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Abstract. In this paper we investigate the problem for a model of
the micropolar fluid coupled system. We consider that the Newto-
nian viscosity depends on the velocity of the fluid. Making use of the
Faedo-Galerkin’s approximation and some basic results of the theory
of monotone operators and an appropriate penalization, we obtain a
variational inequality for the micropolar fluid coupled system. Reg-
ularity and Uniqueness of solutions for n = 2 are also analyzed.
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1 Introduction

Let Ω be a bounded domain in R3 with the boundary ∂Ω of class C2.
For T > 0, we denote by QT the cylinder (0, T )×Ω, with lateral boundary
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ΣT = (0, T ) × ∂Ω. By ⟨., .⟩ we will represent the duality pairing between
X and X ′, X ′ being the topological dual of the space X, and by C we
denote various positive constants. The equations that describe the motion
of micropolar fluids are given by

u′ − (ν + νr)∆u+ (u · ∇)u+∇p = 2νr rot w + f in QT ,

w′ − (ca + cd)∆w + (u · ∇)w − (c0 + cd − ca)∇(∇ · w)
= 2νr rot u+ g, in QT ,

div u = 0 in QT ,

u = 0 on ΣT ,

w = 0 on ΣT ,

u(x, 0) = u0(x) in Ω,

w(x, 0) = w0(x) in Ω,

(1.1)

where u(x, t) ∈ R3, w(x, t) ∈ R3 and p(x, t) ∈ R denotes, for (x, t) ∈ QT ,
respectively, the unknown velocity, the microrotational velocity and the
hydrostatic pressure of the fluid. The constants ν and νr are, respectively,
the Newtonian and micro-rotational viscosity; the positive constants c0, ca
and cd are called coefficients of angular viscosities and satisfies c0+cd > ca.

The main difference with respect to modeled fluids by the Navier-
Stokes is that the rotation of the particles is taken into account. The above
approach was introduced by A. C. Eringen [4]. The nonlinear coupled
system (1.1) can be used to model the behavior of liquid crystals, polymeric
fluids and blood under some circumstances (see for instance [5]). These
systems have been mainly analyzed in the book of G. Lukaszewicz [8].

Following an idea of J-L Lions in [6], pp. 208, the authors studied
(to appear) the following system, where existence (n = 2, 3), regularity
and uniqueness of solutions (n = 2) are obtained:

u′ − (ν0 + ν1∥u∥2)∆u+ (u.∇)u+∇p = rotw + f in QT ,

w′ − ∆w −∇(∇ · w) + (u.∇)w = rotu+ g in QT , (1.2)

div u = 0 in QT ,

u = 0 on ΣT ,

w = 0 on ΣT ,



50 G. M de Araújo, M. A. F. de Araújo

u(x, 0) = u0(x) in Ω,

w(x, 0) = w0(x) in Ω,

where ν0, ν1 constants, as another version of the system (1.1). In
the latter, we are assuming that the viscosity ν + νr in the first equation
of (1.1) is changed to one of the type ν0 + ν1∥u∥2, that depends of the
velocity u, and all other coefficients are equal to 1. In Brézis [1], 1989,
we find investigation for a unilateral problem for Navier-Stokes operator
(ν1 = 0), that is, constant viscosity.

In the present work we consider a unilateral problem with first in-
equality similar to Brézis [1], for the case non constant viscosity, that is,
ν0 + ν1∥u(t)∥2, ν1 > 0. More precisely, in this paper we study a unilat-
eral problem or a variational inequality, cf. Lions [6], for the system (1.2)
under standard hypotheses on f, g u0 and w0. Making use of the penalty
method and Galerkin’s approximations, we establish existence, regularity
and uniqueness theorems.

This work is organized as follows: in section 2 we introduce the no-
tations and main results. In Section 3 we show the proofs of the results.
Finally, in Section 4, we prove a simple result of uniqueness.

2 Notation and main results

We propose the following variational inequality associated to
problem (1.2)

u′−(ν0 + ν1∥u∥2)∆u+ (u · ∇)u+∇p ≥ rotw + f in QT

w′ −∆w −∇(∇.w) + (u · ∇)w ≥ rotu+ g in QT ,

div u = 0 in QT ,

u = 0 on ΣT ,

w = 0 on ΣT ,

u(x, 0) = u0(x) in Ω,

w(x, 0) = w0(x) in Ω,

(2.1)

In order to formulate problem (2.1) we need some notations about Sobolev
spaces. We use standard notation of L2(Ω), Lp(Ω), Wm,p(Ω) and Cp(Ω) for
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functions that are defined on Ω and range in R, and the notation L2(Ω)n,
Lp(Ω)n, Wm,p(Ω)n and Cp(Ω)n for functions that range in Rn. Besides,
we work also with the spaces Lp(0, T ;Hm(Ω)) or Lp(0, T ;Hm(Ω))n. To
complete this recall on functional spaces, see for instance, Lions [6].

Also we define the following spaces

V = {φ ∈ D(Ω)n; divφ = 0},

V = V (Ω) is the closure of V in the space H1
0 (Ω)

n with inner product and
norm denoted, respectively by

((u, z)) =
n∑

i,j=1

∫
Ω

∂ui
∂xj

(x)
∂zi
∂xj

(x) dx, ∥u∥2 =
n∑

i,j=1

∫
Ω

(
∂ui
∂xj

(x)

)2

dx,

H = H(Ω) is the closure of V in the space L2(Ω)n with inner product and
norm defined, respectively, by

(u, v) =

n∑
i=1

∫
Ω
ui(x)vi(x) dx, |u|2 =

n∑
i=1

∫
Ω
|ui(x)|2 dx.

