Matemática Contemporânea

Vol. 52, 54–70 http://doi.org/10.21711/231766362022/rmc524

Semiglobal solvability for a class of first order operators

W. A. Cerniauskas^[D], P. L. Dattori da Silva^[D] and A. Kirilov^[D]

¹Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR, 84030-900 Brazil

²Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, São Carlos, SP, 13560-970, Brazil

³Departamento de Matemática, Universidade Federal do Paraná, Caixa Postal 19081, Curitiba, PR, 81531-990, Brazil

Abstract. In this work, we deal with solvability near the characteristic set of equations in the form Lu = pu + f, where the operator $L = \partial_t + (x^n a(x) + ixb(x))\partial_x$ is defined on $\Omega = \mathbb{R} \times S^1$, a and bare real-valued smooth functions on \mathbb{R} , with $b(0) \neq 0$, $n \in \mathbb{N}$, and $p, f \in C^{\infty}(\Omega)$. We show that, for fixed $k \geq 1$, and given p and f belonging to convinient subspaces of $C^{\infty}(\Omega)$ of finite codimension (depending on k), there is $u \in C^k(\Omega)$ solution to the equation Lu = pu + f in a neighborhood of the characteristic set.

Keywords: condition (P), characteristic set, periodic solutions.

2020 Mathematics Subject Classification: 35A01, 35F05.

The first author was supported in part by CNPq (grant 423458/2021-3).

The second author was supported in part by CNPq (grant 313581/2021-5) and FAPESP (grant 2018/14316-3), corresponding author's email: dattori@icmc.usp.br

The third author was supported in part by CNPq (grants $316850/2021\mathcharmarrow 72021\mathcharmarrow 72021\mathcharmarow 72021\mathcharmarrow 72021\math$

1 Introduction

Let \mathcal{L} be a non singular smooth complex vector field defined on a smooth *m*-dimensional manifold Ω . For a fixed function $p \in C^{\infty}(\Omega)$ consider the equation

$$\mathcal{L}u = pu + f, \tag{1.1}$$

where $f \in C^{\infty}(\Omega)$.

It is well-known that the Nirenberg-Treves condition (\mathcal{P}) characterizes the local solvability of (1.1), see [1] and [21]. Recalling that local solvability for \mathcal{L} in Ω means that: for every $x \in \Omega$ and $f \in C^{\infty}(\Omega)$, there is $u \in \mathcal{D}'(\Omega)$ such that $\mathcal{L}u = pu + f$ in some neighborhood of x in Ω .

The solvability of the equation (1.1) in a neighborhood of a compact subset K of Ω remains an interesting problem with non-intuitive answers, as evidenced by references [5, 6, 8, 9, 11, 12, 13, 14], and many others. For others related papers see [2, 3, 4, 7, 19, 20] and references therein.

Let K be a compact set of Ω , we say that $P = \mathcal{L} - p$ is solvable at the compact K if for each f in a subspace of finite codimension of $C^{\infty}(\Omega)$ there is $u \in \mathcal{D}'(\Omega)$ such that Pu = f in a neighborhood of K.

In [17], or [15], Hörmander proved that condition (\mathcal{P}) is necessary for solvability of P at K. If besides condition (\mathcal{P}) , the following geometric condition is satisfied:

(GC) every characteristic point of P over K lies on a compact interval of a bicharacteristic of $\Re(\ell q)$, on which $q \neq 0$, with no characteristic endpoint over K, where $\ell(x,\xi)$ denotes the principal symbol of Pand q is a smooth function on $T^*\Omega \setminus \{0\}$

then $\mathcal{L} - p$ is solvable at K and the solutions to (1.1) can be found in $C^{\infty}(K)$.

Recall that a bicharacteristic of ℓq is an integral curve of the Hamilton field

$$H_{\ell q} = \frac{\partial(\ell q)}{\partial \tau} \frac{\partial}{\partial t} - \frac{\partial(\ell q)}{\partial t} \frac{\partial}{\partial \tau} + \frac{\partial(\ell q)}{\partial \xi} \frac{\partial}{\partial x} - \frac{\partial(\ell q)}{\partial x} \frac{\partial}{\partial \xi},$$

where $\ell q = 0$ (see [17]).

Let us describe the problem that we plan to investigate in this manuscript. First, consider $\Omega = \mathbb{R} \times S^1$, and let

$$L = \partial/\partial t + (a(x) + ib(x))\partial/\partial x, \quad b \neq 0, \tag{1.2}$$

be a complex vector field defined on Ω , where a and b are real-valued smooth functions in \mathbb{R} .

