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Abstract. In this work, we deal with solvability near the character-
istic set of equations in the form Lu = pu + f , where the operator
L = ∂t + (xna(x) + ixb(x))∂x is defined on Ω = R × S1, a and b

are real-valued smooth functions on R, with b(0) 6= 0, n ∈ N, and
p, f ∈ C∞(Ω). We show that, for fixed k ≥ 1, and given p and
f belonging to convinient subspaces of C∞(Ω) of finite codimen-
sion (depending on k), there is u ∈ Ck(Ω) solution to the equation
Lu = pu+ f in a neighborhood of the characteristic set.
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1 Introduction

Let L be a non singular smooth complex vector field defined on a
smooth m-dimensional manifold Ω. For a fixed function p ∈ C∞(Ω) con-
sider the equation

Lu = pu+ f, (1.1)

where f ∈ C∞(Ω).
It is well-known that the Nirenberg-Treves condition (P) characterizes

the local solvability of (1.1), see [1] and [21]. Recalling that local solvability
for L in Ω means that: for every x ∈ Ω and f ∈ C∞(Ω), there is u ∈ D′(Ω)

such that Lu = pu+ f in some neighborhood of x in Ω.
The solvability of the equation (1.1) in a neighborhood of a compact

subset K of Ω remains an interesting problem with non-intuitive answers,
as evidenced by references [5, 6, 8, 9, 11, 12, 13, 14], and many others. For
others related papers see [2, 3, 4, 7, 19, 20] and references therein.

Let K be a compact set of Ω, we say that P = L − p is solvable at
the compact K if for each f in a subspace of finite codimension of C∞(Ω)

there is u ∈ D′(Ω) such that Pu = f in a neighborhood of K.
In [17], or [15], Hörmander proved that condition (P) is necessary for

solvability of P at K. If besides condition (P), the following geometric
condition is satisfied:

(GC) every characteristic point of P over K lies on a compact interval of
a bicharacteristic of <(`q), on which q 6= 0, with no characteristic
endpoint over K, where `(x, ξ) denotes the principal symbol of P
and q is a smooth function on T ∗Ω \ {0}

then L − p is solvable at K and the solutions to (1.1) can be found in
C∞(K).

Recall that a bicharacteristic of `q is an integral curve of the Hamilton
field

H`q =
∂(`q)

∂τ

∂

∂t
− ∂(`q)

∂t

∂

∂τ
+
∂(`q)

∂ξ

∂

∂x
− ∂(`q)

∂x

∂

∂ξ
,

where `q = 0 (see [17]).
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Let us describe the problem that we plan to investigate in this manus-
cript. First, consider Ω = R× S1, and let

L = ∂/∂t+ (a(x) + ib(x))∂/∂x, b 6≡ 0, (1.2)

be a complex vector field defined on Ω, where a and b are real-valued
smooth functions in R.

Assume that (a+ib)(0) = 0 and b(x) 6= 0 if x 6= 0. Hence, Σ = {0}×S1

is the set where L fails to be elliptic and, moreover, the operator L is of
infinity type along Σ.

We recall that a point (x0, t0) ∈ Σ is said to be of finite type ν (ν ∈ Z+)
if there exists a Lie bracket of L and L of length ν which is nonzero at
(x0, t0). When (x0, t0) ∈ Σ is not of finite type, we say that this point is
of infinite type.

For fixed p ∈ C∞(Ω), we are interested in the solvability at Σ of

P = L− p,

where L is given by (1.2).
Under our assumptions the operator P satisfies condition (P) (since the

function b does not change sign on any integral curve of ∂/∂t+ a(x)∂/∂x

(see [16])). On the other hand, the geometric condition (GC) is not satis-
fied for K = Σ. As a consequence, the results from [17] cannot be used to
determine its solvability at Σ. Indeed, the characteristic set of P is

C(P ) = {(x, t, ξ, τ) ∈ Ω× (R2 \ {(0, 0)}) : `(x, t, ξ, τ) = 0},

where `(x, t, ξ, τ) = τ + a(x)ξ + ib(x)ξ; hence,

C(P ) = {(0, t, ξ, 0) : t ∈ S1 and ξ ∈ R \ {0}}.

