−it ∂g∂z̄ (Z(x, t)), for x > 0

0, for x ≤ 0
,

which defines a function f on Ω. That is,

f =

−2iZ̄ ∂g
∂z̄ (Z), on (0,∞)× S1

0, on (−∞, 0]× S1
.

By construction, f is flat along Σ = {0} × S1 = Z−1(0); in particular,
f ∈ C∞(Ω). As a consequence of lemma 3.2 f ∈ EM(Ω).

We claim that Lλu = f admits no smooth solutions near Σ. Indeed,
assume by contradiction that there is a such solution u. Then, for z ∈
D(0, ε1/λ) \ {0}, we obtain

−2iz̄
∂ũ+

∂z̄
(z) = −2iz̄

∂g

∂z̄
(z) and − 2iz̄

∂ũ−

∂z̄
(z) = 0 .

Thus there are holomorphic functions h+, h− on D(0, ε1/λ) such that
ũ+ = g + h+ and ũ− = h− in D(0, ε1/λ) \ {0}; hence,

u(x, t) =

g(Z(x, t)) + h+(Z(x, t)), for x > 0

h−(Z(x, t)), for x < 0
.

Therefore, we may conclude that the Taylor series of g at z = 0 would
match that of h− − h+, which contradicts the fact that the former series
diverges by construction while the latter does not by analyticity.
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Therefore, we can conclude that for any strongly regular sequence
M = {mj}j∈Z+ , a complex vector field L satisfying the hypotheses of
Proposition 3.1 is never M-solvable at Σ, no matter the nature of the
irrational invariant λ.

So, a natural question appears: in the case whereM is not a strongly
regular sequence, what can we say about EM-solvability at Σ of L?

An irrational number λ satisfies the Diophantine condition (DC) if
there exists C > 0 such that

|kλ+ j| ≥ Cj+1, ∀j ∈ Z+, k ∈ Z. (DC)

Concerning the analytic solvability it was proved in [6], Proposition 3.2:

Proposition 3.4. Let L be given by (1.1). Assume that the coefficients
of L satisfy (1.2)-(1.4). Then L is analytically solvable at Σ if and only
if L is real-analytically equivalent to a non-vanishing multiple of Lλ and λ
satisfies condition (DC).

The next result reveals the true nature of condition (DC): it is a ne-
cessary condition to EM-solvability at Σ of L, no matter the nature of the
sequenceM.

Proposition 3.5. LetM be a sequence of real numbers satisfying (M.1)-
(M.3). Suppose that λ ∈ R+ \ Q does not satisfy (DC). Then there is
a real analytic function f near Σ satisfying (3.1) for which the equation
Lλu = f does not have solution u ∈ EM, in any neighborhood of Σ.

Proof. Let a = 1/λ and let Ta = aLλ. If λ does not satisfy (DC) then the
same occurs with a ([3], Lemma 2.3) and consequently for each ` ∈ Z+

there are j`, k` ∈ Z+ such that

|j` − ak`| < `−(j`+1). (3.6)

It follows that j`/k` → a, j` ↗∞, and there are positive constants c1 and
c2 such that

c1j` ≤ k` ≤ c2j` .
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Define
f(x, t) =

∑
`≥0

xj`eik`t.

As in [3], f ∈ G1(Σ). If u is a C∞ solution of Tau = f in a neighborhood
of Σ then simple computations would give

u(x, t) =
∑
`≥0

i

j` − k`a
xj`eik`t +K, for some K ∈ C.

Now, if u were a EM([−δ, δ]) function then we would have the following
decay of its partial Fourier coefficients with respect to t (see, for instance,
[11]) there are constants C, h > 0:

|x|j`
|j` − k`a|

= |û(x, k`)| < C · inf
j∈Z+

(
mj · j!

hj · (1 + k`)j

)
,

for ` ∈ Z+, and for x ∈ [−δ, δ]. Hence, it follows from (3.6) that

`j`+1|x|j` < C · inf
j∈Z+

(
mj · j!

hj · (1 + k`)j

)
.

and, consequently, when |x|` ≥ 1,

sup
j∈Z+

(
hj · (1 + k`)

l

mj · j!

)
< `(`|x|)j` · sup

j∈Z+

(
hj · (1 + k`)

j

mj · j!

)
< C.

Since k` ↗ ∞ (see (iii) above) we can take ` such that 1 + k` >
1 + C

h
;

hence,

1 + C = h ·
(

1 + C

h

)
< sup

j∈Z+

(
hj · (1 + k`)

j

mj · j!

)
< C,

which is a contradiction. Therefore, u is not EM in any neighborhood of
Σ.
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