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Abstract. The subclass Len(a1, a2, . . . , ak) of interval graphs con-
sists of those that admit an interval model having precisely the in-
terval lengths a1, a2, . . . , ak. For all 0 ≤ a1 < a2 < . . . < ak,
and 0 ≤ b1 < b2 < . . . < bk, we prove that Len(a1, a2, . . . , ak) ⊆
Len(b1, b2, . . . , bk) if and only if there exists a constant r such that
bj = raj for all 1 ≤ j ≤ k.
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1 Introduction

Let I = [ℓ(I), r(I)] be a closed interval of the real line, where ℓ(I) and
r(I) denote respectively the left and right extreme points of I. A graph G

is an interval graph if there exists a bijection θ of V (G) to a family M of
intervals on the real line, called a model, in which for all u, v ∈ V (G) with
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u ̸= v, (u, v) ∈ E(G) if and only if θ(u) ∩ θ(v) ̸= ∅. An order P = (X,≺)

is a binary relation ≺ on the set X which is irreflexive and transitive. The
interval order of a model M is the order P = (X,≺) such that X = M
and, for all I, J ∈ X, I ≺ J if and only if r(I) < ℓ(J). If P is an interval
order with interval model M and G is the interval graph corresponding to
M, we say that P agrees with G. Note that if P agrees with G, any model
of P is also a model of G but a model of G may not be a model of P . For
the sake of convenience, when there is a model M of a graph G (resp. order
P = (X,≺)), in the context, an interval Ix ∈ M and the corresponding
vertex x ∈ V (G) (resp. element x ∈ X) are used interchangeably. The
length of an interval I is given by r(I) − ℓ(I) and denoted by |I|. The
number of distinct interval lengths in a model M is denoted by IC(M),
that is, IC(M) = |{|I| | I ∈ M}|.

Ronald Graham raised the question of how many distinct interval
lengths are sufficient to represent a model of a given interval graph [5]. In
other words, he suggested the problem of determining a model of a given in-
terval graph having the smallest number IC(G) of distinct interval lengths,
known as the interval count problem. Formally, IC(G) = min{IC(M) |
M is a model of G} (resp. IC(P ) = min{IC(M) | M is a model of P}).
The problem of deciding efficiently whether IC(G) = 1 or IC(P ) = 1 is
solved, since it is equivalent to the problem of recognizing unit interval
graphs and orders [1, 4]. We say that an interval x is nested to another
interval y if there exists distinct intervals a, b such that the intersections
between these intervals are like those shown in Figure 1.1(i). Figure 1.1(ii)
illustrates an interval graph G and Figure 1.1(iii) an example of a model
of G with two distinct interval lengths that realizes IC(G).

An {a1, . . . , ak}-model is an interval model M in which |Iv| ∈ {a1, . . . , ak}
for all Iv ∈ M. The graph class that admits an {a1, . . . , ak}-model is de-
noted by Len(a1, . . . , ak), a1 < . . . < ak. The class Len(0, 1) was charac-
terized in [7]. Almost two decades later, authors in [6] described a linear
time recognition algorithm for this class. In [3], a polynomial-time al-
gorithm using linear programming was developed to determine whether,
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Figure 1.1: In (i) a visual representation of x nested to y, in (ii) an interval
graph G and in (iii) a model of G that realizes the interval count of G.

given a connected graph G and a bipartition of V (G) into the sets A and
B, G ∈ Len(a, b) for some pair of constants a < b and |Iv| = a for all
v ∈ A and |Iv| = b for all v ∈ B. In [2], the inclusion relationship between
the different classes Len(a, b) obtained by varying the parameters a and
b was investigated, and shown that Len(a′, b′) ⊈ Len(a, b) if and only if
a′

b′ ̸=
a
b for all 0 ≤ a′ < b′ and 0 ≤ a < b.

This work investigates the more general inclusion relation between the
classes Len(a1, . . . , ak) obtained by varying the parameters a1, . . . , ak.

We start by examining the particular case k = 2 (Theorems 1.1 and 1.2).

Theorem 1.1 (Francis, Medeiros, Oliveira and Szwarcfiter [2]). Len(0, k) ⊈
Len(a, b) and Len(a, b) ⊈ Len(0, k), for all k > 0 and 0 < a < b.

The proof consists of constructing a special {0, k}-model and showing
that the corresponding interval graph does not admit an {a, b}-model, and
also the converse.