It is easy to verify that a bicharacteristic of `q passing through a point
(0, t0, ξ0, 0) ∈ C(P ) has the form γ(s) = (0, t(s), ξ(s), 0), s ∈ R; hence,
γ(s) ∈ C(P ) for all s ∈ R.
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In this paper, we will assume that b vanishes of order 1 at x = 0.
Therefore, in some neighborhood (−ε, ε)× S1 of Σ we can write

(a+ ib)(x) = xna0(x) + ixb0(x),

where n ≥ 1, a0 and b0 are real-valued smooth functions in (−ε, ε), and
b0(x) 6= 0 for all x ∈ (−ε, ε).

It follows from [18] that

λ = b0(0)− ia0(0) (1.3)

is related to an invariant of L.

Let us assume that λ ∈ C \ Q. For each fixed k ∈ Z+, it follows from
[10] and [18] that in new coordinates, via a Ck-diffeomorphism, L is a
multiple of the operator

Tλ =
∂

∂t
− iλx ∂

∂x
;

moreover, as showed in [18], for all f belonging to a subspace of finite
codimension of C∞(Ω) the equation Tλu = pu+ f has a Ck solution in a
neighborhood of Σ.

It is worth mentioning that in [5] was showed that there is f ∈ C∞(Ω)

such that the equation Tλu = f does not have C∞ solution.

The remainder case to be considered is λ ∈ Q. In this case we will
present sufficient conditions on f and p to obtain Ck solutions to the
equation Lu = pu+ f in a neighborhood of Σ.

We stressed that in the case λ ∈ Q our class of vector fields can not be
normalized to Tλ by any Ck diffeomorphism, k ≥ 1.

Our arguments are motived by those given in [18]. Where one of the
key points in finding Ck solutions to Tλu = pu + f is that for λ ∈ C \ Q
the equation Tλu = p − p(0, t) has Ck solutions, for any p ∈ C∞(Ω). In
our situation where λ ∈ Q we need compatibility conditions on p− p(0, t).
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2 Results

Let Ωε = (−ε, ε)× S1, ε > 0, and let

L = ∂/∂t+ (xna0(x) + ixb0(x))∂/∂x, n ≥ 2, (2.1)

be a complex vector field defined on Ωε, where a0 and b0 are real-valued
smooth functions in (−ε, ε). Assume that b0(x) 6= 0, for all x ∈ (−ε, ε),
and b0(0) ∈ Q. Without loss of generality we may assume that b0(0) > 0.

The following result was proved in [13]:

Theorem 2.1. Let L be given by (2.1). Let p and q be positive integer
numbers such that b0(0) = p/q and gcd(p, q) = 1. For each fixed k ∈ Z+

there exists N = N(k) ∈ Z+ such that given f ∈ C∞(Ωε), satisfying∫ 2π

0
f(0, t)dt = 0 (2.2)

and conditions bearing on the derivatives of f of order up to j0q, where
j0 = max{j ∈ Z : jq ≤ N(k)}, there exists u ∈ Ck(Ωε) solution of the
equation Lu = f , in a neighborhood of Σ.

Remark 2.2. Since the compatibility conditions above involve only a
finite number of derivatives of f , it is possible to obtain Ck solutions to
equation Lu = f in a neighborhood of Σ assuming that f ∈ C`(Ωε), for
` ∈ Z+ sufficiently larger depending on k.

Example 2.3. Consider

L =
∂

∂t
+

(
a(x) + i

p

q
x

)
∂

∂x
, (2.3)

defined on Ω, where p, q ∈ Z+, gcd(p, q) = 1, a(x) ∈ C∞(R;R) and, a is
flat at x = 0.

Given f ∈ C∞(Ω), the compatibility conditions given by Theorem 2.1
are ∫ 2π

0
∂(mq)
x f(0, t)eimptdt = 0, (2.4)

for m = 0, 1, . . . , j0. See [13] for more details.
�
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Example 2.4. Consider the following operator defined on Ω

T 1
2

=
∂

∂t
+ i

x

2

∂

∂x
. (2.5)

We claim that the equation

T 1
2
u = x2e−it (2.6)

does not have solution u ∈ Ck(Ω), for k ≥ 4, in any neighborhood of Σ.
Indeed, for f(x, t) = x2e−it we have∫ 2π

0
∂2xf(t, 0)eitdt =

∫ 2π

0
2 e−iteitdt = 4π 6= 0,

that is, f does not satisfy (2.4).
Let us assume by contradiction that (2.6) has a solution u ∈ C4(Ω).

