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scribe some new results concerning the time decay of solutions to Korteweg-
de Vries (KdV) and related equations with rough large data, mainly con-
centrated in regions where solitons are not present. These are results
obtained with my collaborators

• Miguel A. Alejo (U. Córdoba, Spain),

• Fernando Cortez (EPN, Ecuador),

• Chulkwang Kwak (Ehwa Womans U., South Korea),

• Argenis Mendez (PUCV Chile),

• Felipe Poblete (UACh, Chile),

• Gustavo Ponce (UCSB, USA),

• Juan C. Pozo (U. Chile, Chile),

• Jean-Claude Saut (U. Paris-Saclay, France),

to whom I deeply acknowledge.

Setting. First of all, we consider the generalized KdV equations posed
on R :

(gKdV)

∂tu+ ∂x(∂
2
xu+ up) = 0,

u = u(t, x) ∈ R, t, x ∈ R, p = 2, 3, 4.

Some important remarks are in order:

1. p = 2, 3, 4: equation is globally well-posed in H1 (Kato [52], Kenig,
Ponce and Vega [57]).

2. p = 2, 3 are completely integrable models (KdV and mKdV,
respectively), see e.g. [1] and references therein.
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3. p = 5 is the L2 critical case, in the sense that the natural scaling in
this case u(t, x) 7→ c1/2u(c3t, cx) preserves the L2 norm.

4. If p ≥ 5, blow up may occur (Martel-Merle [86]).

Essentially, one has global solutions for data in H1 (or L2) and power
p ≤ 4. For more details, the reader can consult the monograph by Linares
and Ponce [80]. Here, we are interested in the following

Key question: To describe the asymptotics of large, globally defined so-
lutions in nonintegrable cases (a.k.a. the “soliton resolution conjecture”)
and subcritical nonlinearities.

Somehow this reduces the problem to the case p = 4 in (gKdV), but we
are also interested in proofs that are independent of the integrable character
of the model. In particular, the results that I shall present here are also
valid for some of the integrable models, and are concentrated in the regions
where solitons/solitary waves/lumps are not present.

To try to explain the previous key question, we need some definitions.
A soliton (or solitary wave) is a solution to (gKdV) of the form

u(t, x) = Qc(x− ct),

with Qc ∈ H1(R) the unique (up to translations) positive solution to

Q′′
c − cQc +Qp

c = 0, c > 0.

The soliton resolution conjecture states that, except for some particular
cases, globally defined solutions to (gKdV) decompose, as time tends to
infinity, as the sum of solitons and radiation. By radiation, we broadly
mean a linear solution of (gKdV). Mathematically,

u(t, x) ∼L2

∑
j≥1

Qcj(t)(x− ρj(t)) + ℓ(t), t→ +∞.

Here, cj(t) and ρj(t) are modulated scaling and shifts, respectively, and
ℓ(t) denotes a linear solution, namely ∂tℓ + ∂3xℓ = 0 (p ≥ 4, see explana-
tions below). Several questions appear immediately: are the cj(t) always
different? What about the behavior of ρj(t)?
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These are questions that still remain unsolved if p = 4, for instance.
Indeed, except for integrable cases (to be described below), this conjecture
is far from being established in the nonintegrable subcritical setting.

2 A quick review on the literature

For the sake of completeness, we will consider a general nonlinearity
f(u) in (gKdV), which will be specified below. Therefore, we have

(gKdV) ∂tu+ ∂x(∂
2
xu+ f(u)) = 0.

The following account is by far not 100% accurate and complete, but it
describes in a broad sense the recent literature on the subject.

Long time behavior of small solutions: this corresponds to the case
where one assumes small initial data in a well-chosen Banach space. The
situation is quite good for powers of the nonlinearity f(u) ∼ up with
p ≥ 3, but below this range things are quite complicated and essentially
only proved via inverse scattering techniques and under weighted norms.

We will say that a solution u(t) ∈ H1 of (gKdV) scatters to a linear
one if there exists ℓ(t) ∈ H1 solution of Airy ∂tℓ+ ∂3xℓ = 0 such that

∥u(t)− ℓ(t)∥H1 → 0, t→ +∞.

This is formally the expected case if p ≥ 4. Sometimes one needs to
perturb ℓ(t) to recover the asymptotic behavior at infinity, this is the case
of modified scattering (p ≤ 3).

