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1 Introduction

The aim of this survey is to present several results dealing with multi-
plicity of positive solutions for elliptic problems, with a nonlinearity which
admits one or more zeros.

I started to work on this theme in 2008, when Professor Pedro Ubilla,
to whom this survey is dedicated, invited a team of young researchers for
a 6 months stay at his institution USACH, in Santiago - Chile. They were
Leonelo Iturriaga, Justino Sanchez and myself. We spent the semester in
a nice office at USACH, having stimulating conversations, learning many
things, sometimes obtaining some progress, but also having time for the
casual eating at a Chilean restaurant or a pool game at the end of the day.
The immediate result was a first paper, [36], but it was also the start of a
collaboration that went on for many years, with more papers on the same
and other matters, also involving other mathematicians.

We will consider problems in the general form−Qu = λh(x, u) in Ω,

Bu = 0 on ∂Ω,
(Gλ)

where Q will be either the p-Laplacian, or the poly-Laplacian (including
of course the usual linear second order Laplacian), B a suitable boundary
condition, λ > 0 a real parameter, Ω a bounded domain ofRN with smooth
boundary ∂Ω, and where h(x, t) is a nonnegative nonlinearity which is zero
for some positive value of t, may be depending on x.

If Q is the Laplacian (or poly-Laplacian), it is known that a necessary
condition for a positive solution u of Problem (Gλ) is∫

Ω
(λh(x, u)− λ1u)ϕ1 = 0 , (1.1)

where λ1, ϕ1 > 0 are the first eigenvalue and eigenfunction of the opera-
tor. This means that the term in parentheses must change sign. This is
not a sufficient condition but is a very useful guideline when looking for
hypotheses that guarantee the existence of positive solutions. It turns out
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that also for the p-Laplacian, the number and the position of the inter-
crossings of λh(x, t) with λ1t

p−1 is an indication of the number of positive
solutions that we can expect to obtain and of the behavior of their norm.
Often one expects to be able to obtain as many positive solutions as the
number of these intersections.

In view of this fact, it becomes clear why it is interesting to study
nonlinearities with zeros: if for instance h does not depend on x ∈ Ω,
h(0) = 0 and it grows at infinity faster than Q, then for any further zero
of h we may expect two positive solutions, at least when λ is large enough.
In particular, we expect to be able to obtain existence for every λ > 0 if h
has at least one zero at a positive value.

In the first work [36], Q is the p-Laplacian, the zero of h is allowed
to depend on x and the growth at infinity is p-superlinear but subcritical.
We first give conditions for the existence of a solution, then we obtain also
a second solution under additional conditions, and finally we study the
asymptotic behavior of the solutions as λ → ∞, actually, it turns out that
in this kind of problems the solutions tend, in a suitable sense, to converge
to the zero of h.

In the works [31, 33] we consider h not depending on x ∈ Ω. This allows
us to use moving planes techniques and obtain that the solutions converge
to the zero in a stronger sense, which permits to perform a truncation and
then to consider even supercritical growth rates at infinity for h. Moreover,
in [33], we consider the case of multiple zeros and actually obtain the
expected optimal result of two solutions for every zero of the nonlinearity,
for λ large enough.

Later, in [37], we considered Problem (Gλ) with the Laplacian operator,
in the radial case in an annulus. In this setting, taking advantage of ODEs
techniques, we are able to obtain results similar to those in [36, 31], but
under weaker assumptions.

Finally, in [35] we turned our attention to the case where Q is the
higher order operator poly-Laplacian. In this case we observe that a dif-
ferent behavior arises. Actually, the multiplicity result can be proved in
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less generality and in fact, we prove that in certain situations where two so-
lutions exist with the Laplacian operator, no solution exists for the higher
order operator.

The techniques used to deal with our problems are a mixture of vari-
ational methods and topological methods. Fundamental tools will be also
a-priori estimates and some Liouville-type theorems. When working in
dimension one we will also work with the Green’s function and exploit
properties of concave functions.

In the Sections 2, 3, 4 and 5, we will present, respectively, the four
results mentioned above. We will prioritize the exposition and comparison
of the results, while we will mostly give only a general and sometimes
qualitative idea of the proofs (which can always be found in the original
papers), trying to emphasize the motivations of the hypotheses that are
imposed and of the techniques used.

A simple model for the kind of nonlinearity we are going to study is

h(x, u) = uq|a(x)− u|r, (1.2)

where the function a describes the zero of h and the exponents q, r will
need to be chosen properly in order to satisfy the hypotheses that will be
provided.

2 Superlinear Nonlinearity with a variable zero

In the paper [36] we studied existence, multiplicity, and the behavior
with respect to the parameter λ > 0, of positive solutions of the Problem−∆p u = λh(x, u) in Ω,

u = 0 on ∂Ω,
(Pλ)

where p > 1 and ∆p u = div(|∇u|p−2∇u) is the p−Laplacian operator.
We will assume that h grows as up−1 near 0 and has a p−superlinear

growth at infinity.
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Problems with superlinear nonlinearities at infinity which have differ-
ent behaviors at the origin have been extensively studied. See for example
[1, 16, 19] for the Laplacian and [2, 54] for the p−Laplacian. In most of
these works, the nonlinearity is strictly positive; however, as we already
mentioned, the characteristics of the problem are quite different when the
nonlinearity has a positive zero. In [40], this type of problems was con-
sidered for the Laplacian operator. Using topological degree arguments
and under additional technical conditions which ensure a-priori bounds, it
was shown that there exist two positive solutions: one solution lies strictly
below the zero, while the other has a maximum greater than it. In [41],
again the existence of two positive solutions was shown: one as a minimal
positive solution, the other as the limit of a suitable gradient flow.

Here, we mainly use variational techniques to show the existence of at
least one positive solution for every λ > 0 , and at least two positive solu-
tions for λ greater than the first eigenvalue of a certain nonlinear weighted
eigenvalue problem for the p−Laplacian. Due to the dependence on x

and since we are not requiring the convexity of the domain, these results
improve those of [40, 41] even when p = 2. In order to obtain a second
solution, we have to show that the first one is strictly below the zero of h,
which we denote by a(x). For this, additional hypotheses will have to be
assumed (see Section 2.2).

Finally, for the study of the asymptotic behavior of the solutions when
λ → ∞, we need to obtain both a-priori estimates and a new Liouville–
type theorem involving nonlinearities with zeros (see Theorem 2.8). We
also need to extend to the p-Laplacian a result due to Redheffer (see [57,
Theorem 1]). The results obtained allow us to show that the solutions uλ

of Problem (Pλ) satisfy

lim
λ→∞

uλ(x) = a(x), for every x ∈ Ω .
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2.1 Existence results

In order to prove the existence of a solution for Problem (Pλ) we will
assume the following hypotheses.

(H1) The function h : Ω×[0,+∞) −→ [0,+∞) is continuous and h(x, 0) =

0.

(H2) There exist a weakly p−superharmonic function a ∈ W 1,p(Ω)∩ C(Ω)
(that is, −∆p a ≥ 0 in the weak sense) and positive constants a0, A0

such that a0 ≤ a(x) ≤ A0 andh(x, t) = 0 if t = a(x),

h(x, t) > 0 if t ̸= a(x), t > 0.

(H3) There exist a function b ∈ L∞(Ω) and positive constants b0, B0 such
that b0 ≤ b(x) ≤ B0 and

lim
u−→0+

h(x, u)

up−1
= b(x) uniformly in x ∈ Ω.

(M1) There exists a continuous nondecreasing function f0 : R → R such
that f0(0) = 0 and the map s 7→ h(x, s) + f0(s) is nondecreasing for
all x ∈ Ω .

For small values of λ, we need the following hypothesis on the behavior
of h at infinity.

(H4) There exist ρ > 0 and σ ∈ (p − 1, p∗ − 1), where p∗ denotes the
critical Sobolev’s exponent, given by p∗ = Np

N−p if N > p, and we
may set p∗ = ∞ if N ≤ p, such that

lim
u−→+∞

h(x, u)

uσ
= ρ uniformly in x ∈ Ω.

The model (1.2) satisfies the conditions above with r > 0, q = p − 1 and
r + q + 1 < p∗ .
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In view of hypothesis (H3), we consider the nonlinear eigenvalue problem

(Eb)

{
−∆p u = λ b(x)|u|p−2u in Ω ,

u = 0 on ∂Ω ,

and denote by λ1,b and ϕ1,b its first eigenvalue and eigenfunction, for which
we know that ϕ1,b > 0 with strictly negative (outward) normal derivative
at the boundary, λ1,b > 0 and we have the characterization∫

Ω
|∇u|p ≥ λ1,b

∫
Ω
b(x)|u|p for any u ∈ W 1,p

0 (Ω) , (2.1)

where the equality holds if and only if u is a multiple of ϕ1,b (see for
example [50, 4]).