Assume that (a+ib)(0) = 0 and $b(x) \neq 0$ if $x \neq 0$. Hence, $\Sigma = \{0\} \times S^1$ is the set where L fails to be elliptic and, moreover, the operator L is of infinity type along Σ .

We recall that a point $(x_0, t_0) \in \Sigma$ is said to be of finite type ν ($\nu \in \mathbb{Z}_+$) if there exists a Lie bracket of L and \overline{L} of length ν which is nonzero at (x_0, t_0) . When $(x_0, t_0) \in \Sigma$ is not of finite type, we say that this point is of infinite type.

For fixed $p \in C^{\infty}(\Omega)$, we are interested in the solvability at Σ of

$$P = L - p$$

where L is given by (1.2).

Under our assumptions the operator P satisfies condition (\mathcal{P}) (since the function b does not change sign on any integral curve of $\partial/\partial t + a(x)\partial/\partial x$ (see [16])). On the other hand, the geometric condition (GC) is not satisfied for $K = \Sigma$. As a consequence, the results from [17] cannot be used to determine its solvability at Σ . Indeed, the characteristic set of P is

$$C(P) = \{ (x, t, \xi, \tau) \in \Omega \times (\mathbb{R}^2 \setminus \{ (0, 0) \}) : \ell(x, t, \xi, \tau) = 0 \},\$$

where $\ell(x, t, \xi, \tau) = \tau + a(x)\xi + ib(x)\xi$; hence,

$$C(P) = \{(0, t, \xi, 0) : t \in S^1 \text{ and } \xi \in \mathbb{R} \setminus \{0\}\}.$$

It is easy to verify that a bicharacteristic of ℓq passing through a point $(0, t_0, \xi_0, 0) \in C(P)$ has the form $\gamma(s) = (0, t(s), \xi(s), 0), s \in \mathbb{R}$; hence, $\gamma(s) \in C(P)$ for all $s \in \mathbb{R}$.

In this paper, we will assume that b vanishes of order 1 at x = 0. Therefore, in some neighborhood $(-\epsilon, \epsilon) \times S^1$ of Σ we can write

$$(a+ib)(x) = x^n a_0(x) + ixb_0(x),$$

where $n \ge 1$, a_0 and b_0 are real-valued smooth functions in $(-\epsilon, \epsilon)$, and $b_0(x) \ne 0$ for all $x \in (-\epsilon, \epsilon)$.

It follows from [18] that

$$\lambda = b_0(0) - ia_0(0) \tag{1.3}$$

is related to an invariant of L.

Let us assume that $\lambda \in \mathbb{C} \setminus \mathbb{Q}$. For each fixed $k \in \mathbb{Z}_+$, it follows from [10] and [18] that in new coordinates, via a C^k -diffeomorphism, L is a multiple of the operator

$$T_{\lambda} = \frac{\partial}{\partial t} - i\lambda x \frac{\partial}{\partial x};$$

moreover, as showed in [18], for all f belonging to a subspace of finite codimension of $C^{\infty}(\Omega)$ the equation $T_{\lambda}u = pu + f$ has a C^k solution in a neighborhood of Σ .

It is worth mentioning that in [5] was showed that there is $f \in C^{\infty}(\Omega)$ such that the equation $T_{\lambda}u = f$ does not have C^{∞} solution.

The remainder case to be considered is $\lambda \in \mathbb{Q}$. In this case we will present sufficient conditions on f and p to obtain C^k solutions to the equation Lu = pu + f in a neighborhood of Σ .

We stressed that in the case $\lambda \in \mathbb{Q}$ our class of vector fields can not be normalized to T_{λ} by any C^k diffeomorphism, $k \geq 1$.

Our arguments are motived by those given in [18]. Where one of the key points in finding C^k solutions to $T_{\lambda}u = pu + f$ is that for $\lambda \in \mathbb{C} \setminus \mathbb{Q}$ the equation $T_{\lambda}u = p - p(0,t)$ has C^k solutions, for any $p \in C^{\infty}(\Omega)$. In our situation where $\lambda \in \mathbb{Q}$ we need compatibility conditions on p - p(0,t).

2 Results

Let
$$\Omega_{\epsilon} = (-\epsilon, \epsilon) \times S^1, \epsilon > 0$$
, and let
 $L = \partial/\partial t + (x^n a_0(x) + ixb_0(x))\partial/\partial x, \quad n \ge 2,$
(2.1)

be a complex vector field defined on Ω_{ϵ} , where a_0 and b_0 are real-valued smooth functions in $(-\epsilon, \epsilon)$. Assume that $b_0(x) \neq 0$, for all $x \in (-\epsilon, \epsilon)$, and $b_0(0) \in \mathbb{Q}$. Without loss of generality we may assume that $b_0(0) > 0$.