Concerning nonintegrable techniques, here one has:

1. Kenig-Ponce-Vega [57]: scattering for small data solutions of the L2

critical gKdV equation (p = 5).

2. Ponce-Vega [109]: for the case f(s) = |s|p, p > (9 +
√
73)/4 ∼ 4.39,

small data solutions in L1 ∩ H2 lead to decay, with rate t−1/3 (i.e.
linear rate of decay).
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3. Christ and Weinstein [14]: scattering of small data if f(s) = |s|p,
p > 1

4(23−
√
57) ∼ 3.86.

4. Hayashi and Naumkin [39, 40] studied the case p > 3, obtaining
decay estimates and asymptotic profiles for small data in the classical
weighted space H1,1.

Long time behavior of small solutions around solitons: In this
case, we assume initial data which is close in some sense to a soliton.
Consequently, one seeks here stability and asymptotic stability (AS) of
the soliton in particular spaces.

1. Bona-Souganidis-Strauss [10]: Stability and instability for the gKdV
soliton in the subcritical and supercritical cases.

2. Pego-Weinstein [108]: First result of AS gKdV models: asymptotic
stability in exponentially weighted spaces.

3. Martel-Merle [87, 88, 89, 90]: Asymptotics in the energy space using
virial techniques, and studied the collision problem in quartic gKdV.

4. Tao [117] considered the scattering of data for the quartic KdV in
the space H1 ∩ Ḣ−1/6 around the zero and the soliton solution.

5. The finite energy condition above was then removed by Koch and
Marzuola [63] by using U − V spaces.

6. Côte [17] constructed solutions to the subcritical gKdV equations
with a given asymptotical behavior, for p = 4 (quartic) and p = 5

(L2 critical).

7. Germain, Pusateri and Rousset [33] dealt with the mKdV case (p =
3) around the zero background and the soliton, by using Fourier
techniques and estimates on space-time resonances. See also Harrop-
Griffiths [37].
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8. Chen-Liu [13]: soliton resolution of mKdV using inverse scattering
techniques, in weighted Sobolev spaces. This results also includes the
presence of nonzero speed breathers (3.1), to be explained below.

No scattering results seems to hold for the quadratic power (p = 2),
which can be considered as “supercritical” in terms of modified scattering.

3 A First result for the KdV model

Our first result concerns the integrable quadratic case, which is nothing
but KdV. Using integrability techniques, it is possible to give a detailed
description of different regions, see e.g. [24, 26]. Assuming that the solu-
tion stays in the space L∞(R;L1(R)), one can prove full decay around zero
in the region |x| ≲ t1/2−.
Theorem (G. Ponce-M. 2018 [104]). Assume u ∈ C(R;H1(R)) ∩
L∞(R;L1(R)) solution to (KdV) p = 2, then

lim
t→∞

∫
Ω(t)

u2(x, t)dx = 0, Ω(t) :=
{
x ∈ R : |x| ≲ t1/2 log−2 t

}
.

There are several comments that are important to address:
Remarks.

1. Solitons do satisfy the last hypothesis (being in L∞(R;L1(R))).

2. No size restriction on the data is needed.

3. No use of integrable techniques, this result is valid for nonintegrable
perturbations of KdV and small H1 data, in the form

u2 + ou→0(u
2).

One of the most important examples is the integrable Gardner model:

∂tu+ ∂x(∂
2
xu+ u2 + µu3) = 0, µ > 0,

see [2] for more details.
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4. This decay result is not valid for p = 3 (existence of breathers, which
are counterexamples, see below) and p = 4 (scaling problems).

5. Ifrim-Koch-Tataru [44] give a detailed description of asymptotics for
weighted small data O(ε) and times of cubic order O(ε−3).

About breathers. It is well-known that both mKdV and Garner models
have stable breather solutions [1, 2, 4, 5, 7], that is to say, localized in
space solutions which are also periodic in time, up to the symmetries of
the equation. An example of these type of solutions is the mKdV breather:
for any α, β > 0,

B(t, x) := 2
√
2∂x arctan

(
β sin(α(x+ δt))

α cosh(β(x+ γt))

)
,

δ = α2 − 3β2, γ = 3α2 − β2,

(3.1)

is a solution of mKdV with nontrivial time-periodic behavior, up to the
translation symmetries of the equation. Therefore, generalized KdV equa-
tions may have both solitary waves and breathers as well, and both classes
of solutions do not decay.