Then, by using Taylor’s formula, we can write

u(x, t) =
3∑
j=0

uj(t)x
j +R(x, t) ,

where R ∈ O(|x|4). From (2.6) we have

u′2(t) + iu2(t) = e−it. (2.7)

Thus u2(t) = (t + u2(0))e−it, which lead us to a contradiction, since the
function t 7→ t e−it is not 2π-periodic. �

For k ∈ Z+, define

Fk(Σ)={f ∈ C∞(Ω); Lu=f in a neighborhood of Σ,

for someu ∈ Ck(Ω)}. (2.8)

Note that Theorem 2.1 gives sufficient conditions for f ∈ C∞(Ω) to be
in Fk(Σ).

The homogeneous equation Lu = pu is the focus of our first result. For
this, given p = p(x, t) in C∞(Ω), let p0 : C∞(S1) → C∞(S1) be defined
by

p0(t) = p(0, t). (2.9)
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Theorem 2.5. Let L be given by (2.1) and let k ∈ Z+. If p ∈ C∞(Ω)

satisfies
1

2πi

∫ 2π

0
p(0, t)dt ∈ Z, (2.10)

and p − p0 ∈ Fk(Σ), then there exists u ∈ Ck(Ω) solution of the equation
Lu = pu, in a neighborhood of Σ, with u 6= 0 on Σ.

Proof. Let p0 be given by (2.9). Since p satisfies (2.10), it follows that

u0(t) = e
∫ t
0 p0(τ)dτ

is a function in C∞(S1); moreover, u0 satisfies

u′0(t) = p0(t)u0(t).

Let p̃(x, t) = p(x, t)−p0(t). By hypothesis, there is w ∈ Ck(Ω) solution
to Lw = p̃, in a neighborhood of Σ.

Define
u(x, t) = u0(t)e

w(x,t).

We have u ∈ Ck(Ω) and

Lu = u′0e
w + u0e

wLw = p0u0e
w + u0e

wp̃ = (p0 + p̃)u = pu,

in a neighborhood of Σ.

Since Theorem 2.1 gives sufficient conditions for a smooth function f
to belong to Fk we can rewrite Theorem 2.5 as follows:

Corollary 2.6. Let L be given by (2.1). Let p and q be positive integer
numbers such that b0(0) = p/q and gcd(p, q) = 1. For each fixed k ∈ Z+

there exists N = N(k) ∈ Z+ such that given p ∈ C∞(Ωε), satisfying

1

2πi

∫ 2π

0
p(0, t)dt ∈ Z, (2.11)

and conditions given by Theorem 2.1 bearing on the derivatives of p of
order up to j0q, where j0 = max{j ∈ Z : jq ≤ N(k)}, there is u ∈ Ck(Ωε)

solution of Lu = pu in a neighborhood of Σ, with u 6= 0 on Σ.
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Example 2.7. Let L be given by (2.3). For each fixed k ∈ Z+ there exists
N = N(k) ∈ Z+ such that if p ∈ C∞(Ωε), satisfies∫ 2π

0
∂(mq)
x p(0, s)eimpsds = 0,

for m = 0, 1, . . . , j0, where j0 = max{j ∈ Z : jq ≤ N(k)}, then there is
u ∈ Ck(Ωε) solution of Lu = pu in a neighborhood of Σ, with u 6= 0 on Σ.

Comparing with the situation where p−p0 6∈ Fk(Σ) we have following:

Example 2.8. If u ∈ C4(Ω) is a solution to T 1
2
u = x2e−it u, where T 1

2

is given by (2.5), then u|Σ ≡ 0. Indeed, by using Taylor’s formula we
can write u(x, t) = u0(t) + u1(t)x + u2(t)x

2 + u3(t)x
3 + R(x, t), where

R ∈ O(|x|4); hence, we are lead to

u′0 = 0 ⇒ u0 ≡ c, for some c ∈ C,

and

u′2 + iu2 = ce−it ⇒
(
u2e

it
)′

= c⇒ u2(t) = (ct+ u2(0)) e−it .

Therefore, since u2 is 2π-periodic, we have c = 0; consequently, u|Σ ≡ 0.