Remark 2.1. V and H are Hilbert’s spaces, V ↪→ H ↪→ V ′ with embed-
ding dense and continuous.

We introduce the following bilinear and the trilinear forms

a(u, v) =
n∑

i,j=1

∫
Ω

∂ui
∂xj

(x)
∂vi
∂xj

(x) dx = ((u, v)),

b(u, v, w) =

n∑
i,j=1

∫
Ω
ui(x)

∂vj
∂xi

(x)wj(x) dx.

Remark 2.2. We denote by A the monotonous, hemicontinuous and
bounded operator A : V −→ V ′ , ⟨Au, v⟩ = ∥u∥2a(u, v) (see, for example,
Lions [6], p. 218). We have that Au = −ν1∥u∥2∆u.

Let K and K̃ be a closed and convex subset of V and H1
0 (Ω)

n with
0 ∈ K and K̃. We write
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V = L4(0, T ;V )), V′ = L4/3(0, T ;V ′),
H = L2(0, T ;H), K = {v|v ∈ V, v(t) ∈ K a.e. , v(0) = 0},

D

(
d

dt
;V′

)
=

{
v|v ∈ L4(0, T ;V ), v′ ∈ L4/3(0, T ;V ′)

}
Remark 2.3. V is a reflexive Banach space, H is a Hilbert space, K is a
closed and convex subset of V.

We consider also the "Compatibility Hypothesis" (see Lions [6], p. 269)

∀v ∈ K there exists a mollifiers vj verify

i) vj ∈ K ∩D
(
d

dt
;V′

)
,

ii) vj −→ v in V, j −→ ∞,

iii) lim sup
j→∞

(
dvj
dt
, vj − v

)
≤ 0.

(H1)

Now, we present the main results of this work.

Theorem 2.4. If n ≤ 3, f ∈ L4/3(0, T ;V ′), g ∈ (L2(0, T ;H−1(Ω)3) and
hypothesis (H1) hold, then there exists a pair of functions {u,w} such that

u ∈ L4(0, T ;V ) ∩ L∞(0, T ;H), w ∈ L2(0, T ;H1
0 (Ω)

3) ∩ L∞(0, T ;L2(Ω)3)

u(t) ∈ K, a.e., w(t) ∈ K̃, a.e. (2.2)∫ T

0
[⟨φ′, φ− u⟩ + ν0a(u, φ− u)+b(u, u, φ− u)+ν1∥u∥2a(u, φ− u)]dt

≥
∫ T

0
[(rotw,φ− u) + ⟨f, φ− u⟩]dt,

(2.3)
∀φ ∈ L4(0, T ;V ), φ′ ∈ L4/3(0, T ;V ′), φ(0) = 0, φ(t) ∈ K a.e.∫ T

0
[⟨ϕ′, ϕ− w⟩ + a(w, ϕ− w) + b(u,w, ϕ− w)− (∇divw, ϕ− w)]dt

≥
∫ T

0
[(rotu, ϕ− w) + ⟨f, ϕ− w⟩ dt],

(2.4)
∀ϕ ∈ L4(0, T ;H1

0 (Ω)
3), ϕ′ ∈ L2(0, T ;H−1(Ω)3), ϕ(0) = 0, ϕ(t) ∈ K̃ a.e.
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Theorem 2.5. Under the assumptions (H1), suppose that n = 2 and

f, f ′, g, g′ ∈ L2(0, T ;L2(Ω)2) (2.5)

u0 ∈ K,w0 ∈ K̃. (2.6)

Suppose also that

(f(0), v) + (rotw0, v)−ν0a(u0, v)−b(u0, u0, v)−ν1∥u0∥2a(u0, v)(2.7)

= (u1, v) for all v ∈ V and for some u1 ∈ H,

(g(0), ṽ) + (rotu0, ṽ)−ν0a(w0, ṽ)−b(u0, w0, ṽ)−(divw0, div ṽ) (2.8)

= (w1, ṽ) for all ṽ ∈ H1
0 (Ω)

2 and for some w1 ∈ L2(Ω)2

Then there exists a unique pair of functions {u,w} such that

u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

w∈L2(0, T ;H1
0(Ω)

2), w′∈L2(0, T ;H1
0 (Ω)

2)∩L∞(0, T ;L2(Ω)2)(2.9)

u(t) ∈ K,w(t) ∈ K̃ ∀t ∈ [0, T ], satisfying

(u′(t), v − u(t)) + ν0a(u(t), v − u(t))

+ν1⟨Au(t), v − u(t)⟩+ b(u(t), u(t), v − u(t))

≥ (rotw(t), v − u(t)) + (f(t), v − u(t)) ∀v ∈ K, a.e. in t, (2.10)

(w′(t), ṽ − w(t)) + a(w(t), ṽ − w(t)) + b(u(t), w(t), ṽ − w(t))

≥ (rotu(t), ṽ − w(t)) + (g(t), ṽ − w(t)) ∀ṽ ∈ K̃, a.e. in t, (2.11)

u(0) = u0, w(0) = w0. (2.12)

The proof of Theorems 2.4 and 2.5 will be given in Section 3 by the
penalty method. It consists in considering a perturbation of the system
(1.2) adding a singular term called penalization, depending on a parameter
ϵ, ε > 0. We solve the mixed problem in Q for the penalized operator and
the estimates obtained for the local solution of the penalized equation,
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allow us pass to limits, when ϵ, ε goes to zero, in order to obtain a pair of
functions {u,w} which is the solution of our problem.