About the proof. Since we want to show that

lim
t→∞

∫
Ω(t)

u2(x, t)dx = 0,

the key part of the proof is to show sequential decay of the involved quan-
tity. Consider the functional∫

ψ

(
x

λ(t)

)
u(t, x)dx, ψ ∼ tanh, λ(t) ∼ t1/2−,

whose derivative satisfies the lower bound

d

dt

∫
ψ

(
x

λ(t)

)
u(t, x)dx ≳

1

λ(t)

∫
ψ′

(
x

λ(t)

)
u2(t, x)dx− f(t),

with f(t) ∈ L1(t ≫ 1). This last virial identity proves that the local in
space L2 norm of the solution u has integrability in time properties, in
particular, at least for a sequence of times is converging to zero.
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Part of the problem, consequently, is to remove the additional hypoth-
esis u ∈ L∞(R;L1(R)), which is clearly unsatisfactory. Part of the problem
was solved for the Benjamin-Ono model, which we describe now.

4 The Benjamin-Ono model

This is the model given by

(BO)

 ∂tu+ ∂x(∂xHu+ u2) = 0, (t, x) ∈ R× R,

u(0, x) = u0(x),

where H denotes the Hilbert transform (p.v. =principal value, ∗ is the
convolution, and (·)∨ is the inverse Fourier Transform)

Hf(x) := 1

π
p.v.

(1
x
∗ f

)
(x)

:=
1

π
lim
ϵ↓0

∫
|y|≥ϵ

f(x− y)

y
dy = (−i sgn(ξ)f̂(ξ))∨(x).

This model is globally well-posed in the energy space H1/2, but also in L2

(Ionescu-Kenig [45]). Once again, for a complete description of this model,
the reader can consult Linares-Ponce [80].

Now we relax the hypothesis required in the KdV case. Assume that:

1. u = u(t, x) ∈ C(R : H1/2(R)) ∩ L∞
loc(R : L1(R)) solves (BO).

2. There are a ∈ [0, 1/2) and c0 > 0 such that for all T > 0,

sup
t∈[0,T ]

∫
R
|u(t, x)|dx ≤ c0 ⟨T ⟩a, ⟨T ⟩ := (1 + T 2)1/2.

Therefore, the solution may only have a controlled growth of the L1
x norm

measured in terms of the time variable T .
Theorem (G. Ponce, M. [105]). Under the previous hypotheses, one
has

lim inf
t↑∞

∫
R

(u2 + (D1/2u)2)(t, x)

1 +
(

x
λ(t)

)2 dx = 0,
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with

λ(t) =
c t1−a

log t
,

for any fixed c > 0.
The previous result states that at least for a sequence of times, the

energy norm in BO is converging to zero in the growing interval |x| ≲
t(1−a)−.

Although the proof of this result is similar to the KdV case, it contains
several difficulties related to the nonlocal character of the equation. Some
previous estimates by Kenig and Martel [56] are key to prove the final
estimates. Some fine commutator estimates are needed, and the liminf is
obtained since we need a particular modification of the argument in [104]
that allows us to control the energy norm as time tends to infinity.
More applications: The method of proof above is quite general and it
can be applied to several other dispersive models of importance: BBM
equations (Kwak-M. [70]), abcd type models [68, 69] (small data case
only, large data seems quite complicated), Camassa-Holm type equations
(Alejo-Cortez-Kwak-M. [3]), KdV on the half line [12], the quite involved
Zakharov-Rubenchik / Benney-Roskes system (María Martínez and José
Palacios [91]), and the ILW model (M.-Ponce-Saut [106]).

5 Coming back to KdV

The decay result for the BO model has been subsequently improved
in the following sense. Let us discuss the recent result by Mendez-M.-
Poblete-Pozo [93]. Let

Ω(t) :=
{
x ∈ R : |x± tn| ≲ tb

}
, b <

2

3
, 0 ≤ n ≤ 1− b

2
.