We are now in the position to state our existence result.

Theorem 2.1.

(i) Under hypotheses (H1)–(H3) and (M1), there exists a positive so-
lution u(x) of Problem (Pλ) which satisfies u(x) ≤ a(x), for every
λ > λ1,b .

(ii) Under hypotheses (H1)–(H4), there exists a positive solution u(x) of
Problem (Pλ), for every λ ∈ (0, λ1,b) .
Moreover, if also the following hypothesis holds,

(H5) h(x, t) < b(x)tp−1, for any x ∈ Ω and t ∈ (0, a(x)),

then, for some x0 ∈ Ω, we have u(x0) > a(x0).

(iii) Under hypotheses (H1)–(H5), there exists a positive solution u(x) of
Problem (Pλ) for λ = λ1,b .

As is common when looking for positive solutions, we define the aux-
iliary function

h̃ : R→ [0,∞) :

h̃(x, s) = h(x, 0) = 0 for s ≤ 0,

h̃(x, s) = h(x, s) for s > 0,
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that is, h̃(x, s) = h(x, s+) where s+ = max{0, s}.
The solutions of Problem (Pλ) with the new function h̃ are then non-

negative solutions of the original Problem (Pλ). Moreover, since h(x, s) ≥
0, any nontrivial solution is, in fact, strictly positive, by the strong maxi-
mum principle in [55, Theorem 1.1]. Moreover, observe that, by hypotheses
(H1) and (H4), all weak solutions of Problem (Pλ) are of class C1,α for some
α ∈ (0, 1) (see [29, 39]), and the same holds for the eigenfunction ϕ1,b.

Let us give a overview of the Proof of Theorem 2.1.
For λ > λ1,b a solution can be obtained by the method of sub and

supersolutions (see [10]), which can be applied in view of the monotonicity
condition (M1). In fact, by hypothesis (H2), a(x) is always a supersolution
of Problem (Pλ), which is also not a solution because a(x) ≥ a0 > 0, while
a strict subsolution can be obtained in view of hypothesis (H3), in the form
εϕ1,b with ε > 0 small enough that λ1,b b(x) (εϕ1,b)

p−1 < λh(x, εϕ1,b).
For λ < λ1,b a solution can be obtained by showing that the functional

Jλ : W 1,p
0 (Ω) → R : u 7→ Jλ(u) =

1

p

∫
Ω
|∇u|p − λ

∫
Ω
H̃(x, u) , (2.2)

where H̃(x, t) =
∫ t
0 h̃(x, s) ds, has a strict local minimum at the origin

and satisfies the hypotheses of the the mountain pass theorem, in view of
the p-superlinear and subcritical behavior of h stated in hypothesis (H4).
Moreover, under hypothesis (H5) it is easy to show that the solution u must
exceed a somewhere, otherwise, using (2.1), one obtains the contradiction∫

Ω
|∇u|p = λ

∫
Ω
h(x, u)u < λ

∫
Ω
b(x)|u|p ≤ λ

λ1,b

∫
Ω
|∇u|p <

∫
Ω
|∇u|p .

Finally, a solution for λ = λ1,b can be obtained as the limit of solutions
with λ ↗ λ1,b (here hypothesis (H5) is required to guarantee that the limit
is nontrivial).

2.2 The second solution

The proof that a second positive solution exists in the case λ > λ1,b

is somewhat more complicated, in fact we will first need to apply several
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comparison results, in order to be able to show that the first solution
lies strictly below the function a(x). For this, we also need the following
monotonicity hypothesis, which is stronger than (M1):

(M2) there exists a constant k > 0 such that, for all x ∈ Ω the map
s 7→ h(x, s) + k sp−1 is increasing.

The fact that the first solution lies strictly below a(x) is not obvious,
actually, it is known (see for instance in [15, 58, 59]) that, at least in
regions where a is constant or harmonic, one may have a so called “flat
core” or “coincidence set”, that is, an open set where, for λ large, the
solution coincides with a. This phenomenon is connected with the shape
of a and with the behavior of the nonlinearity near to it.

For this reason, we will need to assume one of the following conditions.

(a) p = 2 (semilinear case).

(b) a(x) ≡ a, with a a positive constant, and there exists a constant
C > 0 such that h(x, t) ≤ C|a− t|p−1 for t ≤ a .

(c) −∆p a ∈ L∞(Ω) and there exists ε > 0 such that −∆p a(x) > ε a.e.
x ∈ Ω.

(d) a ∈ C1 and ∇ a ̸= 0 in Ω.

In particular, the second condition in the case (b) is complementary to
the hypothesis which guarantees the existence of flat core solutions. Also,
conditions (c) and (d) clearly avoid the existence of flat horizontal regions
for the function a.

Our multiplicity result is the following.

Theorem 2.2. Under hypotheses (H1)–(H4) and (M2), if at least one of
the conditions (a − b − c − d) holds, then there exist at least two positive
solutions u1 ≤ u2 of Problem (Pλ) for λ > λ1,b, where u1 < a.

One first have to prove the following Lemma.
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Lemma 2.3. Assume that the hypotheses of Theorem 2.1 point (i) and
hypothesis (M2) hold. If moreover one of the conditions (a − b − c − d)

holds true, let u be a solution of Problem (Pλ) satisfying 0 < u ≤ a. Then
u < a.

The proof of this lemma relies on the application of several known com-
parison results: [55, Theorem 1.1] for the cases (a) and (b), [5, Theorems
2.4 and 2.6] (see also [61]) for the case (c) and [12, Theorem 1.4] for the
case (d).

At this point, the second solution is obtained by using variational tech-
niques. Following the lines of [17] we first show that the solution of The-
orem 2.1-(i) is a minimum of a suitable functional, and then we use this
fact in order to obtain a second solution from the first one. This is done
as follows. As in the previous Section, there exists an ελ > 0 such that
ελϕ1,b < a, which are a subsolution and a supersolution respectively. Ap-
plying [17, Proposition 3.1], we obtain a solution u1 which minimizes the
functional Jλ in (2.2), in the set X = {u ∈ W 1,p

0 (Ω) : ελϕ1,b ≤ u ≤ a}.
However, by Lemma 2.3 and using again the comparison principle in [5,
Theorems 2.4 and 2.6], we obtain that

ελϕ1,b << u1 < a , (2.3)

where u << v means that u < v in Ω and also ∂u
∂n > ∂v

∂n on ∂Ω, where n

is the outward normal. Now it follows from (2.3) that X contains a C1
0(Ω)

neighborhood of u1. Consequently, u1 is a local minimizer of Jλ in the
C1
0(Ω) topology. Applying the results of [24] (see also [7]), we see that u1

is also a local minimizer of Jλ in W 1,p
0 (Ω) .

The proof then consists in obtaining a second solution of Problem (Pλ)
in the form u1 + w, where w is a nontrivial solution of the Problem{

−∆p (u1 + w) = λh̃(x, u1 + w+) in Ω ,

w = 0 on ∂Ω .
(2.4)

Observe that if w ∈ W 1,p
0 (Ω) solves Problem (2.4), then w ≥ 0. The solu-

tion is finally obtained by showing that the associated functional satisfies
the conditions of the mountain pass theorem.
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2.3 Asymptotic behavior of the solutions

May be the most interesting result in [36] is the study of the asymptotic
behavior of the solutions uλ as λ tends to 0 or to ∞.

As noticed in the introduction, a rule of thumbs to study the existence
and the behavior of positive solutions is to consider the intersections of the
nonlinearity λh(x, t) with, in our case, the function λ1,bt

p−1. For λ small
there is only one intersection, which also goes to infinity as λ → 0. For
λ > λ1,b, there is also an intersection below the zero and as λ grows larger,
both intersections approach the zero of the nonlinearity. The two theorems
below show that, with suitable additional conditions, the solutions follow
a similar behavior.

Theorem 2.4. Under hypotheses (H1) and (H3), if {uλ} is a family of
positive solutions of Problem (Pλ), then ∥uλ∥∞ → ∞ when λ → 0.