First of all, let us consider the penalty operators β : V −→ V ′ and
β̃ : H1

0 (Ω)
3 −→ H−1(Ω)3 associated to the closed convex sets K and K̃,

cf. Lions [6], pp. 370. The operators β and β̃ are monotonous, hemicon-
tinuous, takes bounded sets of V and H1

0 (Ω)
3 into bounded sets of V ′ and

H−1(Ω)3, its kernel are K and K̃ and β : L4(0, T ;V ) −→ L4/3(0, T ;V ′)

and β̃ : L2(0, T ;H1
0 (Ω)

3) −→ L2(0, T ;H−1(Ω)3) are equally monotone and
hemicontinuous.

The penalized problem associated with the variational inequalities
(2.1) consists in given
0 < ϵ, ε < 1, find a pair {uϵ, wϵ} solution in Q of the mixed problem

u′ϵ − (ν0 + ν1∥uϵ∥2)∆uϵ + (uϵ.∇)uϵ +
1

ϵ
βuϵ +∇p = rotwε + f in QT ,

w′
ε − ∆wε −∇(∇.wε) + (uϵ.∇)wε +

1

ε
β̃wε = rotuϵ + g in QT ,

div uϵ = 0 in QT ,

uϵ = 0 on ΣT , (2.13)

wε = 0 on ΣT ,

uϵ(x, 0) = uϵ0(x) in Ω,

wε(x, 0) = wε0(x) in Ω.

Definition 2.6. Let uϵ0 ∈ H, wε0 ∈ L2(Ω)3, f ∈ L4/3(0, T ;V ′), g ∈
L2(0, T ;H−1(Ω)3). A weak solution to the boundary value problem (2.13)
is a pair of functions {uϵ, wε}, such that uϵ ∈ L4(0, T ;V ) ∩ L∞(0, T ;H),
wε ∈ L4(0, T ;H1

0 (Ω)
3) ∩ L∞(0, T ;L2(Ω)3), for T > 0, satisfying the fol-

lowing identity

(u′ϵ, φ) + ν0a(uϵ, φ) + b(uϵ, uϵ, φ) + ⟨Auϵ, φ⟩+
1

ϵ
(βuϵ, φ)

= (rotwε, φ) + (f, φ),∀φ ∈ V, (2.14)

(w′
ε, ϕ) + a(wε, ϕ)+(divwε,div ϕ)+b(uϵ, wε, ϕ) +

1

ε
(β̃wε, ϕ)
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=(rotuϵ, ϕ)+(g, ϕ), ∀ϕ ∈ H1
0 (Ω)

3,

uϵ(0) = uϵ0, wε(0) = wε0,

divφ = 0.

The solution of this problem is given by the following theorem:

Theorem 2.7. If f ∈ L4/3(0, T ;V ′), g ∈ L2(0, T ;H−1(Ω)3), uϵ0 ∈ V and
wε0 ∈ H1

0 (Ω)
3, then for each 0 < ϵ, ε < 1 there exists a pair of functions

{u,w} defined for (x, t) ∈ QT , solution to the problem (2.13) in the sense
of Definition 2.6.

Theorem 2.8. Assume that n = 2 and f, f ′, g, g′ ∈ L2(0, T ;L2(Ω)2).
Then for each 0 < ϵ, ε < 1 and uϵ0 ∈ V,wε0 ∈ H1

0 (Ω)
2, there exists a

pair of functions {uϵ, wε} defined for (x, t) ∈ QT , solution to the problem
(2.13) in the sense of Definition 2.6.

3 Proof of the results

Proof of Theorem 2.7
In order to prove Theorem 2.4, we first prove the Theorem 2.7.
We represent by Vm = [φ1, φ2, ..., φm] the V subspace generated by

the vectors φ1, φ2, ..., φm and Ṽk = [ϕ1, ϕ2, ..., ϕk] the H1
0 (Ω)

3 subspace
generated by the vectors ϕ1, ϕ2, ..., ϕm. We employ the Faedo-Galerkin
method with a Hilbertian basis (φν)ν∈N and (ϕµ)µ∈N of Sobolev space
V and H1

0 (Ω)
3, cf. Brézis [2], defined as the solution to the eigenvalue

problem
((φν , v)) = λν(φν , v) ∀v ∈ V, ν ∈ N,
((ϕµ, ṽ)) = λµ(ϕµ, ṽ) ∀ṽ ∈ H1

0 (Ω)
3, µ ∈ N

Let us consider

uϵm(t) =
m∑
j=1

gjm(t)φj

and

wεm(t) =
m∑
j=1

hjm(t)ϕj
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solution of approximate problem

(u′ϵm , φj) + ν0a(uϵm , φj) + ν1∥uϵm∥2a(uϵm , φj) + b(uϵm , uϵm , φj)

+(∇p, φj) +
1

ϵ
(βuϵm , φj) = (rotwεm , φj) + ⟨f(t), φj⟩, j = 1, 2, ...m

(w′
εm , ϕj) + a(wεm , ϕj) + (divwεm ,div ϕj) + b(uϵm , wεm , ϕj)

+
1

ε
(β̃wεm , ϕj) = (rotuϵm , ϕj) + ⟨g(t), ϕj⟩, j = 1, 2, ...m

uϵm(x, 0) → uϵ(x, 0) strongly in V,

wεm(x, 0) → wε(x, 0) strongly in H1
0 (Ω)

3

(3.1)
The system of ordinary differential equation (3.1) has a solution on

a interval [0, tm[, 0 < tm < T . The first estimate permits us to extend
this solution to the whole interval [0, T ].