We build a {0, k}-model shown schematically in Figure 1.2(i). In this
figure, there are

⌈
b
a

⌉
+ 2 intervals of length 0 plus an interval of length

k, producing an {0, k}-model. It is shown that the interval graph corre-
sponding to this model does not belong to Len(a, b). On the other hand,
an {a, b}-model is shown in Figure 1.2(ii). This model consists of a P5 and
a universal vertex. It is shown that the corresponding interval graph does
not belong to Len(0, k).
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Figure 1.2: (i) G admits a {0, k}-model but not an {a, b}-mode, and (ii)
G admits an {a, b}-model but not a {0, k}-model.

Theorem 1.2 (Francis, Medeiros, Oliveira and Szwarcfiter [2]). Len(a′, b′) ⊈
Len(a, b) for all 0 < a′ < b′ and 0 < a < b for which b′

a′ ̸=
b
a .

The proof consists in, assuming that b′

a′ <
b
a , showing the following: (i)

constructing a special {a′, b′}-model whose corresponding interval graph
does not admit an {a, b}-model; and (ii) constructing an {a, b}-model
whose corresponding interval graph does not admit an {a′, b′}-model. Note
that this is equivalent to constructing two special {a′, b′}-models whose
corresponding interval graph does not admit an {a, b}-model for the cases
b′

a′ <
b
a and b′

a′ >
b
a , by exchanging the pair (a′, b′) by (a, b) and vice-versa

in the construction (ii). We outline the construction of such models as
they will be employed in the demonstration of our result.

Figure 1.3: Scheme of the model M used in the Theorem 1.2. The label
above each interval represents its length, and below its identification.

So, assume that b′

a′ <
b
a . Since there exists a rational number between

any two real numbers, there exist positive integers p, q such that b′

a′ <
q
p <

b
a . Clearly, p < q. We build an {a′, b′}-model M using the integers p and
q. Let M be the model of Figure 1.3(i). In this model, there is a path
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x0, x1, . . . xq, xq+1 with q+2 intervals of length a′. Furthermore, there is an
independent set {y1, . . . , yp} with p intervals of length b′. In M, there are
also more intervals than are explicitly represented. Each interval drawn
as double and triple bars denotes that there are more intervals associated
with it. If w is a double bar interval, then we add five more intervals to the
model such that w and such additional intervals consist of the submodel
depicted in the upper part of Figure 1.3(ii). The actual left and right
extremes of these additional intervals are omitted because they can be
chosen arbitrarily, provided that the intervals form a submodel isomorphic
to that of Figure 1.3(ii) and their sizes are as prescribed. If w is a triple
bar interval, then we add three more intervals associated with w to form
the submodel given by the bottom of Figure 1.3(ii). This completes the
description of M. It is shown that the interval graph G corresponding to
M, although in Len(a′, b′), does not belong to Len(a, b).

We prove that Len(a, b) ⊈ Len(a′, b′) in a similar way. Let M be the
{a, b}-model schematized in Figure 1.3(iii). In this model, there is a path
x0, x1, . . . xp, xp+1 with p + 2 intervals of length b. In addition, there is
an independent set {y1, . . . , yq} with q intervals of length a. In M, there
are also more intervals than are explicitly represented. Again, the double
bar and triple bar intervals are to be replaced by a scheme similar to that
shown in Figure 1.3(ii), with the change that all a′-s in that figure are to
be replaced by a-s and all b′-s by b-s. It is shown that the interval graph G

corresponding to M, although in Len(a, b), does not belong to Len(a′, b′).

In summary, such a proof provides a construction of an {a′, b′}-model
that cannot be transformed into an {a, b}-model that corresponds to the
same interval graph. The exact construction to be employed, out of the
two possible ones, depends on whether b′

a′ < b
a or the other way around.

We will denote such a construction by M(a′, b′, a, b), regardless the pair
p, q chosen in the construction, which we will employ in the next section.

Additionally, note that if b′

a′ =
b
a , then Len(a′, b′) = Len(a, b).
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2 Inclusion relationship between classes

We investigate the inclusion between the classes Len(a1, . . . , ak), for
all 0 ≤ a1 < . . . < ak. If S represents the sequence a1, . . . , ak, then we
also denote Len(a1, . . . , ak) by Len(S).

Theorem 2.1. Let S1 = a1, . . . , ak and S2 = b1, . . . , bk be two sequences
such that a1, b1 ≥ 0 and, for all 1 ≤ i < k, ai < ai+1 and bi < bi+1. Then,
Len(S1) ⊈ Len(S2) if and only if there is no constant r such that bj = raj

for every 1 ≤ j ≤ k.

Proof. The proof of the necessary condition is trivial. For the converse,
consider the cases:

1. (a1 ̸= 0 and b1 ̸= 0) or (a1 = b1 = 0).