Theorem 2.5. Under hypotheses (H1)–(H3), and the following:

(H∗
4 ) hypothesis (H4) holds with σ ∈ (p− 1, p∗ − 1), where p∗ denotes the

Serrin’s exponent given by p∗ =
(N−1)p
N−p if N > p, and again we may

set p∗ = ∞ if N ≤ p,

(H7) there exists γ > 0 such that h(x, t) ≥ γ|t− a(x)|σ for t ≥ a(x),

if {uλ} is a family of positive solutions of Problem (Pλ), and if there exists
an ε > 0 such that εϕ1,b ≤ uλ for every uλ in the family, then uλ → a

pointwise in Ω when λ → +∞.

Remark 2.6. Observe that the solutions obtained in Theorem 2.2 satisfy
the estimate ελϕ1,b ≤ uλ required above, moreover, one can see that the
value of ελ may be chosen independent of λ when it is large enough (far
from λ1,b). ◁

Remark 2.7. Remember that, in Section 2.2, in order to achieve the
multiplicity result, we had to put ourselves in the situation where the first
solution cannot touch the function a(x). Theorem 2.5 shows that, never-
theless, the solution eventually converges to a(x), though only pointwise.
◁
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An important tool used in the proof of the preceding results is the
following Liouville–type theorem for a nonnegative function with zeros.

Theorem 2.8. Let f : [0,∞) → [0,∞) be a continuous function satisfying
the following four assumptions:

(f1) There exists a > 0 such thatf(t) = 0 if t = 0 or t = a ,

f(t) > 0 if t ̸= a, t > 0.

(f2) There exist constants γ > 0 and σ ∈ (p−1, p∗−1) such that f(t) ≥
γ(t− a)σ, for t > a.

(f3) There exists a constant b > 0 such that limt→0+
f(t)
tp−1 = b.

(f4) There exists a constant Λ > 0 such that 0 ≤ f(t) ≤ Λ (tσ + 1), for
t ≥ 0.

Then any C1 weak solution of the Problem

−∆pw = f(w), w ≥ 0, in RN , (2.5)

is either the constant function w ≡ 0, or else w ≡ a.

The proof of this theorem relies on an extension of a result contained
in [57]. Both proofs are detailed in [36, Section 5] and will not be reported
here.

The proof of Theorem 2.4 is rather easy, it is based on the idea that
for λ small the nonlinearity intersects λ1,bt

p−1 at large values of t.

Proof of Theorem 2.4. (λ → 0). Suppose by contradiction that there ex-
ists C > 0 such that uλ ≤ C, and let D be such that h(x, u)/up−1 ≤ D b0

for 0 < u ≤ C. If λD < λ1,b, then∫
Ω
|∇uλ|p = λ

∫
Ω
h(x, uλ)uλ ≤ λD b0

∫
Ω
upλ < λ1,b

∫
Ω
b(x)upλ ,

which contradicts the characterization of λ1,b in (2.1).
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The proof of Theorem 2.5 requires a-priori estimates for the possible
solutions of Problem (Pλ). Such estimates are stated in the following
Lemma.

Lemma 2.9. Suppose assumptions (H1), (H3), and (H∗
4 ) hold.

(1) Given λ̃ > 0, there exists a constant D
λ̃

such that if u ∈ C1(Ω) is a
positive solution of Problem (Pλ) with λ > λ̃, then ∥u∥∞ ≤ D

λ̃
.

(2) If λ is bounded, then the estimate extends to the C1,α(Ω) norm, for
some α ∈ (0, 1).

Proof. The full proof will be omitted here, but can be found in [36].
One assumes the existence of a sequence {(un, λn)}n∈N, where λn >

λ̃ and un is a C1 positive solution of Problem (Pλn), such that Sn =

maxΩ un = un(xn) −−−→
n→∞

∞, being {xn} ⊂ Ω a sequence of points where
the maximum is attained.

Defining wn(y) = S−1
n un(Any + xn) for a suitable sequence An ↘ 0

and taking limit, one deduces the existence of a function w defined either
in RN or in a half–space, that satisfies, in the weak sense, the relations4wσ ≥ −∆pw ≥ wσ, w > 0 ,

w(0) = maxw = 1 .
(2.6)

This contradicts the Liouville–type theorems in [48, Theorem 2.1] (in the
case of RN ) and [44, Theorem 3.1] (in the case of the half–space); we thus
obtain assertion (1).

Assertion (2) is now a consequence of the regularity theorems of [39].

Proof of Theorem 2.5. (λ → ∞). Consider a sequence {(un, λn)}n∈N with
un a C1 solution of (Pλn), εϕ1,b ≤ un, and λn → +∞. By the item (1) of
Lemma 2.9 we have that ∥un∥∞ is bounded.
Fix a point x0 ∈ Ω and let δ0 = dist(x0, ∂Ω). Proceeding similarly to the
proof of Lemma 2.9, define this time wn(y) = un(Any + x0) with An ↘ 0

in such a way that λnA
p
n = 1.
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By taking limit one obtains the existence of w ∈ C1(RN ), which is a
weak solution of the Problem

−∆pw = h(x0, w), w ≥ 0, in RN . (2.7)

Now the hypotheses (H1)–(H4) and (H7), allow to apply the Liouville–
type Theorem 2.8, and conclude that either w ≡ 0 or w ≡ a(x0), the first
possibility being excluded by the estimate εϕ1,b ≤ un.

One then concludes that un(x0) → a(x0) for every x0 ∈ Ω concluding
the proof.

Remark 2.10. Comparing the proofs of Lemma 2.9 and of Theorem 2.5,
we see that in 2.9 we centered the blow-up at the maximum point of the
solution. By doing this, if the maximum point converges to the boundary,
the limiting problem (2.6) may be defined in a half-space instead of RN .
Instead in Theorem 2.5 we had to center the blow-up at a fixed point, due
to the lack of an equivalent to Theorem 2.8 in the case of the half-space.

If we have the information that the maxima stay bounded away from
the boundary, then a stronger result can be obtained by centering the
blow-up at the maximum point an then obtaining a result for the limit of
∥uλ∥∞. ◁

3 Problems involving critical and supercritical non-
linearities with multiple zeros

In this section we present some results that were obtained in [31, 33],
concerning the existence of multiple positive C1(Ω)-weak solutions of the
Problem −∆p u = λf(u) in Ω,

u = 0 on ∂Ω,
(Qλ)

where f is a continuous nonnegative function which has zeros {z0 = 0 <

z1 < z2 < . . . < zk} and now we assume also that Ω is convex. In [33] we
proved the existence of at least 2k or 2k + 1 (depending on the behavior



Nonlinearities with zeros 93

of f at the origin) positive solutions for λ large. No hypotheses are made
about the behavior at infinity of f . The particular case with only one
positive zero and a growth near the origin at least as up−1 was studied in
[31].

Comparing with the results in [36], here we are removing the depen-
dence on x ∈ Ω in the nonlinearity and also assuming the convexity of
Ω. On the other hand, we are completely removing any requirement on
the behavior at infinity of the nonlinearity (recall that in [36] we had to
assume a growth for h subcritical and even below the Serrin exponent p∗

when dealing with the asymptotic behavior results: see hypotheses (H4)
and (H∗

4 )).

Critical and supercritical problems present several additional difficul-
ties. It is known from [51, 52] that if the domain Ω is star-shaped and
the nonlinearity is |u|r−2u with r greater or equal to the critical exponent
p∗, then no nontrivial solution exists. A solution can be recovered either
by considering more topologically complex domains, or by perturbing the
nonlinearity. In this second direction several authors considered nonlin-
earities with any growth at infinity but which behave like |u|q−2u with
q ∈ (p, p∗) near zero; for instance, [11], [45] and [32] assume this type of
condition, then they truncate the nonlinearity and look for estimates on
the possible solutions. These estimates allow to prove that the solutions
are below the truncation point for suitable values of λ, and then a solution
of the original problem is obtained.

If f has a zero, the results of Section 2.3 show that solutions of a
suitable truncated problem converge to the zero, at least pointwise, when
λ → ∞. This behavior suggests that also for this problem, truncation
procedures like those in [11, 45, 32] could be used to prove the existence
of two solutions when considering critical or supercritical nonlinearities.
Unfortunately, the pointwise convergence is not enough to guarantee a
suitable control on the L∞ norm of the solutions.

Assuming that Ω is convex and that f is independent from x ∈ Ω,
it becomes possible to use suitable monotonicity results (such as those
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obtained by the moving planes method, see [8, 21]) which give a better
knowledge of the geometry of the solutions. This allows to estimate the
L∞ norm when λ → ∞ and then to complete the truncation argument
(see also Remark 2.10).