Remark 3.1. In order to obtain a better notation, we omit the parame-
ters {ϵ, ε} in the approximate solutions.

FIRST ESTIMATE
Multiplying both sides of (3.1)1 by gjm and (3.1)2 by hjk adding

from j = 1 to j = m, k, we obtain that

1

2

d

dt
|um(t)|2 + ν0∥um(t)∥2 + ν1∥um(t)∥4

≤ (rotwm, um) + ⟨f(t), um(t)⟩,
(3.2)

1

2

d

dt
|wm(t)|2 + ∥wm(t)∥2 + |divwm(t)|2

≤ (rotum, wm) + ⟨g(t), wm(t)⟩,
(3.3)

since b(um, um, um) = 0 (see J.L.Lions [6]) and
(βum(t), um(t)) ≥ 0 because β is monotone and 0 ∈ K. Follows from (3.2)
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and (3.3) that

uϵm ⇀ uϵ weak star in L∞(0, T ;H) (3.4)

uϵm ⇀ uϵ weak in L2(0, T ;V ) (3.5)

uϵm ⇀ uϵ weak in L4(0, T ;V ) (3.6)

wεm ⇀ wε weak star in L∞(0, T ;L2(Ω)3) (3.7)

wεm ⇀ wε weak in L2(0, T ;H1
0 (Ω)

3) (3.8)

SECOND ESTIMATE
Using projector operator (see [6]), we obtain returning to the nota-

tion {uϵm , wϵm}, it follows from estimates above that

uϵm(T )⇀ ξ weak in H (3.9)

Auϵm ⇀ χ weak in L4/3(0, T ;V ′) (3.10)

u′ϵm ⇀ u′ϵ weak in L4/3(0, T ;V ′). (3.11)

βuϵm ⇀ ζ weak in L4/3(0, T ;V ′). (3.12)

uϵmi
uϵmj

⇀ uϵiuϵj weak in L2(0, T ;L2(Ω)) (3.13)

uϵm −→ uϵ strong in L2(0, T ;H) and a.e in QT . (3.14)

Similar convergences we obtain for (wεm). From the convergence
above, letting m→ ∞ in (3.1), we have

u′ϵ +Auϵ + χ+
1

ϵ
ζ +Buϵ = rotwε + f in L4/3(0, T ;V ′)

w′
ε +Awε −∇(∇.wε) +

1

ε
ζ̃ + B̃uϵ = rotuε + g

in L2(0, T ;H−1(Ω)3).

(3.15)

Here,
Au = −ν0∆u, Aw = −∆w,

Bu =
3∑

i=1

ui
∂u

∂xi
and B̃u =

3∑
i=1

ui
∂w

∂xi
.

It is necessary to prove that χ+
1

ϵ
ζ = Auϵ +

1

ϵ
βuϵ and

1

ε
ζ̃ =

1

ε
β̃wε. We
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make this using the monotony of the operators A +
1

ϵ
β and

1

ε
β̃ (see [6],

Chap. 2). Theorem 2.7 is proved.
Proof of Theorem 2.4
From the convergences (3.4)-(3.14), convergences similar to (wεm) and
Banach-Steinhauss theorem, it follows that there exists subnet (uϵ)0<ϵ<1

and (wε)0<ε<1, such that they converge to u and w as ϵ, ε→ 0 in the sense
of (3.4)-(3.14). These functions satisfies (2.13) in the sense Definition 2.6.
For another way, we have from (3.15)1 that

βuϵ = ϵ[rotwε + f − u′ϵ −Auϵ −Auϵ −Buϵ]. (3.16)

Then
βuϵ −→ 0 in D′(0, T ;V ′). (3.17)

It results from (3.16) that

βuϵ is bounded in L4/3(0, T ;V ′). (3.18)

Therefore,
βuϵ −→ 0 weak in L4/3(0, T ;V ′). (3.19)

On the other hand we deduce from (3.15)1 that

0 ≤
∫ T

0
⟨βuϵ, uϵ⟩ dt ≤ ϵ C. (3.20)

So, ∫ T

0
⟨βuϵ, uϵ⟩dt −→ 0. (3.21)

As β is a monotonous operator, we have∫ T

0
⟨βuϵ, uϵ⟩ dt−

∫ T

0
⟨βuϵ, φ⟩ dt−

∫ T

0
⟨βφ, uϵ − φ⟩ dt ≥ 0. (3.22)

We have from (3.19), (3.21) and (3.22) that∫ T

0
⟨βφ, uϵ(t)− φ⟩ dt ≤ 0. (3.23)
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Taking φ = uϵ − λv, with v ∈ L4(0, T ;V ) and λ > 0, we deduce using the
hemicontinuity of β that

βuϵ(t) = 0, (3.24)

and this implies that uϵ(t) ∈ K a. e. Similarly, we obtain for (3.15)2 that,

β̃wε(t) = 0 (3.25)

and this implies that wε ∈ K̃ a.e.

