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1 Introduction

This article gives an account of recent results on the contact process with
renewal cures in which the author was directly involved. It corresponds to
the topics addressed in his talk on the XXV Brazilian School of Probability
held in August, 2022 at the University of Campinas.

The contact process was introduced by Ted Harris in 1974 [9] as a
model for the spread of an infection over a connected graph. This is a well
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known, much studied process, in its initial form, as well as variants, along
its long history. See [12], [13] and [3] for early expositions.

In the model proposed by Harris, individuals rest on the sites of Zd,
d ≥ 1, and each one is initially either healthy or infected. As time passes,
the individuals may get healthy, if they are infected; and, while infected,
they may infect their nearest neighbors. The mechanism for that goes
as follows. Following the renowned graphical construction proposed by
Harris in [10], let us consider a timeline for each individual. Along each
of these timelines we put cure marks at random, according to Poisson
point processes of rate 1, independent and identically distributed one from
the other; an individual who, immediately before such a mark is infected,
gets healthy at the mark, and remains so until eventually getting infected
again; and a cure mark has no effect on a healthy individual. This is the
mechanism for getting healthy.

Infections take place also by putting marks on timelines, but now the
timelines are associated with pairs of nearest neighbor individuals. On
each of those timelines, we put infection marks, also according to Poisson
point processes, but of rate λ, independent from pair to pair; as soon as we
find a mark at a given time for a pair of neighbors, then, provided one of the
individuals involved is infected, and the other is not, the healthy individual
becomes infected at that time. The cure and infection Poisson processes
are assumed independent, so that almost surely there is no coincidence of
cure and infection marks in time, and so the evolution is almost surely
well defined. Figures 1.1 to 1.3 provide a diagram with the structure and
evolution of the process.

Suppose that we initially have a single infected individual (sitting, say,
at the origin of Zd). A natural question then poses itself: can the initial
infection survive forever (with positive probability)? Harris answered in
the affirmative in his introductory paper, provided λ is large enough; he
also proved that for positive values of λ which are close enough to 0, the
probability of survival is 0 (in other words, extinction of the infection is
almost sure).
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Figure 1.1: Illustration of the timelines of cures and infections; explicit
lines appear for sites (x,w, y, z), with crosses (×) representing cure marks;
infection marks (over implicit timelines) are represented by horizontal seg-
ments joining timelines of bond endpoints.

We point out that the latter aspect of the Harris contact process may
not take place in a setting where the intercure marks are placed accord-
ing to a generic renewal process, extending the Poissonian picture. In the
extended setting, it may conceivably be the case that we have persistent
survival of the infection, i.e., the probability of survival of the infection
(started from a single individual) is positive for every λ > 0. ([14] intro-
duced this terminology in the study of (fully Poissonian) contact processes
with random rates; the same phenomenon also comes up in (fully Poisso-
nian) contact processes on scale-free random graphs [2]).

This extension of the original contact process is the object of analysis
of the papers on which the present article is based, namely [6], [8], [5]
and [7]. It is the results of those papers that we will expound in the present
article. Those results provide sufficient conditions for either the presence
and, separately, absence of persistent survival in roughly two situations:
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Figure 1.2: Illustration of the evolution of the infection started with a
single infected individual (at w); infection paths are depicted starting at
w at time 0 and moving along timelines and across infection marks, and
stopping at cure marks. In this case, the infection (globally) stops before
time t.

for infinite, and for finite graphs.1

A moment’s reflection suggests2 that a heavy tail of the intercure dis-
tribution may play a crucial role. Indeed, assuming heavy tails, as well as
some regularity, we first show occurrence of persistent survival in infinite
graphs, and next, prove a complete convergence theorem and one other
result on the long time behavior of the distribution of the process. This is
presented in Section 2 and corresponds to results of [6, 7].

Section 3 is devoted to sufficient conditions for extinction at small
positive λ on infinite graphs, translating roughly into a bit more than

1[11] considers the model where both cure and infection marks come from renewal
processes, neither necessarily Poissonian, and, among other results on this and a related
process, finds conditions for the occurrence/absence of what might be called persistent
extinction, namely, almost sure extinction for every positive value of a scaling parameter
for the cure renewal processes which plays the role of the rate in the Poissonian case.

2correctly, as it turns out
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Figure 1.3: In this illustration (with the extra, dotted infection mark with
respect to the diagram of Figure 1.2), we find that the infection has sur-
vived up to time t.

integrability of the intercure distribution. It refers to a result of [7]3.4

Finally, in Section 4, we describe results of [5] for finite graphs, and
intercure distributions attracted to a heavy tailed stable law, which provide
bounds5 on the size of the graph, in terms of the index of the stable law,
above which persistent survival occurs, and below which it does not.