For the results of this section we assume the following hypotheses on
the nonlinearity f :

(F1) f : [0, T ] → R is a continuous function and there exists a set {z0 =

0 < z1 < z2 < . . . < zk} ⊆ [0, T ) such that f is locally Lipschitz
continuous in (0, T ], f(0) = f(z1) = · · · = f(zk) = 0 and f(x) > 0

for x ∈ (0, T ] \ {z1; . . . ; zk}.

(F2) There exist cj > 0 and σj ∈ (p− 1, p∗ − 1) such that

lim
t→zj

f(t)

|t− zj |σj
= cj , j = 1, ... , k.

(F3) There exists L > 0 such that the map t 7→ f(t)+Ltp−1 is increasing
for t ∈ [0, T ].

About the behavior of the nonlinearity near the origin, we will assume
one of the following two hypotheses:

(F4) There exists σ0 ∈ (p− 1, p∗ − 1) such that

lim
t→0+

f(t)

tσ0
= 1;

or

(F5) lim inf
t→0+

f(t)

tp−1
≥ 1.

The model (1.2) with a ≡ z1, q ∈ (0, p∗−1) and r ∈ (p−1, p∗−1) satisfies
the conditions above with k = 1, however, the condition r < p∗ − 1 is
required only to satisfy (F2), but the growth at infinity need not to be
bounded.

Our main results are the following
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Theorem 3.1. Assume that the hypotheses (F1) through (F3) hold and Ω

is convex smooth and bounded. If also hypothesis (F4) holds, then there
exists λ∗ > 0 such that the Problem (Qλ) has at least 2k + 1 C1-weak
positive solutions v0,λ, uj,λ, vj,λ, j = 1, ... , k, for λ > λ∗.

Moreover, these solutions satisfy, when λ → ∞,

∥v0,λ∥∞ → 0+ , ∥uj,λ∥∞ → z−j and ∥vj,λ∥∞ → z+j , j = 1, ... , k .

Theorem 3.2. Assume that the hypotheses (F1) through (F3) hold and Ω

is convex smooth and bounded. If also hypothesis (F5) holds, then there
exists λ∗ > 0 such that the Problem (Qλ) has at least 2k C1-weak positive
solutions uj,λ, vj,λ, j = 1, ... , k, for λ > λ∗.

Moreover, these solutions satisfy, when λ → ∞,

∥uj,λ∥∞ → z−j and ∥vj,λ∥∞ → z+j , j = 1, ... , k .

Remark 3.3. In fact, it will be clear from the proofs that we might state
our result with more details: under the hypotheses of the Theorem 3.1
(resp. 3.2), there exist Λj : j = 0, ... , k such that for λ > Λj Problem
(Qλ) has at least 2j + 1 (resp. 2j) C1-weak positive solutions.

Moreover, it follows directly by the main theorems, that we may also
consider a function f with an infinite number of zeros, all satisfying a con-
dition as in (F2), obtaining an arbitrary number of solutions, for sufficiently
large λ. An example could be f(t) = | sin(t)|σ with σ ∈ (p− 1, p∗ − 1). ◁

3.1 Some required tools

As already mentioned, we will need to obtain L∞ estimates for our
solutions. This is done by refining the blow-up argument as described in
Remark 2.10 and then relies on two main results: one is a Liouville-type
theorem in RN , the second, which guarantees that the blow-up procedure
actually leads to a problem in RN , is contained in the following Lemma,
which is a consequence of the results in [21].
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Lemma 3.4. Assume that Ω is a convex and smooth bounded domain,
then there exists δΩ > 0 (depending only on Ω), such that if h : [0,+∞) →
[0,∞) is a continuous function which is positive and locally Lipschitz con-
tinuous in (0,∞), then the C1(Ω)-weak solutions u of−∆p u = h(u), u ≥ 0, in Ω ,

u = 0 on ∂Ω ,

satisfy the property that there exists a point x ∈ Ω such that dist(x, ∂Ω) ≥
δΩ and u(x) = ∥u∥∞.

In order to apply Lemma 3.4, we need to impose the Lipschitz condition
on f , and the convexity of Ω. Moreover, we cannot apply it directly to our
problem because f is not strictly positive. For this reason we will need
to solve first an auxiliary problem (see Problem (Qj,λ,τ ) in Section 3.2),
where a positive perturbation is added, and then to shrink the perturbation
and obtain actual solutions of (Qλ) which maintain the property that their
maxima are bonded away from the boundary, so that the blow-up argument
can be used to obtain the L∞ estimates.

For the Liouville-type theorem, in [31] we used the same Theorem 2.8
from Section 2, while in [33] we used the following Lemma, which allows
to consider a nonlinearity with several zeros and is a consequence of [20,
Theorem 3.12].

Lemma 3.5. Assume that f : [0,∞) → [0,∞) is a continuous function,
N > p and u is a nonconstant C1(Ω)−weak solution of

−∆pu ≥ f(u), u ≥ 0, in RN , (3.1)

with γ := infRN u .
Then f(γ) = 0 and

lim inf
t→γ+

f(t)

(t− γ)p∗−1
= 0 . (3.2)

Actually, by the hypotheses (F2), (F4) and (F5), no zero of f satisfies
condition (3.2), so that every solution of (3.1) must be constant.
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3.2 Proof of the results

The first step in order to prove our theorems is to build a family of
auxiliary problems

(Qj,λ,τ )

−∆p u = λfj(u) + τ(u+)p−1 in Ω,

u = 0 on ∂Ω,

where τ ≥ 0 and fj (for j = 0, ... , k) is defined by truncating f at a point
Rj ∈ (zj , zj+1) (or above the last zero zk) and redefining it above Rj as a
power of exponent σj :

fj(t) =

f(t+), if t ≤ Rj ,

f(Rj)

R
σj
j

tσj , if t > Rj .
(3.3)

The reason for this construction is twofold: the truncation hides the be-
havior at infinity of f and then allows us to make no assumptions on it,
while the added term τ(u+)p−1 allows us to apply Lemma 3.4 when τ > 0.

As in Section 2, the nontrivial solutions of the Problem (Qj,λ,τ ) are
positive and C1,α(Ω) for some α ∈ (0, 1). Moreover, if u is a solution of
Problem (Qj,λ,τ ) and u < Rj , then it is also a solution of Problem (Qi,λ,τ )

for i > j. In the case τ = 0, it is also a solution of Problem (Qλ).

We start with some lemmas. First of all, we state the following a-priori
estimates: their proof is analogous to that of Lemma 2.9, as it depends
only on the growth at infinity of the nonlinearity.

Lemma 3.6. Under hypotheses (F1), (F2) and (F4) or (F5), the con-
clusions of Lemma 2.9 hold for any weak solution u ∈ C1(Ω) of Problem
(Qj,λ,τ ) with j ∈ {0, 1, ... , k}, λ > λ̃ and τ ≥ 0.

We also need suitable supersolutions for the Problems (Qj,λ,τ ) with
j = 1, ... , k. Actually, the constant functions zj are always supersolutions
if τ = 0, but we aim for a family of supersolutions which are near to these
constants and are still supersolutions when τ is positive (and small). For
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this purpose, let n := ∥e∥∞ where e ∈ W 1,p
0 (Ω) is the solution of−∆pe = 1 in Ω ,

e = 0 on ∂Ω .

Lemma 3.7. Under hypothesis (F2), for any λ > 0, j ∈ {1, ... , k} there
exist τ∗j,λ, δj,λ > 0 such that uj,ξ = zj + ξ +

δj,λ
4n e is a supersolution for

(Qj,λ,τ ) for any ξ ∈ [−δj,λ, δj,λ/2] and τ ∈ [0, τ∗j,λ). Moreover, we may
choose δj,λ as nonincreasing functions of λ and such that zj − δj,λ > Rj−1.

Proof. Fix j and λ (we omit the indexes in the parameters). Set δ > 0

such that λf(t) < 1
2

(
|t−zj |
4n

)p−1
≤ 1

2

(
δ
4n

)p−1 for |t − zj | ≤ δ, which is
possible by (F2). Since this estimate still holds for lower values of λ we
deduce that δ may be chosen as a nonincreasing function of λ. For small
enough τ , also τup−1 < 1

2

(
δ
4n

)p−1 near zj . So v := uj,ξ as defined satisfies
|v − zj | ≤ δ and

−∆pv =

(
δ

4n

)p−1

> λfR(v) + τvp−1 .