The following result was proved in [13]:

Theorem 2.1. Let *L* be given by (2.1). Let \mathbf{p} and \mathbf{q} be positive integer numbers such that $b_0(0) = \mathbf{p}/\mathbf{q}$ and $gcd(\mathbf{p}, \mathbf{q}) = 1$. For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that given $f \in C^{\infty}(\Omega_{\epsilon})$, satisfying

$$\int_{0}^{2\pi} f(0,t)dt = 0 \tag{2.2}$$

and conditions bearing on the derivatives of f of order up to $j_0 \mathbf{q}$, where $j_0 = \max\{j \in \mathbb{Z} : j\mathbf{q} \leq N(k)\}$, there exists $u \in C^k(\Omega_{\epsilon})$ solution of the equation Lu = f, in a neighborhood of Σ .

Remark 2.2. Since the compatibility conditions above involve only a finite number of derivatives of f, it is possible to obtain C^k solutions to equation Lu = f in a neighborhood of Σ assuming that $f \in C^{\ell}(\Omega_{\epsilon})$, for $\ell \in \mathbb{Z}_+$ sufficiently larger depending on k.

Example 2.3. Consider

$$L = \frac{\partial}{\partial t} + \left(a(x) + i\frac{\mathsf{p}}{\mathsf{q}}x\right)\frac{\partial}{\partial x},\qquad(2.3)$$

defined on Ω , where $\mathbf{p}, \mathbf{q} \in \mathbb{Z}_+$, $gcd(\mathbf{p}, \mathbf{q}) = 1$, $a(x) \in C^{\infty}(\mathbb{R}; \mathbb{R})$ and, a is flat at x = 0.

Given $f \in C^{\infty}(\Omega)$, the compatibility conditions given by Theorem 2.1 are

$$\int_{0}^{2\pi} \partial_x^{(mq)} f(0,t) e^{impt} dt = 0, \qquad (2.4)$$

for $m = 0, 1, \ldots, j_0$. See [13] for more details.

Example 2.4. Consider the following operator defined on Ω

$$T_{\frac{1}{2}} = \frac{\partial}{\partial t} + i \frac{x}{2} \frac{\partial}{\partial x}.$$
 (2.5)

We claim that the equation

$$T_{\frac{1}{2}}u = x^2 e^{-it} \tag{2.6}$$

does not have solution $u \in C^k(\Omega)$, for $k \ge 4$, in any neighborhood of Σ .

Indeed, for $f(x,t) = x^2 e^{-it}$ we have

$$\int_0^{2\pi} \partial_x^2 f(t,0) e^{it} dt = \int_0^{2\pi} 2 e^{-it} e^{it} dt = 4\pi \neq 0,$$

that is, f does not satisfy (2.4).

Let us assume by contradiction that (2.6) has a solution $u \in C^4(\Omega)$. Then, by using Taylor's formula, we can write

$$u(x,t) = \sum_{j=0}^{3} u_j(t) x^j + R(x,t) \,,$$

where $R \in O(|x|^4)$. From (2.6) we have

$$u_2'(t) + iu_2(t) = e^{-it}.$$
(2.7)

Thus $u_2(t) = (t + u_2(0))e^{-it}$, which lead us to a contradiction, since the function $t \mapsto t e^{-it}$ is not 2π -periodic.

For $k \in \mathbb{Z}_+$, define

$$\mathcal{F}_k(\Sigma) = \{ f \in C^{\infty}(\Omega); \ Lu = f \text{ in a neighborhood of } \Sigma, \\ \text{for some } u \in C^k(\Omega) \}.$$
(2.8)

Note that Theorem 2.1 gives sufficient conditions for $f \in C^{\infty}(\Omega)$ to be in $\mathcal{F}_k(\Sigma)$.

The homogeneous equation Lu = pu is the focus of our first result. For this, given p = p(x,t) in $C^{\infty}(\Omega)$, let $p_0 : C^{\infty}(S^1) \to C^{\infty}(S^1)$ be defined by

$$p_0(t) = p(0, t).$$
 (2.9)

Theorem 2.5. Let L be given by (2.1) and let $k \in \mathbb{Z}_+$. If $p \in C^{\infty}(\Omega)$ satisfies

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t) dt \in \mathbb{Z},$$
(2.10)

and $p - p_0 \in \mathcal{F}_k(\Sigma)$, then there exists $u \in C^k(\Omega)$ solution of the equation Lu = pu, in a neighborhood of Σ , with $u \neq 0$ on Σ .