Let i = 1 if a1 ̸= 0 and b1 ̸= 0, or i = 2 otherwise. Note that,
by this choice, ai ̸= 0 and bi ̸= 0. Let aj ∈ S1 and bj ∈ S2 with
i < j ≤ k, such that aj

ai
̸= bj

bi
. Note that such a value of j certainly

exists, because if aj
ai

=
bj
bi

for all i < j ≤ k, then there would exist
r = bi

ai
such that bj = ( biai )aj = raj for every 1 ≤ j ≤ k, contradicting

the hypothesis of the theorem. Let M(S1, S2) be the model obtained
from M(ai, aj , bi, bj) by redefining the double and triple bar intervals
in the model M of Figure 1.3 as described below (see Figure 2.1):

(a) For each double bar interval, labeled a′ = ai in M, create a
chain of k nested intervals, with lengths a1, . . . , ak, as specified
in Figure 2.1(i) if i = 1 and as specified in Figure 2.1(ii) if i = 2.

(b) For each triple bar interval, labeled b′ = aj in M, create a
chain of k nested intervals, of length a1, . . . , ak, as specified in
Figure 2.1(iii). Note that the submodels shown in Figures 2.1
are equal except for the position of the original interval in the
nested chain (the length shown in the double bar intervals rep-
resent the i-th smallest length of the chain, while in the triple
bar intervals, the j-th smallest length of the chain).
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As before, the actual left and right extremes of these additional in-
tervals are omitted because they can be chosen arbitrarily, provided
that the intervals form a submodel isomorphic to that of Figure 2.1.

Let G be the interval graph corresponding to M(S1, S2). Consider
the double or triple bar interval transformations of Figure 2.1. In
these models, notice the intervals that form the nesting chain with
k intervals (the smallest length a1, nested in another of length a2,
and so on until nesting to the one of length ak). Let C ⊂ M(S1, S2)

be the set of such intervals in these chains. By construction, in
any model M of G, we have that intervals of C having length ai

in M(S1, S2) have the i-th smallest length of M. If there exists a
S2-model M′ of G, then all C intervals of length ai and aj in the
S1-model M(S1, S2) of G have respectively length bi and bj in M′.
This is equivalent to saying that there is a submodel of M(S1, S2),
isomorphic to M(ai, aj , bi, bj), which can be transformed from an
{ai, aj}-model into a {bi, bj}-model, contradicting the construction
of Theorem 1.2.

Figure 2.1: The model M(a1, . . . , ak, b1, . . . , bk), obtained from the model
M(ai, aj , bi, bj) by replacing the exchanges in Figure 1.3(ii) with those in
Figure 2.1.

2. (a1 ̸= 0 and b1 = 0) or (a1 = 0 and b1 ̸= 0).

Let M(S1, S2) be the model obtained from Figure 1.2 according with
the following cases:

• If a1 = 0 and b1 ̸= 0.
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Construct the model sketched in Figure 1.2(i) and nest the in-
terval a2 (which is mapped to interval k of Figure 1.2(i)) to a
chain of k nested intervals, with lengths a3, . . . , ak, as specified
in Figure 2.2(i).

• If a1 ̸= 0 and b1 = 0.

Construct the model sketched in Figure 1.2(ii) and nest the
interval a2 (which is mapped to interval b of Figure 1.2(ii)) to a
chain of k nested intervals, with lengths a3, . . . , ak, as specified
in Figure 2.2(ii).

Figure 2.2: The model M(a1, . . . , ak, b1, . . . , bk) obtained from the model
sketched in Figure 1.2(i) or (ii) by forming a nesting chain of k intervals.

Let G be the interval graph corresponding to M(S1, S2). If there
exists a S2-model M′ of G, then all C intervals of length a1 and
a2 in the S1-model M(S1, S2) of G have respectively length b1 and
b2 in M′. This is equivalent to saying that there exists a submodel
of M(S1, S2), isomorphic to that of Figure 1.2(i) or (ii), which can
be transformed from an {a1, a2}-model into a {b1, b2}-model, which
contradicts the construction of Theorem 1.1.

3 Conclusion

Motivated by the inclusion relation between classes Len(a, b) studied
in [2], we investigate the inclusion of classes Len(a1, . . . , ak) with 0 ≤ a1 <

. . . < ak. We show that Len(a1, . . . , ak) ⊆ Len(b1, . . . , bk) if and only if
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there exists a constant r such that bj = raj for all 1 ≤ j ≤ k. Recognizing
whether given graph belongs to Len(a1, . . . , ak) for all k ≥ 2 and all
0 < a1 < . . . < ak remains an open problem. We note that the problem
of recognizing whether the interval count of an interval graph is equal to
k is open for all fixed k ≥ 2. Since the complexity of those recognition
problems are unknown for decades, new results using approaches such
as parameterized, randomized, or approximation algorithms would be of
interest.
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