At this point, in view of Lemma 3.4, we give the following definition.

Definition 3.8. We say that a family of nonnegative functions defined in
Ω satisfies the δΩ-property if for every u in the family there exists a point
x ∈ Ω such that dist(x, ∂Ω) ≥ δΩ and u(x) = ∥u∥∞, where δΩ is given in
Lemma 3.4.

Remark 3.9. As already observed, under the hypotheses (F1) and (F2),
if Ω is convex, then Lemma 3.4 implies that the family of the C1(Ω)-weak
solutions of the Problems (Qj,λ,τ ) with j ∈ {0, , ... , k} and λ, τ > 0, satisfies
the δΩ-property. In the case j = 0 this is true also for τ = 0. ◁

The following Lemma performs the estimate that was described in
Remark 2.10 and is crucial for our argument: it states that if we know
that a family of solutions of the Problems (Qj,λ,τ ) satisfies the δΩ-property,
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then their infinity norm must converge to the set of the zeros of fj , when
λ → ∞.

This fact will be used later in order to prove that, for λ large, the
solutions we obtain are distinct, and also in order to prove that they stay
below the point where fj is truncated, so that they are in fact solutions of
the original Problem (Qλ).

Lemma 3.10. Assume hypotheses (F1), (F2) and (F4) or (F5). For a
given j ∈ {0, ... , k}, if uj,λn,τn are solutions of the corresponding Problems
(Qj,λn,τn) which satisfy the δΩ-property, and λn → ∞ while τn ≥ 0 is
bounded, then the sequence ∥uj,λn,τn∥∞ has the limit set, for n → ∞,
contained in {0, z1, ... , zj}.

Proof. The proof follows the lines of that of Theorem 2.5, but this time the
blow-up is centered at a point xn ∈ Ω such that dn := dist(xn, ∂Ω) ≥ δΩ

and un(xn) = ∥un∥∞.
As a result, the rescaled solutions converge to a solution of the limiting

problem
−∆pw = fj(w), w ≥ 0 , in RN , (3.4)

which is always defined in RN since xn stays away from the boundary. In
view of the Hypotheses (F2), (F4) and (F5), we can apply Lemma 3.5 to
conclude that w is constant, that is, w must be a zero of fj .

This proves that wn(0) = un(xn) = ∥un∥∞ → z ∈ {0, z1, ... , zj}.

In the following Lemma we obtain two solutions of Qj,λ,τ with τ > 0,
one below zj and the other one exceeding it; the requirement is that we
first have a subsolution whose infinity norm is between zj−1 and zj .

The second solution is obtained by a topological degree argument,
adapting a result obtained, for p = 2, by de Figueiredo and Lions in [18],
see also [34] for the general case. The reason to use a topological argument
instead of the variational one used in Section 2 is that here we need to ex-
ploit the family of supersolutions from Lemma 3.7 in order to guarantee a
separation between the two solutions that will allow to distinguish them
even after taking limit for τ → 0.
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Observe that Lemma 3.7 relies on hypothesis (F2), which in fact avoids
the formation of flat cores (see in Section 2.2 and compare with condition
(b) there), actually, if flat cores could occur, then it would become difficult
to separate the two solutions and obtain the multiplicity result.

Lemma 3.11. Assume hypotheses (F1), (F2) and (F3); fix j ∈ {1, ... , k}
and λ > 0. Suppose that the Problems (Qj,λ,τ ), τ ≥ 0 have a common
subsolution u > 0, satisfying zj−1 < ∥u∥∞ < Rj−1.

Then for a given τ0 ∈ (0, τ∗j,λ), Problem (Qj,λ,τ0) has 2 solutions uj,λ,τ0 ,
vj,λ,τ0 satisfying

zj−1 < ∥u∥∞ ≤ ∥uj,λ,τ0∥∞ < zj − δj,λ/4 < zj + δj,λ/4 < ∥vj,λ,τ0∥∞ . (3.5)

Sketch of the proof. One solution is obtained by the sub and supersolution
method: for τ ∈ (0, τ∗j,λ), we have the supersolution ũ = uj,−δj,λ = zj −
δj,λ +

δj,λ
4n e from Lemma 3.7; by construction, we have u < Rj−1 < ũ <

zj−δj,λ/2. Then the sub and supersolutions method gives a solution uj,λ,τ0
with the claimed properties.

The argument for the second solution is rather technical and can be
seen in details in [31, 33]. One considers X = C1

0(Ω), a set of the form

O = {u ∈ X : ∥u∥X < Bλ, u >> u} ,

and proves, by using comparison principle and the a-priori estimates, that
the Leray-Shauder degree in O of the operator corresponding to Problem
(Qj,λ,τ0) is well defined, independent of τ and then eventually zero since
fj ≥ 0 and then no positive solution exists if τ > λ1.

However, one proves that the degree is 1 in

O′ = {u ∈ O : u < u in Ω} ,

where u is the supersolution uj,0 > zj from Lemma 3.7.
Then, applying the excision property, it follows that (Qj,λ,τ0) has a

solution vj,λ,τ0 ∈ O \ O′; in particular, since vj,λ,τ0 ≥ u we obtain the last
estimate ∥vj,λ,τ0∥∞ > zj + δj,λ/4.
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Lemma 3.11 allows us to obtain the following Lemma, which will be
used to iteratively produce two solutions of Problem (Qλ), starting with a
given solution.

Lemma 3.12. Assume hypotheses (F1), (F2), (F3), hypothesis (F4) or
(F5), and the convexity of Ω. Suppose that, for some j ∈ {1, ... , k}, there
exists Λj−1 > 0 such that there exists a solution vλ of (Qj,λ,0) for any
λ > Λj−1, satisfying zj−1 < ∥vλ∥∞ < Rj−1.

Then there exists Λj ≥ Λj−1 such that for λ > Λj, (Qj,λ,0) has two
more solutions uj,λ,0 and vj,λ,0, satisfying

Rj−1 ≤ ∥uj,λ,0∥∞ ≤ zj − δj,λ/4 < zj + δj,λ/4 ≤ ∥vj,λ,0∥∞ < Rj . (3.6)

Moreover ∥uj,λ,0∥∞ → z−j and ∥vj,λ,0∥∞ → z+j as λ → ∞.

Proof. First we fix λ′ > Λj−1, and we observe that vλ′ is a subsolution for
Problem (Qj,λ,τ ) for any τ ≥ 0 and λ > λ′.

Then we apply Lemma 3.11 with this j and this subsolution. As a
result we get two solutions uj,λ,τ and vj,λ,τ of (Qj,λ,τ ) satisfying

zj−1 < ∥vλ′∥∞ ≤ ∥uj,λ,τ∥∞ < zj−δj,λ/4 < zj+δj,λ/4 < ∥vj,λ,τ∥∞ , (3.7)

for every λ > λ′ and τ ∈ (0, τ∗j,λ). Since Ω is convex, these solutions satisfy
the δΩ-property by Remark 3.9.

Now, for a fixed value of λ > λ′, by the a-priori estimates in Lemma 3.6
we can take the C1 limit as τ ↘ 0 and obtain nonnegative weak solutions of
(Qj,λ,0), which we denote by uj,λ,0, vj,λ,0. By taking limit in (3.7) we obtain
part of the estimates in (3.6) and in particular we see that uj,λ,0 and vj,λ,0

are distinct. Moreover, as limits of functions satisfying the δΩ-property,
also uj,λ,0, vj,λ,0 satisfy it.

Then, we can apply Lemma 3.10 and we deduce that ∥uj,λ,0∥∞ → z−j
and ∥vj,λ,0∥∞ → z+j as λ → ∞ (actually zj is the last zero of fj and they
could not converge to a lower one since vλ already exceeds it).

Thus there exists Λj such that Rj−1 < ∥uj,λ,0∥∞ , ∥vj,λ,0∥∞ < Rj for
λ > Λj , which completes the estimates in (3.6).
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At this point we have the ingredients to prove our main results.

Proof of Theorem 3.2. The proof is by induction.
By Hypotheses (F5) we have, as in Section 2.1, that there exists ε > 0

such that εϕ1 < R0 and εϕ1 is a subsolution for Problem (Q1,λ,τ ) for any
τ ≥ 0 and λ > λ > λ1.