————————

This text may be seen as an extended, improved, written version of
the talk alluded to at the beginning of this introduction. In the next
sections, we state precisely the results mentioned above. Arguments for
them will be outlined informally, describing ideas and approaches, with few
details, often in a simpler, or rough, approximate, even possibly somewhat

3which appeared in weaker forms in [8]
4Heavy vs. light tails (of the interinfection distribution, in this case) also come up

in the results of [11] concerning occurrence vs. absence of persistent extinction; recall
Footnote 1, and see Theorem 1.4 in [11].

5which turn out to be, perhaps surprisingly, quite sharp
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misleading form, and appealing amply to pictures. This will hopefully
shed light on actual proofs, and guide the reader to the respective papers.

2 Persistent survival in infinite graphs

Let T denote a random variable distributed as the intercure distribution
of the renewal processes underlying our model, and let µ denote its distri-
bution.

We start, on Theorem 2.1, by stating sufficient conditions on the tail
of µ for the occurrence of persistent survival, which could be crudely sum-
marized as a heavy tail condition plus some regularity.

Under the same conditions, adding some more regularity on the tail of
µ, we establish, in Theorem 2.4, a complete convergence theorem, namely
the existence, and description, of the limit in distribution of the process
(started from an arbitrary configuration of healthy and infected individu-
als) as time diverges.

Under considerably more strict conditions on the regularity of the tail
of µ (asking that it is attracted to a stable law), we derive, in Theorem 2.5,
a closeness to determinism result, which, for almost every realization of
the cure marks of the process, and conditioned on survival of the infection,
gives information on the asymptotic distribution of the status of a given
individual as time diverges.

In all of these results, the heavy tail of µ plays a central role, by
giving rise to larger and larger intercure intervals which provide hubs for
the spread of the infection, whatever its intensity. We will see in Section 3
that with (little more than) integrability of T , persistent survival is absent.

The three theorems mentioned above will be stated in the next sub-
sections, one in each.

2.1 Occurrence of persistent survival in infinite graphs

Let us describe the conditions on the distribution of T under which
persistent survival can be claimed to hold. They are: there exist M > 1
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and β < 1 such that

A ) E(T ;T ≤ t) ≤ t P (t < T < Mt) for all t > M ;

B ) P (M r < T < M r+1) ≤ MP (M r+1 < T < M r+2) for all r > M ;

C′) P (T > t) > t−β for all t > M .

As anticipated above, we have a heavy tail condition (C′) — notice
that it implies that E(T ) = ∞ —, in addition to regularity tail conditions
(A and B) on µ. One may readily check that distributions attracted to
stable laws of indices in (0,1) satisfy A-C′).

Theorem 2.1 (Theorem 1 in [6]). If T satisfies A-C ′), then persistent
survival occurs.

Indeed, Theorem 1 in [6] is stated and proved under the more stringent
condition: there exist M > 0 and β ∈ (1/2, 1) such that

C ) t−β < P (T > t) < t−(1−β) for all t > M ,

replacing C′), but as pointed out in [7], the upper bound in C ) may be
removed with essentially the same argument — see Remark 3.6 in [7].

Remark 2.2. In [7], we also provide an example of a distribution for T

which is attracted to a stable law of index 1, and for which persistent sur-
vival takes place — see Section 5 in [7] —, thus extending the domain of
µ’s for which persistent survival takes place from the conditions of Theo-
rem 2.1.

As anticipated at the introduction, we will not repeat or summarize
the proof of the above result, which may be found in [6, 7], but rather will
present an informal/partial/rough argument assuming T is attracted to a
stable law.

Let us assume

P (T > t) = µ(t,∞) = L(t)/tα, (2.1)
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where L is a slowly varying function at infinity, and α ∈ (0, 1). The
occurrence of persistent survival may be seen to follow, in this case6, from
the combination of a sequence of events, which constitute what we may
call a tunnelling event, which has positive probability for every λ > 0,
and on which we find an infinite infection path from the origin to infinity,
implying the result.

With the help of Figure 2.1, we sequentially describe the constituent
events of the tunnelling event. Without loss, we may take our (infinite)
graph to be N.

Definition 2.3. Let L0 = 0 and for n ≥ 1, Ln = inf{x > Ln−1 :

Z2n−1(x) > 2n}, where for x ∈ N and t > 0, Zt(x) denotes the resid-
ual waiting time after time t, i.e., the time elapsed between t and the next
cure mark in the timeline of x; let us also define Yt(x), the age at/spent
waiting time till time t, i.e., the time elapsed prior to t since the last cure
mark before t in the timeline of x.