Proof. Let p_0 be given by (2.9). Since p satisfies (2.10), it follows that

$$u_0(t) = e^{\int_0^t p_0(\tau) d\tau}$$

is a function in $C^{\infty}(S^1)$; moreover, u_0 satisfies

$$u_0'(t) = p_0(t)u_0(t).$$

Let $\tilde{p}(x,t) = p(x,t) - p_0(t)$. By hypothesis, there is $w \in C^k(\Omega)$ solution to $Lw = \tilde{p}$, in a neighborhood of Σ .

Define

$$u(x,t) = u_0(t)e^{w(x,t)}.$$

We have $u \in C^k(\Omega)$ and

$$Lu = u'_0 e^w + u_0 e^w Lw = p_0 u_0 e^w + u_0 e^w \tilde{p} = (p_0 + \tilde{p})u = pu,$$

in a neighborhood of Σ .

Since Theorem 2.1 gives sufficient conditions for a smooth function f to belong to \mathcal{F}_k we can rewrite Theorem 2.5 as follows:

Corollary 2.6. Let *L* be given by (2.1). Let \mathbf{p} and \mathbf{q} be positive integer numbers such that $b_0(0) = \mathbf{p}/\mathbf{q}$ and $gcd(\mathbf{p}, \mathbf{q}) = 1$. For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that given $p \in C^{\infty}(\Omega_{\epsilon})$, satisfying

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t) dt \in \mathbb{Z},$$
(2.11)

and conditions given by Theorem 2.1 bearing on the derivatives of p of order up to $j_0 \mathbf{q}$, where $j_0 = \max\{j \in \mathbb{Z} : j\mathbf{q} \leq N(k)\}$, there is $u \in C^k(\Omega_{\epsilon})$ solution of Lu = pu in a neighborhood of Σ , with $u \neq 0$ on Σ .

Example 2.7. Let *L* be given by (2.3). For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that if $p \in C^{\infty}(\Omega_{\epsilon})$, satisfies

$$\int_0^{2\pi} \partial_x^{(m\mathbf{q})} p(0,s) e^{im\mathbf{p}s} ds = 0,$$

for $m = 0, 1, ..., j_0$, where $j_0 = \max\{j \in \mathbb{Z} : j\mathbf{q} \leq N(k)\}$, then there is $u \in C^k(\Omega_{\epsilon})$ solution of Lu = pu in a neighborhood of Σ , with $u \neq 0$ on Σ .

Comparing with the situation where $p - p_0 \notin \mathcal{F}_k(\Sigma)$ we have following:

Example 2.8. If $u \in C^4(\Omega)$ is a solution to $T_{\frac{1}{2}}u = x^2e^{-it}u$, where $T_{\frac{1}{2}}$ is given by (2.5), then $u_{|_{\Sigma}} \equiv 0$. Indeed, by using Taylor's formula we can write $u(x,t) = u_0(t) + u_1(t)x + u_2(t)x^2 + u_3(t)x^3 + R(x,t)$, where $R \in O(|x|^4)$; hence, we are lead to

$$u'_0 = 0 \quad \Rightarrow \quad u_0 \equiv c, \quad \text{for some } c \in \mathbb{C},$$

and

$$u'_{2} + iu_{2} = ce^{-it} \Rightarrow (u_{2}e^{it})' = c \Rightarrow u_{2}(t) = (ct + u_{2}(0))e^{-it}$$

Therefore, since u_2 is 2π -periodic, we have c = 0; consequently, $u_{|_{\Sigma}} \equiv 0$.

Theorem 2.9. Let L be given by (2.1) and let $k \in \mathbb{Z}_+$. If $p \in C^{\infty}(\Omega)$ satisfies

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t) dt \notin \mathbb{Z},\tag{2.12}$$

and $p - p_0 \in \mathcal{F}_k(\Sigma)$, then there exist $w \in C^k(\Omega_{\epsilon})$ with $w \neq 0$ on Σ , and $g \in C^k((-\epsilon, \epsilon))$ vanishing of finite order at x = 0, such that u(x, t) = g(x)w(x, t) is a solution of the equation Lu = pu, in a neighborhood of Σ .

Proof. Let α, β be real numbers given by

$$\alpha + i\beta = \frac{1}{2\pi i} \int_0^{2\pi} p(0,t)dt;$$

by (2.12) we have $\alpha + i\beta \notin \mathbb{Z}$.