Then we can apply Lemma 3.11 with j = 1 and the subsolution u =

εϕ1. As a result we get, for every λ > λ and τ ∈ (0, τ∗1,λ), solutions u1,λ,τ

and v1,λ,τ of (Q1,λ,τ ) satisfying 0 < ∥εϕ1∥∞ ≤ ∥u1,λ,τ∥∞ < z1 − δ1,λ/4 <

z1 + δ1,λ/4 < ∥v1,λ,τ∥∞. By reasoning as in the proof of Lemma 3.12 we
may take the limit for τ → 0 and we obtain solutions u1,λ,0 and v1,λ,0 of
(Q1,λ,0) satisfying

0 < ∥εϕ1∥∞ ≤ ∥u1,λ,0∥∞ ≤ z1 − δ1,λ/4 < z1 + δ1,λ/4 ≤ ∥v1,λ,0∥∞ , (3.8)

which also satisfy the δΩ-property.
Then we may apply Lemma 3.10. Since ∥u1,λ,0∥∞ cannot tend to zero

by (3.8), we deduce that ∥u1,λ,0∥∞ , ∥v1,λ,0∥∞ → z1, in fact, ∥u1,λ,0∥∞ →
z−1 and ∥v1,λ,0∥∞ → z+1 by (3.8).

As a consequence, there exists Λ1 such that u1,λ,0, v1,λ,0 < R1 for λ >

Λ1, which implies that they are also solutions of the Problems (Q2,λ,0) and
(Qλ).

Thus we use v1,λ,0 as the solution vλ required in Lemma 3.12 and we
apply this Lemma k − 1 times, starting with j = 2. We obtain two more
solutions at each step; in view of the estimate (3.6), these two solutions
are always distinct from the previous ones, are also solutions of Problem
(Qλ), and the larger one will serve as vλ for the next application of Lemma
3.12.

So we obtain a total of 2k positive solutions of Problem (Qλ), for
λ > Λk. The convergence result also comes from Lemma 3.12.

Proof of Theorem 3.1. Theorem 3.1 can be proved in the same way, with
the difference that, under condition (F4), we do not have a subsolution
but a first solution is obtained by applying the mountain pass theorem to
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Problem (Q0,λ,0). This solution is a solution of (Qλ) for λ large enough,
and can then be used as the solution vλ to apply Lemma 3.12 k times,
starting with j = 1, thus obtaining a total of 2k + 1 positive solutions of
Problem (Qλ), for λ > Λk, and the convergence result.

4 Problem in an annulus with a variable zero and
local superlinearity

In this section we briefly describe the results in the paper [37], where
we considered Problem (Pλ) in the radial and semilinear case (p = 2),
when Ω = {x ∈ RN : r1 < |x| < r2} is the annulus with 0 < r1 < r2,
N ≥ 2. In this case the problem can be written as the ordinary boundary
value problem{

v′′(t) + λq(t)f(t, v(t)) = 0 , for t ∈ (0, 1) ,

v(0) = v(1) = 0 ,
(Rλ)

where the function q(t) is continuous and positive on the interval [0, 1].
In this setting, it will be possible to take advantage of some techniques
available in dimension one, and in particular of the fact that any positive
solution is concave, in order to obtain the same kind of results but under
weaker assumptions than those considered in [36] and [31].

More precisely, we consider the following four assumptions:

(K1) The function f : [0, 1]× [0,+∞) → [0,+∞) is continuous and there
exists a continuous function a : [0, 1] → (0,+∞), which is concave,
such that f(t, 0) = f(t, a(t)) = 0 and f(t, v) > 0 if 0 < v < a(t).

(K2) There exists a continuous function b : [0, 1] → (0,+∞) such that

lim
v→0+

f(t, v)

v
= b(t) uniformly in t ∈ [0, 1].

(K3) There exist constants 0 < α < β < 1 such that

lim
v→+∞

f(t, v)

v
= +∞ uniformly in t ∈ [α, β].
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(M3) (a) The function fv := ∂f
∂v exists and is continuous in the set

{(t, v) : t ∈ [0, 1], v ∈ [0, a(t)] },

(b) fv(t, v) < v−1f(t, v) in the set {(t, v) : t ∈ (0, 1), v ∈ (0, a(t)) }.

The conditions (K1-K2) correspond directly to (H1–H3) from [36],
while about the behavior at infinity of f we only assume hypothesis (K3),
which states that the nonlinearity is required to be superlinear, but only in
a small interval (that is, in a small annulus in Ω), while no higher bound on
the growth is imposed. Moreover, one does not need to ask the convexity
of the domain nor that the nonlinear term is independent of x ∈ Ω (as we
did in [31, 33]). The hypothesis (M3) provides the monotonicity required
to apply the sub and supersolutions method (as (M1)-(M2) in Section 2)
and is also used to obtain the second solution, by a homotopy argument.

An example of a function f which satisfies our broader hypotheses, but
not those in [36] and [31], could be

f(t, u) =

u(1− u)2 for u ≤ 1 ,

(eu−1 − u)ϕ(t) for u > 1 ,

where ϕ ∈ C0([0, 1]) is nonnegative, may be null in some set, but is positive
in [α, β].

Under the hypotheses above, the main results in [37] state, as in [36],
the existence of a positive solution of Problem (Rλ) for 0 < λ < λ1,qb,
of two ordered positive solutions for every λ > λ1,qb, and the asymptotic
behaviors

∥vλ∥∞ → +∞ when λ → 0+

and (provided f has no other zero than a)

vλ → a pointwise in (0, 1) and ||vλ||∞ → ||a||∞ , when λ → ∞ .

The proofs however require different techniques.
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4.1 Sketch of the proof of the main results

We consider the Banach space X = C([0, 1]) endowed with the norm
∥v∥∞ = maxt∈[0,1] |v(t)| and, in view of the fact that if u(t) is a nonnega-
tive solution of Problem (Rλ) then it is a concave function, we define the
cone

C = {v ∈ X : v is concave and v(0) = v(1) = 0}

and the completely continuous operator Tλ : C −→ C

Tλv(t) = λ

∫ 1

0
G(t, s) q(s)f(s, v(s)) ds , (4.1)

where G(t, s) denotes the Green’s function for the interval (0, 1). The
nontrivial fixed points of Tλ correspond to the positive solutions of Prob-
lem (Rλ).

The results are obtained through fixed point theorems and degree the-
ory, after careful estimates of (4.1). In particular, observe that the one
dimensional Green’s function satisfies

G(t, s) ≤ G(s, s) = s(1− s), for all t, s ∈ [0, 1], (4.2)

while the concavity of the functions in C provides a way to compare their
values in different points: the following Lemma is fundamental in our
arguments.

Lemma 4.1. Given a function v in the cone C and a point p ∈ (0, 1), the
following estimates hold:

(i) v(t) ≥

 t
p v(p) t < p ,

1−t
1−p v(p) t > p ,

and (ii) v(t) ≤

 t
p v(p) t > p ,

1−t
1−p v(p) t < p .

Moreover, for all 0 < t0 < t1 < 1 , we have

(iii) min
t∈[t0,t1]

v(t) ≥ ct0,t1 ||v||∞ ,

where ct0,t1 := min {t0, 1− t1}.
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The use of topological methods usually requires a-priori estimates for
the solutions, which cannot be obtained as in Section 2 under the weaker
conditions we have here. The following Lemma shows how to exploit
Lemma 4.1 in order to obtain a-priori estimates under the local-only su-
perlinearity condition (K3).

Lemma 4.2. Suppose conditions (K1) through (K3) and (M3) hold. Given
λ̃ > 0, there exists a constant D

λ̃
> 0, such that any nontrivial fixed point

of Tλ with λ > λ̃ satisfies ∥u∥∞ ≤ D
λ̃
.

Proof. Suppose, for sake of contradiction, that {un} is a sequence of non-
trivial fixed points of Tλ with λ > λ̃ and ∥un∥∞ → +∞. Then

un(t) = λ

∫ 1

0
G (t, s) q(s)[f(s, un(s))] ds . (4.3)

Since un ∈ C, using the estimate (iii) in Lemma 4.1,

un(s) ≥ cα,β∥un∥∞ for s ∈ [α, β]. (4.4)

Since the integrand in (4.3) is nonnegative and λ > λ̃, we obtain

un(t) ≥ λ

∫ β

α
G (t, s) q(s)un(s)

f(s, un(s))

un(s)
ds

≥ λ̃

∫ β

α
G (t, s) q(s)cα,β∥un∥∞

f(s, un(s))

un(s)
ds.

By condition (K3) and (4.4), for any M > 0 one has f(s,un(s))
un(s)

≥ M in
[α, β] for n suitably large, then

un(t) ≥
(
Mλ̃ cα,β

∫ β

α
G (t, s) q(s) ds

)
∥un∥∞.