From the well known theory of distributions attracted to stable laws
(satisfying (2.1)) — see, e.g., [4] —, we have that Z2n(x) and Y2n(x) are
both of order 2n. It follows that

1. the increments of Ln are random variables of order 1 (i.e., their distri-
butions depend weakly on n, or converge as n → ∞ to a continuous
distribution); and that

2. for every λ > 0 fixed, we may find, with probability exponentially
close to 1 as n diverges, an increasing staircase pattern of infection
bonds from Ln to Ln+1, as shown in red in Figure 2.1, effectively
carrying the infection from the intercure interval of Ln containing
2n−1, if it is infected, to that of Ln+1 containing 2n.

Let us consider the event illustrated in this picture. In the intersection
of those events over n, which thus has a positive probability, there is

6but the general case is treated quite similarly, at least in a broad sense
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Figure 2.1: Patterns of cure marks (crosses) and staircase of infection
bonds (in red) propagating the infection from Ln to Ln+1 during the time
period [2n−1, 2n].

an infection path connecting the origin to infinity, and the argument for
persistent survival is complete.

2.2 Complete convergence theorem

Let ξt denote the configuration of healthy and infected individuals of
our process at time t ≥ 0, where for x ∈ Zd

ξt(x) =

0, if the individual at x is healthy;

1, if the individual at x is infected.
(2.2)

Theorem 2.4 (Theorem 1.2 in [7]). Suppose µ satisfies conditions A,B,C.
Then, given any initial condition ξ0, we have that ξt converges in distribu-
tion, as t → ∞, to

P (τ < ∞)δ0 + P (τ = ∞)δ1, (2.3)
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where τ = inf{t > 0 : ξt ≡ 0} is the extinction time of the infection; δ0 and
δ1 represent the Dirac measure on the configuration with all sites healthy
and all sites infected, respectively.

Let us remark that in the above result, we are not making any assump-
tions on ξ0, and the mentioned distribution, as well as P , are conditional
ones (on ξ0).

We again, as with Theorem 2.1, explain the ideas for the proof of
Theorem 2.4 in the simpler setting of T attracted to a stable law, i.e.,
satisfying (2.1). We will be perhaps even a bit rougher than before, and
rely on a variation of Figure 2.1, in the belief that things will be quite
clear.

We only need to figure out what goes on with the process when τ < ∞,
and, separately, when τ = ∞. In the former case, by definition, ξt ≡ 0 for
all t large enough (more precisely, if t ≥ τ).

We recall from the argument laid out above for the occurrence of per-
sistent survival that the probability of the event depicted in Figure 2.1
occurring for all n ≥ n0 ≥ 0 may be taken arbitrarily close to 1 by taking
n0 large enough — that follows from the above mentioned exponentiality.

It should be intuitively clear that in the event where τ = ∞, we find
that the interval {Ln+1} × [2n, 2n+1] is infected with probability close to
1 when n is large.

It is also the case that for t ∈ [2n, 2n+1], since Yt(x) ≈ t ≈ 2n and
Ln+1 ≈ n (recall the meaning of Y·(·) in Definition 2.3 above), we find
that the event illustrated in Figure 2.2 is highly probable as n ∼ ∞.

It follows from the above points that in the event where τ = ∞, (by
taking the intersection of the relevant events) we have that the origin,
as well as its neighbors, are all infected at time t with high probability,
provided t is large. This concludes the idea for Theorem 2.4.
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Figure 2.2: Illustration of an event where there exists an infection path
from {Ln+1} × (t − mn, t) to {0} × (t − mn, t) (increasing from right to
left, represented in red), where mn = mn(t) = min0≤x≤Ln+1 Yt(x).

2.3 Closeness to determinism

The picture drawn above allows for going further in understanding
the long time behavior, when there occurs survival of the infection, of
the distribution of the status of any fixed individual.7 For the results of
this subsection, we take our graph to be Zd, and we require also T to be
attracted to a stable law. We may indeed obtain results for almost every
realization of the cure marks.

Let G denote the σ-field generated by the renewal processes and the
extinction random time τ .8

Theorem 2.5 (Theorem 4.1 in [7]). If T is attracted to an α-stable law,

7When the infection dies out, this is, of course, a straightforward issue.
8 G includes all the information on the renewal processes; information on the infec-

tion marks and initial condition are also present in G, but only as encoded in τ .
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0 < α < 1, then for all x ∈ Zd:

1. If α < 1/2 and further regularity conditions hold on the tail of µ, we
have on {τ = ∞} that

lim
t→∞

∣∣P (ξt(x) = 0 | G)− e−2dλYt(x)
∣∣ = 0 a.s.;

2. If α > 1/2 and F (t) > 0 ∀ t > 0, we have on {τ = ∞} that

lim
t→∞

∣∣P (ξt(x) = 0 | G)− e−2dλYt(x)
∣∣ > 0 a.s.,

where Yt(x) is the age of the renewal process in x at time t.