For this set, we have
Theorem. Suppose that u0 ∈ L2(R). Let u = u(t, x) be the corresponding
solution to KdV. Then

lim inf
t→∞

∫
Ω(t)

u2(t, x)dx = 0. (Decay)
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This new result improves the previous ones in the following sense: first,
it does not require data in L1, only in L2. Second, it expands the region
of space where the decay may hold, up to t2/3−, in the noncentered case.
Third, if one considers decay along rays |x| ∼ tn, and n is bigger than
2/3, then the window width b must be decreased according to the relation
b ≤ 2(1− n).
Some additional remarks.

1. This result is still valid for nonintegrable perturbations of KdV of
the form u2 + o(u2) and data in H1.

2. The proof also works for quartic gKdV (u4) but we need data in H1.
One has

lim inf
t→∞

∫
Ω̃(t)

u4(t, x)dx = 0,

with Ω̃(t) given by

Ω̃(t) :=
{
x ∈ R : |x± tn| ≲ tb

}
, b <

4

7
, 0 ≤ n ≤ 1− b

2
.

3. Sharp result in view of Airy decay estimates established by Ifrim-
Koch-Tataru [44]. Indeed, if one assumes “linear behavior” for the
solution at large time, then (Decay) is sharp.

Obtaining the remaining lim sup property is an open question, even in
the small data case. For further literature in this direction, see the recent
result by Duyckaerts, Kenig, Jia and Merle 2017 [25] involving conver-
gence along a sequence of times in the soliton resolution conjecture for the
focusing, energy critical wave equation.

6 More applications: the Zakharov-Kuznetsov model

The previous technique is stable under perturbations: one can prove
asymptotic decay for solutions to several dispersive models in more than
one dimension.
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As an application, consider the Zakharov-Kuznetsov model (ZK)

(ZK) ∂tu+ ∂x∆u+ u∂xu = 0,

where u = u(t,x) ∈ R, t ∈ R and x ∈ Rd, with d = 2, 3.
Concerning this model, one has the following basic facts:

1. It was originally proposed by Zakharov and Kuznetsov [67] (1974)
in 3D (see Lannes-Linares-Saut [73] for a rigorous derivation).

2. It was derived as an asymptotic model of wave propagation in a
magnetized plasma [67].

3. It is also a natural multi-dimensional generalization of the Korteweg-
de Vries (KdV) equation:

∂tu+ ∂x(∂
2
xu+ u2) = 0, u = u(t, x) ∈ R, t, x ∈ R.

Formally, it has mass and energy as conserved quantities at the H1

level: ∫
Rd

u2(t,x)dx = const.,

1

2

∫
Rd

|∇u|2(t,x)dx− 1

3

∫
Rd

u3(t,x)dx = const.

Let us review the Cauchy problem for ZK. First of all,

• ZK 2D is globally well-posed (LWP) in L2: See the works by
Faminskii [28], Linares and Pastor [75], Molinet and Pilod [99], Grünrock
and Herr [34], and very recently by Kinoshita [59]. Up to know, the best
local well-posedness result is in Hs, s > −1

4 .

• ZK 3D is globally well-posed in H1: Here one has Linares and Saut
[82], Ribaud-Vento [110], Molinet and Pilod [99], Herr and Kinoshita [43];
the LWP holds for s > −1

2 .

Other results: see the recent uniqueness results vs. spatial decay
(Cossetti-Fanelli-Linares [16]), and the propagation of regularity along re-
gions of space (Linares-Ponce [81], Mendez [92]).
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Solitons. Similar to KdV, (ZK) possesses soliton solutions of the form

u(x, t) = Qc(x− ct, x′), c > 0, x′ ∈ Rd−1, d ≤ 4.

Here Qc = cQ(
√
cx) and Q is the H1(Rd) radial solution of the elliptic

PDE
∆Q−Q+Q2 = 0, Q > 0.

Unlike KdV, no explicit formula is known for ZK solitons. However, the
following important results are valid:

1. Anne de Bouard [19] (1996): subcritical ZK solitons are orbitally
stable in H1, and supercritical ones are unstable.

2. Côte-M.-Pilod-Simpson [18] (2016): Asymptotic stability (AS) of 2D
solitons in the energy space H1.

3. Farah-Holmer-Roudenko-Yang (2020): AS in the more involved 3D
case [31].

Both last works are nontrivial extensions of the foundational works by
Martel and Merle concerning the one dimensional KdV case.
More results about solitons:

1. Well-decoupled multi-solitons were proved H1 stable in 2D, see [18].

2. The modified ZK equation (cubic nonlinearity) has finite or infinite
time blow up solutions (Farah-Holmer-Roudenko-Yang, [30]). See
also Merle [95] for the proof in the gKdV case.