This leads to the contradiction

1 ≥ un(1/2)

∥un∥∞
≥ Mλ̃ cα,β

{∫ β

α
G (1/2, s) q(s) ds

}
for arbitrary M > 0. The assertion is then proved.
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Then, a solution for λ < λ1,qb is obtained by applying a Krasnosel’skii
fixed point theorem in cones of expansion/compression (compare [3], [14],
[13], [27], [38]). In particular, it is possible to prove, using (K3) and the
kind of arguments exploited in Lemma 4.2, that Tλ is expansive for large
v, while by (K2) it is compressive for small v and λ < λ1,qb.

For λ > λ1,qb, a first solution v1 is simply the one form Theorem 2.1-
(i), whose hypotheses are contained in (K1), (K2) and (M3). The second
solution is obtained by a degree argument that we describe below.

Consider the Problem{
−(v1 + u)′′(t) = λq(t)f(t, v1 + u+) , for 0 < t < 1 ,

u(0) = u(1) = 0.
(R+)

If u ≥ 0 is a nontrivial solution of (R+), then v1 + u is a second positive
solution of (Rλ), which satisfies v1 + u ≥ v1.

For θ, τ ∈ [0, 1] and η ≥ 0, we define the following parameterized family
of operators:Tθ,τ,ηu(t) = λθ

∫ 1
0 G (t, s) q(s)

[
f(s,v1(s)+τu+(s))−f(s,v1(s))

τ + η
]
ds,

Tθ,0,ηu(t) = λθ
∫ 1
0 G (t, s) q(s) [fv(s, v1(s))u

+(s) + η] ds.

Observe that, by hypothesis (M3)-a, Tθ,τ,η is continuous with respect to
the parameters θ, τ, η. Moreover, with this definition, a solution of (R+)
is a fixed point of T1,1,0, since −λq(t)f(t, v1) = v′′1 .

After obtaining a-priori estimates on the possible fixed points in the
same way as described in Lemma 4.2, one shows that a suitable homo-
topy can be obtained joining T1,1,η with T1,1,0, but one also observes that
no fixed point with large η can exist, allowing to obtain that deg(Id −
T1,1,0, B, 0) = 0 in a suitable ball B. On the other hand, using (M3)−b to
prove that Tθ,0,0u = u implies u = 0, one proves that

deg(Id− Tθ,0,0, B, 0) = deg(Id,B, 0) = 1 for any θ ∈ [0, 1]. (4.5)

At this point, if T1,1,0 had no nontrivial fixed points, then a homotopy
could be obtained joining T1,1,0 with T1,0,0, providing a contradiction with
the homotopy invariance of the degree.
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The asymptotical behavior is also obtained by estimating (4.1) using
(4.2) and Lemma 4.1, as in Lemma 4.2.

5 Poly-Laplacian and nonlinearities with zeros.

In the paper [35], we considered the following version of Problem (Gλ),
with the poly-Laplacian operator with Navier conditions.(−∆)k u = λf(x, u) + µg(x, u) in Ω,

(−∆)iu = 0 on ∂Ω, i = 0, .., k − 1,
(Sk

λ,µ)

where k ∈ N, λ, µ ≥ 0 are two parameters and f, g are nonnegative func-
tions for which we assume

(Z1) there exists a continuous function a(x) > a0 > 0 such thatf(x, t) = 0 if t ≥ a(x),

g(x, t) = 0 if 0 ≤ t ≤ a(x),

that is, the nonlinearity has a zero at t = a(x) and then g describes the
nonlinearity above the zero while f describes it below.

Equations with the bi-Laplacian or poly-Laplacian operator and several
kinds of nonlinearities were studied in many works [23, 42, 53, 60, 56, 49,
30, 43, 6, 46, 47, 25, 22, 62, 64, 63]. Among them we emphasize those more
related to our setting: [6] considered the problem of the existence of two
positive solutions with a concave-convex nonlinearity similar to the one in
[1]. A complement of this result was proved in [63]. Two positive solutions
were also found in [62], in a situation similar to [16].

We describe below part of the results from [35], however we will assume
here slightly stronger hypotheses in order to avoid technicalities.

5.1 Existence of two solutions for small µ

The operators (−∆)k are usually called poly-Laplacian and are the
prototypes of linear elliptic operators of order 2k. The boundary conditions
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assumed here are called Navier conditions and have the important property
that, with them, (Sk

λ,µ) becomes equivalent to a system of k equations
with the Laplacian operator and Dirichlet boundary conditions. This fact
has some important consequences, in particular that one can apply the
maximum principle to each equation and obtain that if the right hand side
of (Sk

λ,µ) is nonnegative, then not only the solution u is nonnegative, but
also (−∆)iu ≥ 0, for any i ≤ k.

For the poly-Laplacian operator, the method of sub and supersolutions
is only available when the nonlinearity is strictly increasing, as a conse-
quence, we cannot use it in order to produce a first solution nor to bound
it below the zero as we did in the previous sections. We will see in the last
section that, in fact, in some situations this solution eventually exceeds
the zero (see Remark 5.6).

On the other hand, Problem (Sk
λ,µ) can be treated variationally: the

natural working space, which we denote by H, is a Hilbert space of func-
tions which have square integrable weak derivatives up to the order k, for
which the boundary conditions are enforced up to order k − 1 and where
one can use the norm ∥u∥H =

∥∥∇ku
∥∥
L2 . As for the case k = 1 there

exists a critical exponent for the immersion of H in Lq, which in defined
as 2∗N,k = 2N

N−2k if N > 2k (and we may set 2∗N,k = ∞ if N ≤ 2k).
For more details on the poly-Laplacian see in [35] and the specific book

[26].

We first prove an existence and multiplicity result for (Sk
λ,µ) when λ > 0

and µ lies in a region of the form 0 < µ < µ(λ).
We assume the following additional hypotheses on the functions f, g

and their primitives F,G.

(J1) The functions f, g : Ω × [0,+∞) −→ [0,+∞) are continuous func-
tions which satisfy f(x, 0) = g(x, 0) = 0 and g has subcritical
growth.

(J2) lim
t−→0+

f(x, t)

t
= +∞ uniformly.
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(J3) lim
t→+∞

g(x, t)

t
= +∞ uniformly.

(J4) There exist Θ > 2 and C > 0 such that

ΘG(x, t)− g(x, t)t ≤ C for t ≥ 0 .

As a model, similar to (1.2), we can takef(x, t) = uq [(a(x)− u)+]
r
,

g(x, t) = [(u− a(x))+]
s
,

(5.1)

with q ∈ (0, 1), r > 0 and s ∈ (1, 2∗N,k − 1).
Our existence and multiplicity result is the following.

Theorem 5.1. Under Hypotheses (Z1,J1,J2,J3,J4), there exists a function
M : (0,∞) → (0,∞] such that the Problem (Sk

λ,µ), k ∈ N, has
a) at least one positive solution for λ > 0 and µ = 0,
b) at least two positive solutions for λ > 0 and 0 < µ < M(λ).

In [35] we also considered the cases where instead of (J2), different
behaviors near the origin are assumed. As we have seen in the Sections 2
and 3 this results in a different number of solutions when λ is either small
or large.

Sketch of the proof of Theorem 5.1. The functional

Jλ,µ(u) =
1

2
∥u∥2H − λ

∫
Ω
F (x, u+)− µ

∫
Ω
G(x, u+) (5.2)

is well defined and of class C1 in H, moreover its nontrivial critical points
are positive solutions of Problem (Sk

λ,µ).
The conditions (J2) and (Z1) imply that the second term in (5.2) is

dominant near the origin and then, given λ > 0, there exists u0 such that
Jλ,µ(tu0) < 0 for small t and any µ ≥ 0.

The hypotheses (J3) and (J4) are classical conditions that guarantee
the (PS)-condition and (J3) also implies that the last term in (5.2) is
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dominant far from the origin, then there exists e ∈ H such that, for any
λ ≥ 0 and µ > 0,

Jλ,µ(te) → −∞ when t → +∞ .

At this point what we need is to find a “range of mountains”, that is, a
sphere around the origin where the functional is positive: this is achieved
by imposing the bound µ < M(λ), since the the second term in (5.2) is
bounded by (Z1) and the first one is coercive.

The described geometry allows to obtain, for λ > 0 and 0 < µ < M(λ),
a local minimum at a negative level inside the range of mountains and also
a mountain pass solution at a positive level. When µ = 0 one still has the
minimum.