Let $\ell = m - \lfloor \alpha \rfloor$, where $m \in \mathbb{Z}_+$ will be chosen later and we use $\lfloor \alpha \rfloor = \max\{n \in \mathbb{Z} : n \leq \alpha\}$. Define

$$\mu = (\ell + \alpha) + i\beta;$$

note that $\Re(\mu) = m - \lfloor \alpha \rfloor + \alpha \ge m$.

Now, set the function

$$\tilde{p}(x,t) = p(x,t) - i\mu.$$

We have

$$\frac{1}{2\pi i} \int_0^{2\pi} \tilde{p}(0,t) dt = \frac{1}{2\pi i} \int_0^{2\pi} p(0,t) dt - \mu$$

= $\alpha + i\beta - (\ell + \alpha) - i\beta = -\ell \in \mathbb{Z};$

hence, by Theorem 2.5, there is $w \in C^k(\Omega)$, $w \neq 0$ on Σ , solution to $Lw = \tilde{p}w$ in a neighborhood of Σ .

Let $g: (-\epsilon, \epsilon) \to \mathbb{C}$ be the function defined by

$$g(x) = \begin{cases} e^{-i\mu \int_x^{\epsilon} \frac{1}{a+ib} dy}, & x > 0\\ 0, & x = 0\\ e^{i\mu \int_{-\epsilon}^{x} \frac{1}{a+ib} dy}, & x < 0 \end{cases}$$

•

We will show that g vanishes of finite order at x = 0. Note that

$$\frac{-i}{a+ib} = -i\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2};$$

hence,

$$\begin{split} -i\mu \int_x^\epsilon \frac{1}{a+ib} dy &= (\Re(\mu)+i\Im(\mu)) \left(-i\int_x^\epsilon \frac{a}{a^2+b^2} dy - \int_x^\epsilon \frac{b}{a^2+b^2} dy\right) \\ &= \left(-\Re(\mu) \int_x^\epsilon \frac{b}{a^2+b^2} dy + \Im(\mu) \int_x^\epsilon \frac{a}{a^2+b^2} dy\right) \\ &+ i \left(-\Re(\mu) \int_x^\epsilon \frac{a}{a^2+b^2} dy - \Im(\mu) \int_x^\epsilon \frac{b}{a^2+b^2} dy\right). \end{split}$$

Recall that $a(x) = x^n a_0(x)$, $b(x) = x b_0(x)$, and $b_0(0) > 0$. Then,

$$\frac{b}{a^2 + b^2} = \frac{1}{x} \left(\frac{1}{b_0(0)} + 0(|x|) \right).$$

Therefore, for x > 0,

$$g(x) = e^{-i\mu \int_x^{\epsilon} \frac{1}{a+ib} dy} = \left(\frac{x}{\epsilon}\right)^{\frac{\Re(\mu)}{b_0(0)}} e^{-i\frac{\Im(\mu)}{b_0(0)} \ln\left(\frac{x}{\epsilon}\right)} g_+(x),$$

where $g_+ \in C^{\infty}((0,\epsilon))$, the derivative $g_+^{(j)}$ is bounded in $(0,\epsilon)$, for all $j \in \mathbb{Z}_+$, and $|g_+(x)| \ge c$, for some c > 0 and for all $x \in (0,\epsilon)$.

Similarly, for x < 0,

$$g(x) = e^{i\mu \int_{-\epsilon}^{x} \frac{1}{a+ib} dy} = \left(\frac{|x|}{\epsilon}\right)^{\frac{\Re(\mu)}{b_{0}(0)}} e^{-i\frac{\Im(\mu)}{b_{0}(0)} \ln\left(\frac{|x|}{\epsilon}\right)} g_{-}(x),$$

where $g_{-} \in C^{\infty}((-\epsilon, 0))$, the derivative $g_{-}^{(j)}$ is bounded in $(-\epsilon, 0)$, for all $j \in \mathbb{Z}_{+}$, and $|g_{-}(x)| \geq c$, for some c > 0 and for all $x \in (-\epsilon, 0)$.

Finally, define $u: \Omega \to \mathbb{C}$ by

$$u(x,t) = g(x)w(x,t);$$

for a suitable choice of m (given in $\Re(\mu)$) we obtain that u has the desired properties.

Remark 2.10. The function g defined in $(-\epsilon, \epsilon)$ and obtained in the proof of the Theorem above can be rewrite in the form $g(x) = x^N G(x)$, where $|G(x)| \ge C$, for some C > 0 and for all $x \ne 0$; moreover, the derivative $G^{(j)}$ is bounded for $x \ne 0$, for all j. These properties will be used in the proof of Theorem 2.12 below.