Next, we prove that {u,w} are solution of inequalities (2.3) and (2.4).
Initially, we show that

lim sup
ϵ→0

∫ T

0
⟨Auϵ, uϵ − u⟩dt ≤ 0. (3.26)

In fact, we have that ∀v ∈ K ∩D
(
d

dt
;V′

)
∫ T

0
⟨v′ +Auϵ +Buϵ +Auϵ − rotwε − f, v − uϵ⟩ dt

=

∫ T

0
⟨u′ϵ +Auϵ +Buϵ +Auϵ − rotwε − f, v − uϵ⟩ dt

+

∫ T

0
⟨v′ − u′ϵ, v − uϵ⟩ dt =

1

ϵ

∫ T

0
⟨βv − βuϵ, v − uϵ⟩ dt

+

∫ T

0
⟨v′ − u′ϵ, v − uϵ⟩ dt ≥ 0.

(3.27)

Remark 3.2.
∫ T

0
⟨βv − βuϵ, v − uϵ⟩ dt ≥ 0 and

∫ T

0
⟨v′ − u′ϵ, v − uϵ⟩ ≥ 0

because β is a monotonous operator, v ∈ K ∩D
(
d

dt
,V′

)
, v(0) = 0.
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It follows from (3.27) that∫ T

0
⟨Auϵ, uϵ⟩ dt ≤

∫ T

0
⟨Auϵ, v⟩ dt+

∫ T

0
⟨Auϵ, v − uϵ⟩ dt

+

∫ T

0
⟨Buϵ, v − uϵ⟩ dt+

∫ T

0
⟨v′ − rotwε − f, v − uϵ⟩ dt

=

∫ T

0
⟨Auϵ, v⟩ dt+

∫ T

0
⟨Auϵ, v⟩ dt−

∫ T

0
⟨Auϵ, uϵ⟩ dt

+

∫ T

0
⟨Buϵ, v⟩ dt−

∫ T

0
⟨Buϵ, uϵ⟩ dt+

∫ T

0
⟨v′− rotwε − f, v − uϵ⟩ dt.

(3.28)

Taking the lim sup in (3.28), we obtain

lim sup

∫ T

0
⟨Auϵ, uϵ⟩ dt ≤ lim sup

∫ T

0
⟨Auϵ, v⟩ dt

+ lim sup(−
∫ T

0
∥uϵ(t)∥2 dt) + lim sup

∫ T

0
⟨Auϵ, v⟩ dt

+lim sup

∫ T

0
⟨Buϵ, v⟩ dt+ lim sup

∫ T

0
⟨v′ − rotwε − f, v − uϵ⟩ dt.

(3.29)

Reminding that rotwε → rotw weakly in L2(0, T ;L2(Ω)n) and uϵ → u

strongly in L2(0, T ;H), it follows from (3.29) that

lim sup

∫ T

0
⟨Auϵ, uϵ⟩ dt ≤

∫ T

0
⟨χ, v⟩ dt

−
∫ T

0
∥u(t)∥2 dt+

∫ T

0
⟨Au, v⟩ dt

+

∫ T

0
⟨Bu, v⟩ dt+

∫ T

0
⟨v′ − rotw − f, v − u⟩ dt,

(3.30)

∀v ∈ K ∩D
(
d

dt
,V′

)
.

But, in view (H1), we can take uj ∈ K ∩D
(
d

dt
,V′

)
such that
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uj −→ u in V and lim sup
j→∞

(u′j , uj − u) ≤ 0.

Taking v = uj in (3.30) we obtain

lim sup

∫ T

0
⟨Auϵ, uϵ⟩ dt ≤

∫ T

0
⟨χ, uj⟩ dt

−
∫ T

0
∥u(t)∥2 dt+

∫ T

0
⟨Au, uj⟩ dt

+

∫ T

0
⟨Bu, uj⟩ dt+

∫ T

0
⟨u′j − rotw − f, uj − u⟩ dt.

(3.31)

Taking lim sup in (3.31) with j −→ ∞ , we obtain

lim sup

∫ T

0
⟨Auϵ, uϵ⟩ dt ≤

∫ T

0
⟨χ, u⟩ dt, (3.32)

Then,

lim sup

∫ T

0
⟨Auϵ, uϵ⟩ dt− lim sup

∫ T

0
⟨Auϵ, u⟩ dt ≤ 0,

that is, (3.26) is verified.
Let us consider Xϵ defined by

Xϵ =

∫ T

0
⟨φ′, φ− uϵ⟩ dt+

∫ T

0
a(uϵ, φ− uϵ) dt

+

∫ T

0
⟨Auϵ, φ− uϵ⟩ dt+

∫ T

0
b(uϵ, uϵ, φ− uϵ) dt (3.33)

−
∫ T

0
(rotwε, φ− uϵ) dt−

∫ T

0
⟨f, φ− uϵ⟩ dt,

with φ ∈ L4(0, T ;V ), φ′ ∈ L4/3(0, T ;V ′), φ(0) = 0, φ(t) ∈ K a.e. It
follows from (3.33) that

Xϵ =

∫ T

0
⟨φ′, φ⟩ dt−

∫ T

0
⟨φ′, uϵ⟩ dt+

∫ T

0
a(uϵ, φ) dt
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−
∫ T

0
a(uϵ, uϵ) dt+

∫ T

0
b(uϵ, uϵ, φ) dt

−
∫ T

0
b(uϵ, uϵ, uϵ)dt+

∫ T

0
⟨Auϵ, φ⟩ dt (3.34)

−
∫ T

0
⟨Auϵ, uϵ⟩ dt−

∫ T

0
(rotwε, φ) dt+

∫ T

0
(rotwε, uϵ) dt

−
∫ T

0
⟨f, φ⟩ dt+

∫ T

0
⟨f, uϵ⟩ dt.