5.2 Existence for every µ > 0

The proof of Theorem 5.1 shows why we had to split the nonlinearity
in two terms with two different parameters: the geometry of the func-
tional is similar to the one we had in Section 2, with the first solution
being a minimum and then the second arising as a mountain pass solu-
tion, however, without the sub and supersolution method, we are not able
to prove that the first solution stays below the zero, forcing us to balance
the contribution of f and g in order to obtain the “range of mountains”.

However, this result is not completely satisfying if one compares it with
those described in the previous sections. Actually, one would expect to be
able to obtain at least two solutions without the need to bound µ, as was
the case in [36]. In other words, one would expect M(λ) = ∞ in Theorem
5.1.

This is in fact the case under some additional hypotheses: as stated
in Theorem 5.2 below, in some cases existence and multiplicity can be
extended to hold without the bound on µ.

On the other hand, in the next section we will show that in other cases
existence is actually lost for large values of µ.
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Theorem 5.2. Under the hypotheses of Theorem 5.1, it is possible to
guarantee that M(λ) = +∞ in the following cases:

(C1) N < 2k and the parameter λ > 0 is small enough;

(C2) k = 1, the parameter λ > 0 is small enough and both f, g satisfy a
condition as (M2) from Section 2;

(C3) k = 1, f, g satisfy (M2) as above and a is weakly superharmonic as
in (H2) from Section 2.

We observe that, in order to satisfy the condition (M2), we have to take
r ≥ 1 in the model (5.1).

Sketch of the Proof of Theorem 5.2. The first step is always to prove that
the first solution lies below a(x).

In case (C3) one uses the fact that a is a supersolution and (since
k = 1) follows the lines of the proof of Theorem 2.2. In fact, in this case
the first solution stays below a for any value of λ > 0, and then one obtains
the second solution for any value of µ > 0.

In the other two cases, one does not need to assume that a is super-
harmonic but uses the fact that for λ small the first solution is also small,
in order to bound it below a.

In the case (C1) we proceed as follows.
The condition N < 2k implies that H ↪→ L∞(Ω). For λ > 0 and µ = 0,

as in the proof of Theorem 5.1 point (a), we obtain a solution uλ,0 which
is a local minimum at a negative level for Jλ,0. By the geometry of the
functional one observes that ∥uλ,0∥H → 0 as λ → 0 and then, using the
embedding in L∞ we obtain that for λ small enough, ∥u∥∞ < a0 ≤ a for
every u in a small neighborhood N of uλ,0.

As a consequence µ does not affect the value of Jλ,µ in N and so uλ,0

is a first solution and also a local minimum at a negative level for every
µ > 0. The second solution is then obtained by applying the mountain
pass theorem to the functional Jλ,µ, in view of the estimates obtained in
the proof of Theorem 5.1.
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The case (C2) is similar to the case (C1), but instead of exploiting
the low dimension one can exploit the better properties of the Laplacian
operator. In fact, we can use the sub and supersolution method, Moser
iteration (see [29, Proposition 1.3]) and minimization in the C1 topology
(see [9]), in order to obtain as before, for λ small, a first solution uλ,0 with
a neighborhood which is not affected by the value of µ.

5.3 Asymptotical behavior and nonexistence results

In view of the Theorems 5.1 and 5.2, a natural question is whether the
bound on µ is only due to the technique we use to prove the existence
and multiplicity result, or if it is possible that existence is actually lost for
large µ.

It turns out that M(λ) cannot be always +∞. We will prove this
nonexistence result for the one dimensional version of (Sk

λ,µ)(−1)k u(2k)(x) = λf(x, u) + µg(x, u) in (−1, 1),

u(2i)(±1) = 0 i = 0, .., k − 1 ,
(Σk

λ,µ)

but it looks reasonable that a similar behavior should be found in higher
dimension too.

We need to assume the additional condition, which is satisfied for in-
stance by the model nonlinearity (5.1),

(J5) (i) f(x, τt) > τf(x, t) > 0 for every x ∈ Ω, τ ∈ (0, 1), t ∈ (0, a(x));
(ii) g(x, t) > 0 for every x ∈ Ω, t > a(x).

Before going to the claimed nonexistence result we obtain, for Problem
(Σk

λ,µ), the following result of pointwise convergence to the zero, similar to
Theorem 2.5.

Proposition 5.3. For any k ∈ N, if hypotheses (Z1,J1,J2,J3,J5) hold,
then along any two sequences µn, λn → ∞, the positive solutions uλn,µn of
Problem (Σk

λ,µ), if exist, converge to a(x) pointwise.
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Proof. We exploit some of those techniques we already used in Section
4. Actually, solutions of Problem (Σk

λ,µ) in dimension 1 are concave and
satisfy

u(x) =

∫ 1

−1
Gk(y, x)[λf(y, u(y)) + µg(y, u(y)) ] dy , (5.3)

where Gk is the Green’s Function for the poly-Laplacian with Navier con-
ditions in the interval (−1, 1).

By careful estimates of (5.3) and the application of the properties of
concave functions in (−1, 1) as those in Lemma 4.1, one first obtains a-
priori estimates as in Lemma 4.2. Then, if one supposes for sake of contra-
diction that, as λ, µ → ∞, solutions stay far from a at a point p, then by
Lemma 4.1 they also stay far from a in some neighborhood N of p. Then
f, g are positive in N and the right hand side of (5.3) becomes arbitrarily
large, contradicting the a-priori estimates.

A consequence of Proposition 5.3 is that an obstacle to existence for µ, λ
large can be obtained if the shape of the function a cannot be approximated
by solutions of (Σk

λ,µ). In particular we obtain the following nonexistence
results.

Theorem 5.4. Under hypotheses (Z1,J1,J2,J3,J5), if k ≥ 2 and a ∈
C1[−1, 1], then there exists Λ1 > 0 and N : (Λ1,∞) → (0,∞) such that
Problem (Σk

λ,µ) has no positive solution for λ > Λ1 and µ > N(λ).

Theorem 5.5. Under hypotheses (Z1,J1,J2,J3,J5), for any k ∈ N, if more-
over a(x) is not a concave function, then the same conclusion of Theorem
5.4 holds.

It is interesting to look at the case of the simple model nonlinearity
(5.1) with r ≥ 1 and constant a(x) ≡ 1: Theorem 5.2 says that M(λ) =

+∞ if k = 1 or if k > 1, N < 2k and λ is small. However, if k > 1, the
Theorem 5.4 shows that, in fact, Problem (Σk

λ,µ) has no positive solutions
at all for λ, µ large. This fact shows a quite different behavior of the higher
order problem with respect to the second order one.



Nonlinearities with zeros 115

Remark 5.6. It is also possible to prove that, in the conditions of the
Theorems 5.4-5.5, for λ large, those solutions that exist for µ < M(λ) are
not bounded below the zero, which explains why they cease to exist when
µ becomes too large. ◁

In Theorem 5.5, the obstacle that leads to nonexistence is the fact
that if a(x) is not a concave function, then it cannot be approximated by
solutions of Problem (Σk

λ,µ), which are concave.
This of course is true also for k = 1, showing that the superharmonicity
condition on a assumed in [36, 37] and in Theorem 5.2-(C3) is crucial for
the existence results.

In Theorem 5.4, the argument is as follows: as we already pointed out,
if k ≥ 2 then uiv ≥ 0 and then not only u but also −u′′ is a concave
function One first proves that concave functions u which, as µ, λ → ∞,
approximate the regular function a in some subset [α, β] ⊆ (0, 1), maintain
their second derivative bounded in [α, β]. However, u′′ → −∞ near the
boundary as the solutions have to go from the boundary condition u = 0

up to the function a ≥ a0 > 0 and then stay close to a. This implies that,
for µ, λ large, −u′′ would have two distinct maxima, near the boundary,
which is impossible for a concave function.

Observe that no contradiction arises if k = 1 and in fact the described
behavior of convergence to the zero up to near the boundary and then go
very fast to the boundary condition producing large second derivative is
the expected one for the solutions in the second order case (see [28, 58,
59, 36]). In the case k ≥ 2, on the other hand, the higher “stiffness” of
the poly-Laplacian makes it impossible for the solution to jump from the
boundary condition to near a(x) without exceeding it. Actually, this fact
is natural from a physical point of view, since the Laplacian models, in the
one dimensional case, the deformation of a string, while the bi-Laplacian
models a beam, which has a bending stiffness in addition to the tensile
stiffness.
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