Remark 2.6.

1. The regularity conditions alluded to in the first item of the above
statement refer to those required for the validity of the Strong Re-
newal Theorem, which are quite technical, so we do not spell them
out here — see Theorem 1.4 in [1].

2. In Theorem 4.4 of [7] we give more precise behavior of P (ξt(x) = 0 |
G) for large t as a function of Yt(x) when α > 1/2 — see Remark 2.7
below.

Here is again a rough account of the idea for the above result, illustrated
in Figure 2.3. Let us assume that τ = ∞ and that t is large. If Yt(x)

is large, then the (large) interval
(
t− Yt(x), t

)
will be infected (with high

probability), and the result follows in this case; if instead Yt(x) is of order 1,
then under the conditions of item (i) of Theorem 2.5, with high probability
all the 2d neighbors of x will have large values of Yt(·); it readily follows
that in order for x to not be infected at time t, there must be no infection
mark on the time interval

(
t−Yt(x), t

)
in any timeline of the pair of x and

one of such neighbors; the result readily follows in case (i).
Now, when α > 1/2, and under the other condition in (ii), then we are

able to find (exceptional) arbitrarily large t for which Yt(x) is of order 1
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and the timeline of a neighbor y of x shows a pattern of many cure marks
close together, spanning a time interval I containing

(
t − Yt(x), t

)
such

that I ∩ (t,∞) is long, in such a way that infection marks on the timeline
of the pair (x, y), if any, with high probability occur between cure marks
of y spanning a time interval where y is always healthy (provided x is
healthy at the infection mark in question) and thus that infection mark
will not transmit the infection from y to x. The upshot is that, with high
probability, in order to check that x is healthy at time t, we only need to
look at infection marks between x and its other neighbors (but y).

Remark 2.7.
As anticipated in the second item of Remark 2.6 above, we may be more

precise in the above paragraph. Indeed we may argue that for k = 1, . . . , d,
there is a collection of d (explicit) disjoint ordered open subintervals of
(1/2, 1), I1, . . . , Id, whose closures cover (1/2, 1), such that for α ∈ Ik, we
have that

lim
t→∞

(
P (ξt(x) = 0 | G)− e−(2d−k)λYt(x)

)
= 0.

The reasoning for this is a refinement of the one in the above paragraph,
where we are able to say that we may find (at arbitrarily large times)
exactly k neighbors of x with the close packed pattern of cures around the
time interval

(
t− Yt(x), t

)
.

3 Extinction in infinite graphs

In this section we present conditions for the absence of persistent survival
of the contact process with renewal cures on Zd, i.e., such that we may
find λ > 0 for which the infection started at the origin dies out almost
surely. As one may surmise from the previous discussion and results, we
need a moment condition; indeed, a first moment might be thought to be
enough, but we require a bit more.

Theorem 3.1 (Theorem 1.1 in [7]). If E(Teθ
√
log T ) < ∞ for some θ >

4
√
d log 2, then P (survival) = 0 for λ > 0 close enough to 0.
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Figure 2.3: Depiction of events behind Theorem 2.5; on the left, case (i);
case (ii) on the right.

This result supersedes earlier results with the same conclusion appear-
ing in [8], under the more restrictive conditions: either

1. E(T 2) < ∞ (Theorem 1 in [8]), or

2. E(Tα) < ∞ for some α > 1 and d = 1 and T has a continuous
distribution such that f(t)/(1 − F (t)) is decreasing in t > 0, where
f and F are, respectively, the density and distribution functions of
T (Theorem 2 in [8]).

Condition (1) allows for a supermartingale argument or comparison to a
branching process where the second moment of T implies a uniform bound
on the first moment of the length of intervals between cures arrived at by
infection marks/bonds, in a growth construction of the intercure intervals
infected by the origin.