Since Theorem 2.1 gives sufficient conditions for a smooth function f to belong to \mathcal{F}_k we can rewrite Theorem 2.9 as follows:

Corollary 2.11. Let *L* be given by (2.1). Let \mathbf{p} and \mathbf{q} be positive integer numbers such that $b_0(0) = \frac{\mathbf{p}}{\mathbf{q}}$ and $gcd(\mathbf{p}, \mathbf{q}) = 1$. For each fixed $k \in \mathbb{Z}_+$ there exists $N = N(k) \in \mathbb{Z}_+$ such that given $p \in C^{\infty}(\Omega_{\epsilon})$, satisfying

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t)dt \notin \mathbb{Z},\tag{2.13}$$

and conditions given by Theorem 2.1 bearing on the derivatives of p of order up to $j_0 q$, where $j_0 = \max\{j \in \mathbb{Z} : jq \leq N(k)\}$, there exists $w \in C^k(\Omega_{\epsilon})$ with $w \neq 0$ on Σ , and $g \in C^k((-\epsilon, \epsilon))$ vanishing of finite order at x = 0, such that u(x,t) = g(x)w(x,t) is a solution of the equation Lu = pu, in a neighborhood of Σ .

The following two results are related to nonhomogeneous equations.

Theorem 2.12. Let p and q be positive integer numbers such that $b_0(0) = p/q$ and gcd(p,q) = 1. Assume that $p \in C^{\infty}(\Omega_{\epsilon})$ satisfies

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t)dt - j\frac{\mathsf{p}}{\mathsf{q}} \notin \mathbb{Z}, \quad \text{for all } j \in \mathbb{Z}_+.$$
(2.14)

Then, for each fixed $k \in \mathbb{Z}_+$ there exists $\ell = \ell(k) \in \mathbb{Z}_+$ such that if, besides (2.14), $p - p_0 \in \mathcal{F}_{\ell}(\Sigma)$, where p_0 is given by (2.9), then given $f \in C^{\infty}(\Omega)$ there exists $u \in C^k(\Omega_{\epsilon})$ solution to the equation Lu = pu + f, in a neighborhood of Σ (recalling that L is given by (2.1)).

Proof. By using Taylor's expansion, we can write

$$f(x,t) \simeq \sum_{j \ge 0} f_j(t) x^j, \ p(x,t) \simeq \sum_{j \ge 0} p_j(t) x^j, \ \text{and} \ (a+ib)(x) \simeq \sum_{j \ge 1} c_j x^j.$$

After substituting them into equation Lv = pv + f, where we write

$$v(x,t) \simeq \sum_{j \ge 0} v_j(t) x^j,$$

we have:

$$v_0' = p_0 v_0 + f_0, \tag{2.15}$$

$$v_1' + (c_1 - p_0)v_1 = p_1v_0 + f_1, (2.16)$$

$$v_2' + (2c_1 - p_0)v_2 = (p_1 - c_2)v_1 + p_2v_0 + f_2,$$
(2.17)

$$v_3' + (3c_1 - p_0)v_3 = (p_2 - c_3)v_1 + (p_1 - 2c_2)v_2 + p_3v_0 + f_3, \qquad (2.18)$$

$$v'_{j} + (jc_{1} - p_{0})v_{j} = \sum_{k=1}^{j-1} (p_{j-k} - kc_{j-k+1})v_{k} + p_{j}v_{0} + f_{j}, \ j \ge 4.$$
(2.19)

Since $c_1 = i\mathbf{p}/\mathbf{q}$ and p_0 satisfies (2.14), we obtain

$$v_0(t) = e^{\int_0^t p_0(s)ds} \left[\int_0^t e^{-\int_0^s p_0(\sigma)d\sigma} f_0 \, ds + K_0 \right],$$

where

$$K_0 = \frac{e^{\int_0^{2\pi} p_0(t)dt}}{1 - e^{\int_0^{2\pi} p_0(t)dt}} \int_0^{2\pi} e^{-\int_0^t p_0(\sigma)d\sigma} f_0 dt.$$

Next

$$v_1(t) = e^{-i\frac{p}{q}t + \int_0^t p_0(s)ds} \left[\int_0^t e^{i\frac{p}{q}s - \int_0^s p_0(\sigma)d\sigma} (p_1v_0 + f_1) \, ds + K_1 \right],$$

where

$$K_{1} = \frac{e^{-i2\pi\frac{p}{q} + \int_{0}^{2\pi} p_{0}(t)dt}}{1 - e^{-i2\pi\frac{p}{q} + \int_{0}^{2\pi} p_{0}(t)dt}} \int_{0}^{2\pi} e^{i\frac{p}{q}t - \int_{0}^{t} p_{0}(\sigma)d\sigma} (p_{1}v_{0} + f_{1})dt.$$