On the other hand, multiplying (3.15)1 by φ−uϵ and integrating in [0, T ],
we obtain that∫ T

0
⟨u′ϵ, φ⟩ dt−

∫ T

0
⟨u′ϵ, uϵ⟩ dt+

∫ T

0
a(uϵ, φ) dt

−
∫ T

0
a(uϵ, uϵ) dt+

∫ T

0
b(uϵ, uϵ, φ) dt

−
∫ T

0
b(uϵ, uϵ, uϵ)dt+

∫ T

0
⟨Auϵ, φ⟩ dt

−
∫ T

0
⟨Auϵ, uϵ⟩ dt+

1

ϵ

∫ T

0
⟨βuϵ − βφ, φ− uϵ⟩

−
∫ T

0
(rotwε, φ) dt+

∫ T

0
(rotwε, uϵ) dt

−
∫ T

0
⟨f, φ⟩ dt+

∫ T

0
⟨f, uϵ⟩ dt = 0,

(3.35)

because βφ = 0. Adding member to member (3.34) and (3.35), we obtain

Xϵ =

∫ T

0
⟨φ′, φ⟩ dt−

∫ T

0
⟨φ′, uϵ⟩ dt−

∫ T

0
⟨u′ϵ, φ⟩ dt

+

∫ T

0
⟨u′ϵ, uϵ⟩ dt+

1

ϵ

∫ T

0
⟨βφ− βuϵ, φ− uϵ⟩ dt ≥ 0,

(3.36)

because
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∫ T

0
⟨φ′, φ⟩ dt−

∫ T

0
⟨φ′, uϵ⟩ dt−

∫ T

0
⟨u′ϵ, φ⟩ dt+

∫ T

0
⟨u′ϵ, uϵ⟩ dt

=

∫ T

0
⟨φ′ − u′ϵ, φ− uϵ⟩ ≥ 0.

From (3.36) and (3.33) it follows that

Xϵ =

∫ T

0
⟨φ′, φ− uϵ⟩ dt+

∫ T

0
a(uϵ, φ) dt−

∫ T

0
a(uϵ, uϵ)dt

+

∫ T

0
b(uϵ, uϵ, φ) dt

∫ T

0
⟨Auϵ, φ− uϵ⟩ dt

≥
∫ T

0
(rotwε, φ− uϵ) dt+

∫ T

0
⟨f, φ− uϵ⟩ dt.

(3.37)

As A is a pseudo-monotonous operator (see Lions [6] p. 179), it follows
from (3.26) that

− lim inf

∫ T

0
⟨Auϵ, uϵ − φ⟩ dt ≤

∫ T

0
⟨Au, φ− u⟩ dt. (3.38)

Taking lim sup in (3.37), it follows from (3.30), (3.38) and previous con-
vergences that∫ T

0
[⟨φ′, φ− u⟩ + a(u, φ− u) + b(u, u, φ− u) + ⟨Au, φ− u⟩]

≥
∫ T

0
[(rotw,φ− u) + ⟨f, φ− u⟩].

(3.39)

The inequality (2.4) is obtained in a similar way, observing that

− lim inf

∫ T

0
|divwε(t)|2 = lim sup−

∫ T

0
|divwε(t)|2

≤ −
∫ T

0
|divw(t)|2,

because wε → w weakly in L2(0, T ;H1
0 (Ω)

3). Theorem 2.4 is proved.
Proof of Theorem 2.5



64 G. M de Araújo, M. A. F. de Araújo

In order to prove Theorem 2.5, we first prove the penalized Theorem 2.8.
As in the proof of Theorem 2.7, we employ the Faedo-Galerkin Method.

Let (φν)ν∈N and (ϕν)ν∈N , Vm and Ṽm as in the proof of Theorem
2.7 and uϵm(t), wϵm(t) solution of approximate penalized problem (3.1).

FIRST ESTIMATE
As in the proof of Theorem 2.7, omitting the parameters ϵ, ε and taking
φj = um, ϕj = wm in the approximate equation (3.1) we obtain

(um) is bounded in L∞(0, T ;H), (3.40)

(um) is bounded in L2(0, T ;V ), (3.41)

(um) is bounded in L4(0, T ;V ). (3.42)

(wm) is bounded in L∞(0, T ;L2(Ω)3), (3.43)

(wm) is bounded in L2(0, T ;H1
0 (Ω)

3), (3.44)

SECOND ESTIMATE
In both side of the equations (3.1) we take the derivatives with respect t
and consider φj = u′m(t), ϕj = w′

m(t). We obtain

(u′′m(t), u′m(t))+(ν0+ν1∥um(t)∥2)a(u′m(t), u′m(t)) + 2ν1a(u
′
m(t), um(t))2

+ b(u′m(t), um(t), u′m(t)) +
1

ϵ
((βum(t))′, u′m(t)) = (rotw′

m(t), u′m(t))

+ (f ′(t), u′m(t)) (3.45)

(w′′
m(t), w′

m(t)) + a(w′
m(t), w′

m(t)) + b(u′m(t), wm(t), w′
m(t))

+ (divw′
m(t), divw′

m(t)) +
1

ϵ
((β̃wm(t))′, w′

m(t)) = (rotu′m(t), w′
m(t))

+ (g′(t), w′
m(t))

We note that
u′m(0) −→ u1 strongly in H,
w′
m(0) −→ w1 strongly in L2(Ω)2.