Condition (2) allows for a multiscale argument involving crossings of
rectangles by infection paths. Besides the α > 1 moment, whose improve-
ment in Theorem 3.1 is quite slim, the other conditions were put in place
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to ensure a positive association property for the crossing events, which
then may be combined in a way that requires d = 1. The refinement of the
latter aspect in Theorem 3.1, essentially preserving the same approach,
dispenses, by a subtle change in the definition of the crossing events, the
above mentioned positive association and d = 1 requirements. We next
roughly and pictorially explain the ideas of our argument for the proof of
Theorem 3.1. As anticipated, the argument is based on a multiscale anal-
ysis of crossing of rectangle events. We will consider rectangles of several
scales, for the definiteness of which, in terms of the present exposition,
we would need a slightly stronger moment condition on T , namely that
E(Te

θ log T
log log T ) < ∞ for some large θ. The ideas are visually easier to ex-

plain, and perhaps to more readily grasp, in the one dimensional case, but
it should be quite clear that it works for all d.

Let n0 be a large fixed integer, to be more precisely chosen later. For
n ≥ n0, let Rn = Bn ×Hn be the two dimensional rectangle with base Bn

at the x-axis centered at the origin and of length 2n and height 2n logn. We
start by relating the probability of survival of the infection started at the
origin in the contact process to crossings of such rectangles by infection
paths, as follows.

Let An denote the event that there exists either an infection path inside
Rn starting anywhere at Bn × {0} and ending at Bn × {2n logn−1} — this
may be seen as a time half-crossing of Rn — or an infection path inside
Rn starting anywhere on the left hand side of Rn and ending on the right
hand side of Rn, or the other way around — this may be seen as a space
(full) crossing of Rn. See Figure 3.1.

Let Pn = supP (An), with the sup taken over renewal starting points
before time 0.

With τ denoting, as in the Section 2, the extinction time of the process
started with a single infected individual at the origin, we have that if
τ > 2n logn, then there must be an infection path inside Rn starting at the
origin and exiting Rn either at the top, or at the left hand side, or at the
right hand side. Let us denote the event where such a path exists by Sn;
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Figure 3.1: Illustration of the event An.

see Figure 3.2. It follows that

P (τ > 2n logn) ≤ P (Sn). (3.1)

Since one of the instances of Sn is a time (full) crossing of Rn, and by
the symmetry of the model, we have that

P (Sn) ≤ Pn + 2P (S′
n), (3.2)

where S′
n is the event depicted in Figure 3.3, corresponding to there being

an infection path from the origin exiting Rn from the right hand side. We
next relate the latter probability to Pn−1.

In S′
n, we quite clearly have a space crossing of the rectangle R′

n which
has the same height and half the base of Rn. In order to find a relationship
with crossings of (a rectangle congruent to) Rn−1 leading to a relationship
of P (Sn) (and thus P (τ > 2n logn)) to Pn, we partition R′

n into rectangles
congruent to Rn−1, as indicated in Figure 3.4. We then note that S′

n ⊂ S′′
n

, where S′′
n is the event where there is either a space crossing or a time half

crossing of one of the at most nκ, with κ < 1 (as can be readily checked,
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Figure 3.2: Illustration of the event Sn, where the infection path starting
at the origin is represented in red.

Figure 3.3: Illustration of event S′
n

if we additionally take n0 large enough), subrectangles resulting from the
partition, as respectively illustrated in Figure 3.4 (in three instances for
the latter case).
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Figure 3.4: Illustration of event S′′
n

It follows from that, (3.1) and (3.2) (again taking n0 large enough)
that

P (τ > 2n logn) ≤ Pn + nPn−1, (3.3)

and thus, making Qn = nPn, it is enough to establish the following result.

Proposition 3.2. If λ > 0 is close enough to 0, then

Qn → 0 as n → ∞. (3.4)

In order to argue Proposition 3.2, we set up a 2-step recursion, relating
Pn (and thus Qn) to Pn−1 and Pn−2 (and thus Qn to Qn−1 and Qn−2), the
iteration of which plus the use of λ > 0 small after the last step yields (3.4).

The recursion step will be based on considering the two kinds of cross-
ings entering the event An, the time kind, and the space kind. We spell
out the first kind, leaving the second kind, which is similar, if simpler,
aside.

Let us concentrate on the event A′
n contained in An that there exists

a time half crossing of Rn (corresponding to the left hand side rectangle
in Figure 3.1). In order to relate A′

n to crossing events corresponding to
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An−1 and An−2, we proceed, similarly as above, to partition Rn into eight
rectangles, denoted R1

n to R8
n, with the same base Bn (and thus height

2n logn−3). Then, each of the 4 bottom subrectangles of the partition must
exhibit a time full crossing. Let us focus on R1

n, and the event C1
n where

it is (fully) time crossed.
The next step is to decompose C1

n as indicated in Figure 3.5.