3. Construction of multi-solitons in 2D and 3D (Valet, [119]), following
Martel [85].

No scattering seems to be available for 2D and 3D, not even in the
small data case, except if the nonlinearity is big enough (Farah-Linares-
Pastor [29]). Indeed, ZK in 2D is scattering critical (uux ∼ 1

tu), and
subcritical in 3D. KdV in 1D es scattering supercritical.
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Our main goal here is to study the asymptotic behavior of global ZK
solutions, under minimal regularity assumptions (essentially, data only in
L2(Rd) or H1(Rd)). In particular, we shall describe the dynamics in local
regions of space where solitons are absent, i.e., purely “linear” behavior.
Theorem (Mendez-M.-Poblete-Pozo 2020 [93]). Suppose that u0 ∈
L2(R2) and let u = u(x, y, t) be the bounded in time solution to 2D (ZK).
Then

lim inf
t→∞

∫
Ω(t)

u2(x, y, t)dx dy = 0,

with

Ω(t) =

{
(x, y) ∈ R2 : |x| < tb, |y| < tbr,

1

3
< r < 3, 0 ≤ b <

2

3 + r

}
.

See Fig. 6.1.

x

y

x ∼ t

tbr

tb

Ω(t)

Figure 6.1: Here 1
3 < r < 3, 0 ≤ b < 2

3+r and 0 ≤ br < 2r
3+r . Here x ∼ t

represents the soliton region.

Some comments.

1. The previous result also valid in 3D and if data is in H1. One can
also show that the L2 local gradient decays to zero.

2. One can also show strong L2 decay in regions of the form |x| ≫ t,
see M.-Ponce-Saut [106] for the case of the ILW equation.
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3. See another application to the KdV-Schrödinger model by Linares-
Mendez [77].

As we can see, the virial technique is stable enough to consider 2 and
3 dimensional cases. The remaining regions in ZK are of independent
interest, in view that there is a soliton region x ∼ t.

7 Coming back again to gKdV

The following result is related to the limsup problem described above.
A recent result shows complete decay to zero in extreme regions of space.
Of particular interest is the left region in the gKdV case, which was com-
pletely out of reach.

Theorem (R. Freire, G. Ponce, F. Linares, M.). Any global solution
to subcritical gKdV in L∞

t H
1
x satisfies

lim
t→+∞

∥u(t)∥L2(Ω(t)) = 0,

with

Ω(t) :=
{
x ∈ R : x ≲ −t log1+ϵ t and x > C0t

}
,

with C0 depending on the size of the initial data and any ϵ > 0. A similar
result also holds for the BO equation.

Note that this result also holds for the cubic power p = 3, which has
breathers. In some sense, the previous result is sharp, since breathers (3.1)
do not decay and can move along lines x = −vt, for any v > 0.

With this result in mind, one has a satisfactory answer in the noninte-
grable case and in far regions of space. The central region is well-known
only in terms of liminf, and the soliton region in full generality is still
completely out of reach.

The proof of these results is done by using the mass of the solution cut
into particularly well-chosen pieces. See [32] for further details.
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8 The KP models

The Kadomtsev-Petviashvili (KP) equations in R2 are:

∂tu+ ∂3xu+ u∂xu+ κ∂−1
x ∂2yu = 0,

where u = u(t, x, y) ∈ R, t ∈ R, (x, y) ∈ R2 and κ ∈ {−1, 1}.

The nonlocal operator ∂−1
x f is formally defined in the literature as

(∂−1
x f)(x, y) :=

∫ x

−∞
f(s, y) ds.

The KP equations were first introduced by Kadomtsev and Petviashvili
in 1970 [53] for modeling long and weakly nonlinear waves propagating
essentially along the x direction, with a small dependence in the y variable.
A rigorous derivation of both models from the symmetric abcd Boussinesq
system was obtained by Lannes and Lannes-Saut [72, 74]. The nonlocal
term makes KP models hard from the mathematical point of view, and
the understanding of the dynamics is far from satisfactory.

The convention here is that κ = −1 is KP-I (strong surface tension)
and κ = 1 is KP-II (weak surface tension).