And, for $j \ge 2$, we have

$$v_{j}(t) = e^{-ij\frac{p}{q}t + \int_{0}^{t} p_{0}(s)ds} \int_{0}^{t} e^{ij\frac{p}{q}s - \int_{0}^{s} p_{0}(\sigma)d\sigma} \\ \times \left(\sum_{k=1}^{j-1} (p_{j-k} - kc_{j-k+1})v_{k} + p_{j}v_{0} + f_{j}\right) ds \\ + K_{j} e^{-ij\frac{p}{q}t + \int_{0}^{t} p_{0}(s)ds}$$

where

$$K_j = C_j \int_0^{2\pi} e^{ij\frac{p}{q}t - \int_0^t p_0(\sigma)d\sigma} \left(\sum_{k=1}^{j-1} (p_{j-k} - kc_{j-k+1})v_k + p_jv_0 + f_j \right) dt \,,$$

and

$$C_{j} = \frac{e^{-i2\pi j\frac{\mathbf{p}}{\mathbf{q}} + \int_{0}^{2\pi} p_{0}(t)dt}}{1 - e^{-i2\pi j\frac{\mathbf{p}}{\mathbf{q}} + \int_{0}^{2\pi} p_{0}(t)dt}}$$

Let $\mu_m : \Omega \to \mathbb{C}$ be the function defined by

$$\mu_m(x,t) = \sum_{j=0}^m v_j(t) x^j.$$

We have

$$L\mu_m - p\mu_m - f = x^{m+1}h_s$$

where $h: \Omega \to \mathbb{C}$ is a smooth function.

Now, for $\ell \in \mathbb{Z}_+$ to be choosen later, assume that $p - p_0 \in \mathcal{F}_{\ell}(\Sigma)$. It follows from Theorem 2.9 that there is $w \in C^{\ell}(\Omega_{\epsilon})$, with $w \neq 0$ on Σ , and $g \in C^{\ell}((-\epsilon, \epsilon))$ vanishing of finite order at x = 0, such that $\nu(x, t) =$ g(x)w(x, t) is a solution of the equation $L\nu = p\nu$, in a neighborhood of Σ .

Thanks the properties of g (see remark 2.10), for a suitable choice of ℓ and m we obtain that $F: \Omega \to \mathbb{C}$ given by

$$F(x,t) = -\frac{x^{m+1}h(x,t)}{\nu(x,t)}$$

belongs to $C^r(\Omega)$, with r large enough as in remark 2.2. Hence, the equation $L\mathbf{v} = F$ has a C^k solution \mathbf{v} .

Define $u = \mu_m + \nu v$. Hence, $u \in C^k(\Omega)$ and

$$Lu = L\mu_m + (L\nu)\mathbf{v} + \nu(L\mathbf{v})$$
$$= p\mu_m + f + x^{m+1}h + p\nu\mathbf{v} - \nu\frac{x^{m+1}h}{\nu}$$
$$= pu + f,$$

in a neighborhood of Σ .

Theorem 2.13. Let *L* be given by (2.1). Let \mathbf{p} and \mathbf{q} be positive integer numbers such that $b_0(0) = \mathbf{p}/\mathbf{q}$ and $gcd(\mathbf{p}, \mathbf{q}) = 1$. Assume that for some $j \in \mathbb{Z}_+$ the function $p \in C^{\infty}(\Omega_{\epsilon})$ satisfies

$$\frac{1}{2\pi i} \int_0^{2\pi} p(0,t)dt - j\frac{\mathsf{p}}{\mathsf{q}} \in \mathbb{Z}.$$
(2.20)

Then, for each fixed $k \in \mathbb{Z}_+$ there exist positive integers $\ell = \ell(k)$ and N = N(k) such that if, besides (2.14), $p - p_0 \in \mathcal{F}_{\ell}(\Sigma)$, where p_0 is given by (2.9), and f satisfies certain conditions bearing on its derivatives of order up to N, then there exists $u \in C^k(\Omega)$ solution to the equation Lu = pu + f, in a neighborhood of Σ .

Proof. The proof is analogous that of Theorem 2.12. Indeed, assume that for $N \in \mathbb{Z}_+$ to be choosen later, for each $j \leq N$ such that (2.20) holds, the function f satisfies

$$\int_0^{2\pi} e^{ij\frac{\mathbf{p}}{\mathbf{q}}s - \int_0^s p_0(\sigma)d\sigma} \left(\sum_{k=1}^{j-1} (p_{j-k} - kc_{j-k+1})v_k + p_jv_0 + f_j \right) dt = 0,$$

where v_0 and v_k are given by the equations (2.15)-(2.19).