Figure 3.5: Illustration of the decomposition of C1
n into 5 distinct crossing

events

We note that in this decomposition we find 3 subevents where there is
a full time crossing of a fixed rectangle congruent to Rn−1 (corresponding
to the two top rectangles and the middle rectangle in Figure 3.5), as well
as 2 subevents where there is a spatial crossing of a fixed 2n−2 × 2n logn−3

rectangle (corresponding to the two bottom rectangles in Figure 3.5).
The next step is to estimate the sup of the probability of the latter

events, with the sup taken, as before, over renewal starting points before
the time corresponding to the bottom of the rectangle. Let us consider
one of the 2 latter events only. (The other 4 events may be similarly
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treated.) We may reason similarly as in the argument to get (3.3) above (by
partitioning the respective rectangle into at most n2κ, κ < 1, subrectangles
with base 2n−2 and height 2(n−2) log(n−2)), to find the upper bound n2κPn−2

for the number of such subrectangles. We thus have that

supP (C1
n) ≤ 3Pn−1 + 2n2κPn−2, (3.5)

and the same bound clearly holds also for supP (C3
n), with C3

n defined as
C1
n, except that we replace R1

n by R3
n.

Up to now, we have not used the moment condition of Theorem 3.1.
We will use it in the following estimation. Let Gn denote the event that
there exists a timeline segment in R2

n with no cure mark. Our moment
condition may be checked to imply that

supP (Gn) ≤ e−cn (3.6)

for all large n, where c is a positive constant.
Now, relying on the independence properties of the renewal processes

giving the cure marks in our model, which roughly speaking gives a de-
coupling of C3

n from C1
n on Gc

n, we readily get that

supP (A′
n) ≤ e−cn + (3Pn−1 + 2n2κPn−2)

2 ≤ e−cn + n2κ(Qn−1 ∨Qn−2)
2.

(3.7)
With a similar, if simpler, reasoning, we find a similar bound for the

probability of the event A′′
n where there is a space crossing of Rn (the

simplicity comes from the fact that in the spatial direction we have extra
independence; the term of supP (Gn) is absent in this case).

The bounds

Pn ≤ e−cn + n2(Qn−1 ∨Qn−2)
2 (3.8)

and thus

Qn ≤ ne−cn + n3(Qn−1 ∨Qn−2)
2 (3.9)

follow.
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Setting up a recursion for Qn, stopped at the appropriate n0, and
taking λ > 0 small enough, depending on n0, we finally find that

Qn ≤ e−c′n (3.10)

for all large n, with c′ a positive constant; (3.4) follows.

Remark 3.3. The subtlety, alluded to at the beginning of this section,
that allowed the improvement of the multiscale analysis of [8], refers to
considering half time crossings in the definition of An. The argument in [7],
while essentially preserving the approach of [8], dispenses with the need
to, roughly speaking, obtain full time crossings from half time crossings
— which appear inevitably in the decomposition illustrated in Figure 3.4
—, a need which in turn, on the one hand, originates the demand for
a positive association property of crossing events in our model, allowing
for the application of the Harris-FKG inequality, and, on the other hand,
restricts application to one spatial dimension.

Remark 3.4. The result of this section and the one of Subsection 2.1
raise the issue of a sharp condition on the distribution of T for persistent
survival. A natural conjecture is that E(T ) = ∞ is such a condition.

One related question, suggested by our conditions for Theorem 3.1,
and the example alluded to in Remark 2.2, is whether the case where
P (T > t) ∼ 1/t shows persistent survival or not.

These questions seem to be beyond the reach of our current methods
of analysis of this model.

(Notice that if P (T > t) ∼ L(t)/t with L(t) = e−θ
√
log t for some θ >

4
√
d log 2, then T satisfies Theorem 3.1. On the other hand, the example

referred to in Remark 2.2 has the same form, with L(t) = const e
log t

log log t —
see Section 5 of [7]. Both L’s are slowly varying at ∞, but while the first
one decays quite quickly to 0 as t → ∞, the second one increases to ∞
correspondingly.)
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4 Finite graphs

We now look at finite (connected) graphs, and the occurrence or not of
(persistent) survival under heavy tails. We do not expect survival to take
place in these cases without heavy tails, even at large λ, at least not if we
have some regularity on the tail of the distribution of T .

We will indeed consider in this section only the case of µ attracted to
an α-stable law, 0 < α < 1. Our results give thresholds for the size of
the graph above which we have persistent survival, and below which the
process dies out for any λ > 0.

Let V be the vertex set of our finite, connected graph, and let k = |V |
denote the cardinality of V .