Despite their apparent similarity, KP-I and KP-II differ significantly
with respect to their underlying mathematical structure and the behavior
of their solutions. For instance, from the point of view of well-posedness
theory KP-II is much better understood than KP-I.

KP II. Bourgain [11] showed that KP-II is globally well-posed (GWP)
in L2(R2) (see also Ukai [118] and Iório-Nunes [48] for early results). Im-
provements of Bourgain results by Takaoka-Tzvetkov [116], Isaza-Mejia
[49] and Hadac-Herr-Koch [36].

Bourgain proved GWP via the contraction principle in Xs,b spaces and
the conservation of the L2-norm

M [u](t) :=
1

2

∫
R2

u2(t, x, y) dx dy = const.
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Note that this conservation holds for both KP-I and KP-II.

KP I. The KP-I global theory in the energy space took years to be solved.
It was known from Molinet-Saut-Tzvetkov [101] that KP-I behaves badly
with respect to perturbative methods.

1. GWP by Molinet, Saut and Tzvetkov [100], C. E. Kenig [54], and
Ionescu, Kenig and Tataru [47]. See also [46].

2. The last result is obtained in the natural energy space of the equa-
tion

E1(R2) :=
{
u ∈ L2(R2) : ∥u∥L2 + ∥∂xu∥L2 + ∥∂−1

x ∂yu∥L2 < +∞
}
,

in the sense that the flow map extends continuously from suitable
smooth data into E1(R2).

The space E1(R2) arises naturally from the conservation of energy
(κ = 1 KP-II, κ = −1 KP-I)

E[u](t) :=

∫
R2

(
1

2
(∂xu)

2 − 1

2
κ(∂−1

x ∂yu)
2 − 1

3
u3

)
(t, x, y) dx dy = const.

Another important conserved quantity in KP models is the momentum

P [u](t) :=
1

2

∫
R2

(
u∂−1

x ∂yu
)
(t, x, y) dx dy = const.

Lumps. KP-I has lump solutions, namely solutions of the form

u(t, x, y) = Qc(x− ct, y), c > 0.

The function Qc is given as Qc(x, y) := cQ(
√
cx, cy), where Q is the fixed

profile

Q(x, y) = 12∂2x log(3 + x2 + y2) =
24(3− x2 + y2)

(x2 + y2 + 3)2
.

This profile satisfies the elliptic nonlocal PDE on R2

∂2xQ−Q+
1

2
Q2 − ∂−2

x ∂2yQ = 0, Q ∈ E1(R2),
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in the sense of distributions. Lumps were first found by Satsuma and
Ablowitz via an intricate limiting process of complex-valued algebraic so-
lutions to KP-I [113].

Lumps vs. ground states. De Bouard and Saut [21, 22, 23] described,
via PDE techniques, qualitative properties of KP-I lumps solutions which
are also ground states (not necessarily equal to Q).

Ground states decay as 1/(x2+y2) as |(x, y)| tends to infinity. However,
whether or not lump solutions Q are ground states is still an unknown open
problem.

Liu and Wei [84], by using linear Bäcklund transformation techniques,
proved the orbital stability of the lump Q in the space E1(R2),
hinting that Q it is probably the unique (modulo translations) ground
state.

Let us review the invariances present in the KP equations:

1. Shifts:
u(t, x, y) 7→ u(t+ t0, x+ x0, y + y0).

2. Scaling: if c > 0,

u(t, x, y) 7→ cu
(
c3/2t, c1/2x, cy

)
.

3. Galilean invariance: for any β ∈ R, if u(x, y, t) is solution to KP,
thenu(t, x, y) 7→ u

(
t, x− β2t− β(y − 2βt), y − 2βt

)
, KP-I

u(t, x, y) 7→ u
(
t, x+ β2t+ β(y − 2βt), y − 2βt

)
, KP-II,

define new solutions to KP.

Using this, one can construct a moving lump solution, of arbitrary size
and speed: for any α, β ∈ R,

Qc,β(t, x, y) := Qc

(
x− ct− β2t− β(y − 2βt), y − 2βt

)
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is a moving lump solution of KP-I with speed (c+ β2, 2β) ∈ R2. One can
show that small lumps (in the energy space) may have arbitrarily large
speeds (β ≫ 1 and c≪ 1 such that β2c1/2 ≪ 1).