Hence, we can find μ_N so that $L\mu_N - p\mu_N - f = x^{N+1}h(x,t)$, with h smooth. Therefore, by applying conveniently Theorem 2.5, and proceeding as in the proof of Theorem 2.12 we can find $u \in C^k$ solution to Lu = pu + f in a neighborhood of Σ .

Remark 2.14. In the case where $p \equiv 0$, the hypotheses on f in Theorem 2.13 is in agreement with those given in Theorem 2.1.

Acknowledgements

The authors are grateful to the anonymous referees for interesting and valuable suggestions that improved the early version of the manuscript.

References

- S. BERHANU, P. D. CORDARO AND J. HOUNIE, An introduction to involutive structures, Cambridge University Press, 2008.
- [2] A. P. BERGAMASCO, P. D. CORDARO AND G. PETRONILHO, Global solvability for a class of complex vector fields on the two-torus, *Comm. in PDE* **29** (2004), 785–819.
- [3] A. P. BERGAMASCO AND P. L. DATTORI DA SILVA, Global solvability for a special class of vector fields on the torus, *Contemp. Math.* 400 (2006), 11–20.
- [4] A. P. BERGAMASCO AND P. L. DATTORI DA SILVA, Solvability in the large for a class of vector fields on the torus, J. Math. Pures Appl. 86 (2006), 427–477.
- [5] A. P. BERGAMASCO AND A. MEZIANI, Semiglobal solvability of a class of planar vector fields of infinite type, *Mat. Contemporânea* 18(2000), 31–42.
- [6] A. P. BERGAMASCO AND A. MEZIANI, Solvability near the characteristic set for a class of planar vector fields of infinite type, Ann. Inst. Fourier, Grenoble 55 1(2005), 77–112.
- [7] S. BERHANU AND A. MEZIANI, On rotationally invariant vector fields in the plane, *Manuscripta Math.* 89 (1996), 355–371.
- [8] W. A. CERNIAUSKAS AND P. L. DATTORI DA SILVA, Solvability near characteristic set for a class of first-order linear partial differential operators, *Math. Nachr.* 291 (2018), no. 8–9, 1240–1268.
- [9] W. A. CERNIAUSKAS AND A. KIRILOV, C^k solvability near the characteristic set for a class of vector fields of infinite type, Mat. Contemp. 36 (2009), 91–106.

- [10] P. D. CORDARO AND X. GONG, Normalization of complex-valued planar vector fields which degenerate along a real curve, Adv. Math. 184 (2004), 89–118.
- [11] P. L. DATTORI DA SILVA, Nonexistence of Global Solutions for a Class of Complex Vector Fields on two-torus, J. Math. Anal. Appl. 351 (2009), 543–555.
- [12] P. L. DATTORI DA SILVA, C^k-Solvability Near the Characteristic Set for a Class of Planar Complex Vector Fields of Infinite Type, Ann. Mat. Pura Appl. 189 (2010), 403–413.
- [13] P. L. DATTORI DA SILVA, J. MARQUES, AND E. R. DA SILVA, C^k-solvability near the characteristic set for a class of elliptic vector fields with degeneracies, Arch. Math. (Basel) **104**(3) (2015), 271–282.
- [14] P. L. DATTORI DA SILVA AND E. R. DA SILVA, Solvability near the characteristic set for a special class of complex vector fields, *Arch. Math.* 98 (2012), 183–192.
- [15] L. HÖRMANDER, Propagation of singularities and semi-global existence theorems for (pseudo-) differential operators of principal type, Ann. of Math. 108 (1978), 569–609.
- [16] L. HÖRMANDER, Pseudo-differential operators of principal type, Nato Advanced Study Inst. on Singularities in Boundary Value Problems, Reidel Publ. Co., Dordrecht (1981), 69–96.
- [17] L. HÖRMANDER, The analysis of linear partial differential operators IV, Springer-Verlag, 1984.
- [18] A. MEZIANI, On planar elliptic structures with infinite type degeneracy, J. Funct. Anal. 179(2) (2001), 333–373.
- [19] A. MEZIANI, Elliptic planar vector fields with degeneracies, Trans. Amer. Math, Soc., 357(10) (2004), 4225–4248.

70

- [20] A. MEZIANI, Normalization and solvability of vector fields near trapped orbits, Trans. Amer. Math, Soc., 369(5) (2017), 3325–3354.
- [21] L. NIRENBERG AND F. TREVES, Solvability of a first order linear partial differential equation, *Comm. Pure Applied Math.* 16 (1963), 331–351.