Theorem 2.9. Let L be given by (2.1)and let k ∈ Z+. If p ∈ C∞(Ω)

satisfies
1

2πi

∫ 2π

0
p(0, t)dt 6∈ Z, (2.12)

and p − p0 ∈ Fk(Σ), then there exist w ∈ Ck(Ωε) with w 6= 0 on Σ, and
g ∈ Ck((−ε, ε)) vanishing of finite order at x = 0, such that u(x, t) =

g(x)w(x, t) is a solution of the equation Lu = pu, in a neighborhood of Σ.

Proof. Let α, β be real numbers given by

α+ iβ =
1

2πi

∫ 2π

0
p(0, t)dt;

by (2.12) we have α+ iβ 6∈ Z.
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Let ` = m − bαc, where m ∈ Z+ will be chosen later and we use
bαc = max{n ∈ Z ;n ≤ α}. Define

µ = (`+ α) + iβ;

note that <(µ) = m− bαc+ α ≥ m.
Now, set the function

p̃(x, t) = p(x, t)− iµ.

We have

1

2πi

∫ 2π

0
p̃(0, t)dt =

1

2πi

∫ 2π

0
p(0, t)dt− µ

= α+ iβ − (`+ α)− iβ = −` ∈ Z;

hence, by Theorem 2.5, there is w ∈ Ck(Ω), w 6= 0 on Σ, solution to
Lw = p̃w in a neighborhood of Σ.

Let g : (−ε, ε)→ C be the function defined by

g(x) =


e−iµ

∫ ε
x

1
a+ib

dy, x > 0

0, x = 0

eiµ
∫ x
−ε

1
a+ib

dy, x < 0

.

We will show that g vanishes of finite order at x = 0. Note that

−i
a+ ib

= −i a

a2 + b2
− b

a2 + b2
;

hence,

−iµ
∫ ε

x

1

a+ ib
dy = (<(µ) + i=(µ))

(
−i
∫ ε

x

a

a2 + b2
dy −

∫ ε

x

b

a2 + b2
dy

)
=

(
−<(µ)

∫ ε

x

b

a2 + b2
dy + =(µ)

∫ ε

x

a

a2 + b2
dy

)
+ i

(
−<(µ)

∫ ε

x

a

a2 + b2
dy −=(µ)

∫ ε

x

b

a2 + b2
dy

)
.
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Recall that a(x) = xna0(x), b(x) = x b0(x), and b0(0) > 0. Then,

b

a2 + b2
=

1

x

(
1

b0(0)
+ 0(|x|)

)
.

Therefore, for x > 0,

g(x) = e−iµ
∫ ε
x

1
a+ib

dy =
(x
ε

) <(µ)
b0(0)

e
−i =(µ)

b0(0)
ln(xε ) g+(x),

where g+ ∈ C∞((0, ε)), the derivative g(j)+ is bounded in (0, ε), for all
j ∈ Z+, and |g+(x)| ≥ c, for some c > 0 and for all x ∈ (0, ε).

Similarly, for x < 0,

g(x) = eiµ
∫ x
−ε

1
a+ib

dy =

(
|x|
ε

) <(µ)
b0(0)

e
−i =(µ)

b0(0)
ln
(
|x|
ε

)
g−(x),

where g− ∈ C∞((−ε, 0)), the derivative g(j)− is bounded in (−ε, 0), for all
j ∈ Z+, and |g−(x)| ≥ c, for some c > 0 and for all x ∈ (−ε, 0).

Finally, define u : Ω→ C by

u(x, t) = g(x)w(x, t);

for a suitable choice of m (given in <(µ)) we obtain that u has the desired
properties.

Remark 2.10. The function g defined in (−ε, ε) and obtained in the proof
of the Theorem above can be rewrite in the form g(x) = xNG(x), where
|G(x)| ≥ C, for some C > 0 and for all x 6= 0; moreover, the derivative
G(j) is bounded for x 6= 0, for all j. These properties will be used in the
proof of Theorem 2.12 below.