In the KP-II case:

1. de Bouard-Saut [22], and de Bouard-Martel [20]: KP-II has no lump
structures as KP-I has.

2. Any KdV soliton becomes an (infinite energy) line-soliton solution of
KP. This structure is stable in the KP-II case, as proved by Mizu-
machi and Tzvetkov [98], and asymptotically stable in a series of
deep works by Mizumachi [96, 97].

3. Multi-line-soliton structures are known to exist via Inverse Scattering
methods, and nothing is known about their stability in rigorous terms
[61].

4. In the KP-I case, the KdV soliton is transversally unstable (Rousset
and Tzvetkov [111, 112]).

5. Molinet, Saut and Tzvetkov [102] proved global well-posedness of
KP-II along the KdV line soliton in L2(R×T) and L2(R2) (see also
Koch and Tzvetkov [65]).

6. Izasa-Linares-Ponce [51] showed propagation of regularity for this
model. The KP-I case seems unsolved, as far as we understand.

Once a suitable well-posedness theory is available, one may wonder
about the long time behavior of globally defined solutions. This
is a difficult open question not yet solved either by Inverse Scattering
Transform (IST) or PDE methods (see [115, 120] for partial results in this
direction, in the case of small data). Moreover, the answer may be strongly
dependent on the choice of model, KP-I or KP-II.
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Except by some particular cases (lumps and line solitons, their orbital
and asymptotic stability, and the case of suitable small data scattering
solutions), no rigorous results about large data behavior in KP models,
starting from Cauchy data, are available, as explained by Klein-Saut [61].

Figure 8.1: Line Soliton of KP (left) and KP-I lump (right).

New results. Let t≫ 1 and Ω1(t) denote the following rectangular box

Ω1(t) =
{
(x, y) ∈ R2 : |x− ℓ1t

m1 | ≤ tb, |y − ℓ2t
m2 | ≤ tbr

}
,

with ℓ1, ℓ2 ∈ R,

5

3
< r < 3, 0 < b <

2

3 + r
,

0 ≤ m1 < 1− b

2
(r + 1), and 0 ≤ m2 < 1− b

2
(3− r).

Let also σ1, σ2 ≥ 0, not both equal zero. We define Ω2,1(t) as

Ω2,1(t) :=
{
(x, y) ∈ R2 : σ1 |x|+ σ2 |y| ≥ t log1+ϵ t

}
,

for any fixed ϵ > 0.

We also define, for β > 0 and σ3 ∈ R,

Ω2,2(t) :=
{
(x, y) ∈ R2 : x+ σ3y ≥ βt

}
.

Under these definitions, we proved:
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x

y

x≫ t

y ≫ t

x ∼ t

y ∼ t

tbr

tb

Ω1(t)

Ω2,1(t)

Ω2,2(t)

Theorem [94]. Every solution u = u(x, y, t) of KP obtained from arbi-
trary initial data u0 in L2(R2) in the KP-II case, and u0 in the energy
space E1(R2) for KP-I, satisfies

lim inf
t→∞

∫
Ω1(t)

u2(t, x, y) dxdy = 0.

If now u ∈ L∞([0,∞);E1(R2)) is a solution to KP,

lim
t→∞

∫
Ω2,1(t)

u2(t, x, y) dxdy = 0,

and for KP-II and β sufficiently large (only depending on σ3 and the
E1(R2) norm of the initial datum),

lim
t→∞

∫
Ω2,2(t)

u2(t, x, y) dxdy = 0.

Final remarks:

1. This result is satisfied by both KP-I and KP-II: both models contain
a quadratic nonlinearity, and the proof does not depend on the sign
of κ.
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2. In the KP-II setting, more can be said: Kenig and Martel [63] showed
that for any β > 0 and initial data small in L1 ∩ L2,

lim
t→∞

∫
x>βt

u2(t, x, y) dxdy = 0.

3. The remaining limsup property holds in a particular region if the
solution is in L∞

t (L1
x,y ∩ L2

x,y), see Muñoz-Ponce [104] for similar
arguments.

4. There is ground to believe that the results in the previous theorem,
as well as in the KdV case, are sharp.

5. The previous theorem is stable under perturbations of the nonlinear-
ity f(u) = u2 + ou→0(u

2), provided LWP of the corresponding KP
equation is available.
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