(3.46)

Indeed, (3.46) is obtained using (3.1)1,2 with t = 0 and (2.7). Note that
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βu0 = β̃w0 = 0. Then

1

2

d

dt
|u′m(t)|2 +

(
ν0 + ν1∥um(t)∥2

)
a(u′m(t), u′m(t)) +

+ 2ν1a(u
′
m(t), um(t))2 + b(u′m(t), um(t), u′m(t))

+
1

ϵ
⟨(βum(t))′, u′m(t)⟩ = (rotw′

m(t)), u′m(t)) + (f ′(t), u′m(t), (3.47)

1

2

d

dt
|w′

m(t)|2 + ∥u′m(t)∥2 + |divw′
m(t)|2 + b(u′m(t), wm(t), w′

m(t))

+
1

ϵ
⟨(β̃um(t))′, u′m(t)⟩ = (rotu′m(t)), w′

m(t)) + (g′(t), u′m(t)

Remark 3.3. The derivative with respect to t of (β(v(t)), w) is only for-
mal. The correct method is to consider the difference equation in t + h

and t, divided by h and take the limits when h→ 0. Here is fundamental
the operator β to be monotonous. This justify the formal procedure of
taking the derivative with respect to t, on both sides of (3.39) and take
v = u′m(t). See Brezis [1], Browder [3] or Lions [7] for details.

Remark 3.4. We have to n ≤ 4 that H1
0 (Ω) ↪→ L4(Ω) with continuous

embedding.

Therefore,

|b(u, v, w)| ≤ ∥u∥(L4(Ω))n∥v∥(L4(Ω))n∥w∥. (3.48)

On the other hand, when n = 2 (see Lions [6] p. 220) we have

∥v∥L4(Ω) ≤ C∥v∥1/2|v|1/2 ∀v ∈ H1
0 (Ω). (3.49)

It follows from (3.48) and (3.49) that

|b(u′m(t), um(t), u′m(t))|≤C∥u′m(t)∥
1
2 |u′m(t)|

1
2 ∥um(t)∥

1
2 |um(t)|

1
2 ∥u′m(t)∥,

|b(u′m(t), wm(t), w′
m(t))|≤C∥u′m(t)∥

1
2 |u′m(t)|

1
2 ∥wm(t)∥

1
2 |wm(t)|

1
2
∥w′

m(t)∥
(3.50)
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It follows from (3.47)-(3.50) that

1

2

d

dt
|u′m(t)|2 + ν0∥u′m(t)∥2 ≤ ν0

10
∥u′m(t)∥2 + Cν0 |w′

m(t)|2 + 1

2
|f ′(t)|2

+
1

2
|u′m(t)|2 + ν0

10
∥u′m(t)∥2 + Cν0 |u′m(t)|2 + ν0

10
∥u′m(t)∥2

+ Cν0∥um(t)∥2 + ν0
10

∥u′m(t)∥2 + Cν0 |u′m(t)|2, (3.51)

1

2

d

dt
|w′

m(t)|2 + ∥w′
m(t)∥2 + |divw′

m(t)| ≤ ν0
10

∥u′m(t)∥2 + Cν0 |w′
m(t)|2

+
1

2
|g′(t)|2 + 1

2
∥w′

m(t)∥2 + ν0
10

∥u′m(t)∥2 + Cν0 |u′m(t)|2

+
1

2
∥wm(t)∥2 + 1

4
∥w′

m(t)∥2 + 1

4
∥w′

m(t)∥2 + C|wm(t)|2.

because ν1∥um(t)∥2a(u′m(t), u′m(t)) ≥ 0, and ((βum)′, u′m) ≥ 0 (see J. L.
Lions [6] p. 399), (divw′

m(t), u′m(t)) = (w′
m(t), div u′m(t)) and |div u′m(t)| =

|∇u′m(t)|. Adding the above equations and integrating from 0 to t, with
0 ≤ t ≤ T , we conclude using (3.41) and (3.44) that

|u′m(t)|2 + |w′
m(t)|2 + 2ν0

5

∫ t

0
∥u′m(s)∥2ds+ 1

2

∫ t

0
∥w′

m(s)∥2ds

≤ C + C

∫ T

0
|u′m(t)|2 + |w′

m(t)|2dt.
(3.52)

Therefore, using Gronwall’s inequality in (3.52), we obtain

(u′m) is bounded in L2(0, T ;V ), (3.53)

(u′m) is bounded in L∞(0, T ;H), (3.54)

(w′
m) is bounded in L∞(0, T ;L2(Ω)2), (3.55)

(w′
m) is bounded in L2(0, T ;H1

0 (Ω)
2), (3.56)

To finish the proof of Theorem 2.8, we use the same argument used
in the proof of Theorem 2.7. Theorem 2.8 is proved.

We shall now prove Theorem 2.5.



67

From the convergences (3.40)-(3.44), (3.53)-(3.56) and Banach-Steinhauss
theorem, it follows that there exists a subnet (uϵ)0<ϵ<1, such that it con-
verges to u as ϵ → 0, in the sense of (3.40)-(3.42), (3.53)-(3.44). This
function satisfies (2.9)-(2.10). Using the same arguments used in Theorem
2.4 we obtain that βu = β̃w = 0. Therefore, u,w satisfy (2.10) of Theorem
2.5.

We need to show only that u is a solution of inequality (2.11)1 a.e.
in t. In fact, we have that uϵ satisfy

(u′ϵ, v̂) + ν0a(uϵ, v̂) + ν1∥uϵ∥2a(uϵ, v̂) + b(uϵ, uϵ, v̂)

+
1

ϵ
(βuϵ, v̂) = (f, v̂), ∀ v̂ ∈ V

uϵ(0) = u0.