Theorem 4.1 (Theorem 2.3 in [5]). Suppose that T is attracted to an
α-stable law, 1

2 < α < 1. For all λ > 0

1. P (survival) = 0, if k < v− := 2 + 2α−1
(1−α)(2−α) ;

2. P (survival) > 0, if k > v+ := 1
1−α .

We first note that if α ≤ 1/2, then (1) is trivially satisfied; and that (2)
also holds under additional regularity conditions (allowing for the validity
of the Strong Renewal Theorem, which is required for our argument in all
cases — see first item of Remark 2.6 above and Remark 2.1.3 in [5]).

Secondly, it may be readily checked that v+−v− < 1 for all α ∈ (12 , 1);
thus, if [v−, v+] ∩ N = ∅, then the above criteria determine the situation
for all V ; otherwise, the situation is undetermined for exactly one value of
k.

Remarkably, we have that the geometry of the graph plays no role in
this result, and neither does the particular positive value of λ.9 One might
say that above v+ the model behaves as in infinite volume, and below v−,
as if it were light tailed.

This result rules out the possibility of survival (for any λ > 0) in finite
graph for T ’s attracted to a 1-stable distribution, even when E(T ) = ∞.

9But either could be relevant in undetermined cases.
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(Recall from Remark 2.2 that in this case, we may have persistent survival
in an infinite graph.)

We will next, in separate subsections, argue each case of the theorem,
again in broad and rough strokes (perhaps even more so than in the pre-
vious sections).

4.1 Extinction

We will give an approximate description of the structure of the argu-
ment for extinction, incomplete but hopefully shedding light on the main
mechanism we took advantage of, while attempting to broadly, if impre-
cisely, discuss some of the left out points.

For illustration sake, let us henceforth focus on the graph with vertex
set V = {1, 2, . . . , k} and nearest neighbor edges.

For x ∈ V , let Tx,i, i = 1, 2, . . . denote the succesive intercure times
at the timeline of x. Let X1 = max{Tx,1 : x ∈ V }, X1 = argmax{Tx,1 :

x ∈ V }, and for n ≥ 1 let Xn+1 = max
{
ZSn(x) : x ∈ V \ {Xn}

}
, Xn+1 =

argmax
{
ZSn(x) : x ∈ V \ {Xn}

}
, where Z·(·) is the residual time defined

in Definition 2.3, and Sn = X1 + · · ·+Xn. See Figure 4.1.
The result follows readily once we show that Xn a.s. does not diverge

as n → ∞: this implies that we will infinitely often see time intervals
spanned by Xn with lengths of order 1, one of which will be sooner or
later a.s. be free of infection bonds, which will then mean extinction of the
infection at the end of that interval (or sooner).

To argue that property, we assume that Xn+1 is bounded in distribu-
tion by Xn times the maximum, say Z, of Y1, . . . , Yk−1, a random vector
with i.i.d. coordinates with common density const/(tα(1 + t)), t > 0.

(This bound makes sense for large values of the ages YSn(·) — see
Definition 2.3 — by well known results on the behavior of residual times
of distributions attracted to a stable law of index < 1, to the effect that
Yt(·)/t ≈ Z in distribution when t ∼ ∞ — see e.g. [4]. In the actual
argument in Section 3 of [5] we make adjustments in the above definitions,
introducing a threshold t∗ above which we may use an approximate version
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Figure 4.1: Illustration of the construction of Xn, n ≥ 1, where X1 = 1,
Xn−1 = 2, Xn = k − 1, Xn+1 = 2

of that fact.)

It would follow (from this rough argumentation), that we might bound
the distribution of Xn by

∏n
i=1 Zi, where Z1, Z2, . . . are i.i.d. copies of Z.

It may be shown now that under the conditions of (1) in Theorem 4.1, we
have that E(logZ) < 0 — see Proposition 5.1 in [5]. It follows that Xn

cannot diverge.

(Notice that the domination proposed in the above paragraph implies
that Xn vanishes in probability as n → ∞. The above product indeed
makes an appearance in the actual proof of the result in [5], even if a less
direct one, and its asymptotic behavior is crucial in the development of
that argument, yielding a non divergent behavior of (the actual version of)
Xn, even if we do not show that it vanishes — the adoption of the above
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mentioned threshold t∗ precludes that.)10

4.2 Survival

The argument for survival is not dissimilar to the one for Theorem 2.1
above. We again describe the main ideas for it, broadly and roughly.

Let n0 be a large fixed integer and for n ≥ n0, set bn = γ log n and let

tn =
n∑

j=n0

(jϵ − bm+1
j ) ∼ n1+ϵ as n ∼ ∞,

where γ and m are large (integer) constants (to be chosen more precisely
later) and ϵ > 0 is small.