(3.57)

Then from (3.57), with v̂ = v − uϵ, v ∈ K, we have

(u′ϵ, v − uϵ) + ν0a(uϵ, v) + b(uϵ, uϵ, v) + ν1⟨Auϵ, v − uϵ⟩
−(rotwϵ, v − uϵ)− (f, v − uϵ) ≥ ν0a(uϵ, uϵ), ∀v ∈ K,

(3.58)

because (βuϵ − βv, uϵ − v) ≥ 0. Let us denote

Xv
ϵ = (u′ϵ, v − uϵ) + ν0a(uϵ, v) + b(uϵ, uϵ, v) + ν1⟨Auϵ, v − uϵ⟩

− (rotwϵ, v − uϵ)− (f, v − uϵ).

We obtain
Xv

ϵ ≥ ν0a(uϵ, uϵ), ∀v ∈ V. (3.59)

Let ψ ∈ C0([0, T ]) with ψ(t) ≥ 0 . Then vψ ∈ C0([0, T ];V ) for all v ∈ V .
It follows from (3.59) that∫ T

0
ψ(u′ϵ, v − uϵ) dt+ ν0

∫ T

0
ψa(uϵ, v) dt+

∫ T

0
ψb(uϵ, uϵ, v) dt

+ν1

∫ T

0
ψ⟨Auϵ, v − uϵ⟩ dt−

∫ T

0
ψ(rotwϵ, v − uϵ) dt

−
∫ T

0
ψ(f, v − uϵ) dt ≥ ν0

∫ T

0
ψa(uϵ, uϵ) dt.

(3.60)
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Taking lim sup in both side of inequality (3.60) we obtain∫ T

0
ψ(u′, v − u) dt+ ν0

∫ T

0
ψa(u, v) dt

−
∫ T

0
ψb(u, u, v) dt+ lim sup−ν1

∫ T

0
ψ⟨Auϵ, uϵ − v⟩ dt (3.61)

−
∫ T

0
ψ(rotw, v − u) dt−

∫ T

0
ψ(f, v − u) dt ≥ ν0

∫ T

0
ψa(u, u) dt.

Using the same arguments as in the proof of Theorem 2.4 we have that

lim sup

∫ T

0
ψ⟨Auϵ, uϵ − u⟩ dt ≤ 0.

It follows of pseudo-monotony of operator A that

lim inf

∫ T

0
ψ⟨Auϵ, uϵ − v⟩ dt ≥

∫ T

0
ψ⟨Au, u− v⟩ dt ∀v ∈ V,

that is,

− lim inf

∫ T

0
ψ⟨Auϵ, uϵ − v⟩ dt ≤

∫ T

0
ψ⟨Au, v − u⟩ dt. (3.62)

Therefore,

lim sup−
∫ T

0
ψ⟨Auϵ, uϵ − v⟩ dt ≤

∫ T

0
ψ⟨Au, v − u⟩ dt. (3.63)

From (3.61) and (3.63), we obtain finally

(u′, v − u) + ν0a(u, v − u) + b(u, u, v − u) + ν1⟨Au, v − u⟩
≥ (rotw, v − u) + (f, v − u) ∀v ∈ K, a.e. in t.

(3.64)

Analogously we prove (2.11)2. Theorem 2.5 is proved
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4 Uniqueness

We now prove that when n = 2 we have uniqueness in Theorem 2.5.
Indeed, suppose that {u1, w1} and {u2, w2} are two solutions of (2.11) and
set u = u2 − u1, w = w2 − w1 and t ∈ (0, T ). Taking v = u1 (resp.u2) in
the inequality (2.11) relative to v2 (resp. v1), analogously to ṽ and adding
up the results we obtain

1

2

∫ t

0

d

dt
|u(t)|2 dt+ ν0

∫ t

0
∥u(t)∥2 dt

≤
∫ t

0
|(rotw, u)| dt+

∫ t

0
|b(u, u2, u)| dt,

1

2

∫ t

0

d

dt
|w(t)|2 dt+

∫ t

0
∥w(t)∥2 dt

≤
∫ t

0
|(rotu,w)| dt+

∫ t

0
|b(u,w2, w)| dt

(4.1)

because ⟨Au2−Au1, u2−u1⟩ ≥ 0 and b(u2, u2, u)−b(u1, u1, u) = b(u, u2, u).

In the other hand, if n = 2, we have (see Lions [6], p. 70)

|b(u(t), u2(t), u(t))| ≤ C∥u(t)∥|u(t)|∥u2(t)∥,
|b(u(t), w2(t), w(t))| ≤ C∥u(t)∥

1
2 |u(t)|

1
2 ∥w(t)

1
2 |w(t)|

1
2 ∥w2∥

(4.2)

It follows from (4.1) and (4.2) that

|u(t)|2 + |w(t)|2 +
∫ t

0
∥u(t)∥2 dt+

∫ t

0
∥w(t)∥2 dt

≤ C

∫ t

0
(∥u2(t)∥2 + ∥w2(t)∥2)(|u(t)|2 + |w(t)|2) dt.

This implies, using Gronwall’s inequality that u(t) = w(t) = 0, because
u2 ∈ L2(0, T ;V ) and w2 ∈ L2(0, T ;H1

0 (Ω)
2). Uniqueness is proved.
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