The main steps of the argument are as follows.

1. Showing that a.s. for all large n, at least one x ∈ V whose timeline
has no cure marks in

(
tn, tn + (n+ 1)ϵ

)
;

2. then, a.s. for all large n, we see the (potential) transmission of the
infection within

(
tn+1, tn + (n+ 1)ϵ

)
;

3. finally, the infection survives initially with positive probability.

See Figure 4.2 for an illustration of the above objects (where time runs
in the horizontal direction).

To show the first item, let Dn denote the event {maxx∈V Ztn(x) > nϵ}.
Then

P
(
Dc

n

)
≈

{
P
(Ztn(1)

tn
≤ n−1

)}k
≈

(∫ n−1

0
x−α dx

)k
≈ n−k(1−α), (4.1)

10The approximate argument outlined above can be made exact in the model where we
replace the renewal cure processes by their scaling limit, namely α-stable subordinators
(keeping the Poissonian infection mechanism intact); we would need to change the
condition of an infected individual at the origin at time 0, by the same condition at
time 1 — otherwise, the infection would be immediately extinguished —, and have
X1 = 1 instead.
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Figure 4.2: Timelines of V = {1, . . . , k}

as n ∼ ∞, where the second ≈ sign comes from the well known asymp-
totics of the distribution of Zt(1)/t as t ∼ ∞ for interrenewal distributions
attracted to a stable law of index in (0, 1).

Arguing more rigorously, in Proposition 4.2 of [5], we get that P
(
Dc

n

)
≤

n−β , with β = k(1− α− 3ϵ) > 1, provided ϵ is small, given the condition
on k in item 2 of Theorem 4.1. Borel-Cantelli now implies the first item
of the argument.

For the second item, for n ≥ n0 and j = 0, . . . , bmn − 1, let En,j denote
the event where there is an ’up and down’ pattern of infection bonds in
V ×

(
tn+1 + jbn, tn+1 + (j + 1)bn

)
, as illustrated in Figure 4.3.

We may readily check that for each j

P
(
Ec

n,j

)
≤ 1−

(
1− e−

λ
ℓ
γ logn

)ℓ
= 1−

(
1− 1

nρ

)ℓ
∼ ℓ

nρ
, (4.2)

where ℓ = 2k − 1, and ρ = λ
ℓ γ > 1, provided γ is large. It follows that

P
(
∪bmn −1
j=0 Ec

n,j

)
≤ 1

nρ′
, (4.3)
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Figure 4.3: Illustration of event En,j , with infection bonds represented in
red. (Time runs in the horizontal direction.)

with ρ′ > 1. Borel-Cantelli now implies that En := ∩bmn −1
j=0 En,j occurs for

every large enough n almost surely.

In order to conclude the argument for the second item, let us now
consider the event Cx

n,j where the timeline of x is void of cure marks during
(tn+1+jbn, tn+1+(j+1)bn), and set Cn,j = ∩x∈V C

x
n,j and Cn = ∪bmn −1

j=0 Cn,j .

We claim that Cn occurs for every large enough n almost surely. This
will be seen to follow from the following fairly straightforward (conditional)
bound on the tail of the distribution of Zt(x). Let t0 > 0 be given, and
let Fx

t0 be the σ-algebra generated by the renewal process at x up time t0.
Then for all t large enough

P
(
Zt0(x) > t

∣∣Fx
t0

)
≥ 1

tα+ϵ
(4.4)
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— see Lemma 4.2 in [5]. It follows that

P
(
Cc
n) =

(
1− P

(
∩x∈V {Ztn(x) > bn}

))
×

bmn −1∏
j=1

(
1− P

(
∩x∈V {Ztn+jbn(x) > bn}

∣∣ ∩j−1
i=0 Cc

n,i

))
=

(
1−

[
P
(
Ztn(1) > bn}

)]k)
×

bmn −1∏
j=1

(
1−

[
P
(
Ztn+jbn(1) > bn}

∣∣ ∩j−1
i=0 (C1

n,i)
c
)]k)

≤
(
1− 1

b
k(α+ϵ)
n

)bmn ≤ e−b
m−k(α+ϵ)
n ≤ e−bn ≤ 1

nγ
,

where the first inequality follows from (4.4), and the third one holds as
soon as m > kα+1 and ϵ > 0 is small enough. Borel-Cantelli thus implies
the claim, and the second item follows from this and the above argued
similar occurrence of En.

The third item is quite clear (depending only on initial configurations,
which can be arranged with positive probability to transmit the infection
along any fixed finite time interval). Combining this with items 1 and 2,
we get survival.
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