Since Theorem 2.1 gives sufficient conditions for a smooth function f
to belong to Fk we can rewrite Theorem 2.9 as follows:



64 W. Cerniauskas, P. Dattori da Silva, and A. Kirilov

Corollary 2.11. Let L be given by (2.1). Let p and q be positive integer
numbers such that b0(0) =

p

q
and gcd(p, q) = 1. For each fixed k ∈ Z+

there exists N = N(k) ∈ Z+ such that given p ∈ C∞(Ωε), satisfying

1

2πi

∫ 2π

0
p(0, t)dt 6∈ Z, (2.13)

and conditions given by Theorem 2.1 bearing on the derivatives of p of order
up to j0q, where j0 = max{j ∈ Z : jq ≤ N(k)}, there exists w ∈ Ck(Ωε)

with w 6= 0 on Σ, and g ∈ Ck((−ε, ε)) vanishing of finite order at x = 0,
such that u(x, t) = g(x)w(x, t) is a solution of the equation Lu = pu, in a
neighborhood of Σ.

The following two results are related to nonhomogeneous equations.

Theorem 2.12. Let p and q be positive integer numbers such that b0(0) =

p/q and gcd(p, q) = 1. Assume that p ∈ C∞(Ωε) satisfies

1

2πi

∫ 2π

0
p(0, t)dt− j p

q
6∈ Z, for all j ∈ Z+. (2.14)

Then, for each fixed k ∈ Z+ there exists ` = `(k) ∈ Z+ such that if,
besides (2.14), p − p0 ∈ F`(Σ), where p0 is given by (2.9), then given
f ∈ C∞(Ω) there exists u ∈ Ck(Ωε) solution to the equation Lu = pu+ f ,
in a neighborhood of Σ (recalling that L is given by (2.1)).

Proof. By using Taylor’s expansion, we can write

f(x, t) '
∑
j≥0

fj(t)x
j , p(x, t) '

∑
j≥0

pj(t)x
j , and (a+ ib)(x) '

∑
j≥1

cjx
j .

After substituting them into equation Lv = pv + f , where we write

v(x, t) '
∑
j≥0

vj(t)x
j ,
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we have:

v′0 = p0v0 + f0, (2.15)

v′1 + (c1 − p0)v1 = p1v0 + f1, (2.16)

v′2 + (2c1 − p0)v2 = (p1 − c2)v1 + p2v0 + f2, (2.17)

v′3 + (3c1 − p0)v3 = (p2 − c3)v1 + (p1 − 2c2)v2 + p3v0 + f3, (2.18)
...

v′j + (jc1 − p0)vj =

j−1∑
k=1

(pj−k − kcj−k+1)vk + pjv0 + fj , j ≥ 4. (2.19)

Since c1 = ip/q and p0 satisfies (2.14), we obtain

v0(t) = e
∫ t
0 p0(s)ds

[∫ t

0
e−
∫ s
0 p0(σ)dσf0 ds+K0

]
,

where

K0 =
e
∫ 2π
0 p0(t)dt

1− e
∫ 2π
0 p0(t)dt

∫ 2π

0
e−
∫ t
0 p0(σ)dσf0 dt.

Next

v1(t) = e
−i p

q
t+
∫ t
0 p0(s)ds

[∫ t

0
e
i p
q
s−
∫ s
0 p0(σ)dσ(p1v0 + f1) ds+K1

]
,

where

K1 =
e
−i2π p

q
+
∫ 2π
0 p0(t)dt

1− e−i2π
p
q
+
∫ 2π
0 p0(t)dt

∫ 2π

0
e
i p
q
t−
∫ t
0 p0(σ)dσ(p1v0 + f1)dt.

And, for j ≥ 2, we have

vj(t) = e
−ij p

q
t+
∫ t
0 p0(s)ds

∫ t

0
e
ij p

q
s−
∫ s
0 p0(σ)dσ

×

(
j−1∑
k=1

(pj−k − kcj−k+1)vk + pjv0 + fj

)
ds

+ Kj e
−ij p

q
t+
∫ t
0 p0(s)ds



66 W. Cerniauskas, P. Dattori da Silva, and A. Kirilov

where

Kj = Cj

∫ 2π

0
e
ij p

q
t−
∫ t
0 p0(σ)dσ

(
j−1∑
k=1

(pj−k − kcj−k+1)vk + pjv0 + fj

)
dt ,

and

Cj =
e
−i2πj p

q
+
∫ 2π
0 p0(t)dt

1− e−i2πj
p
q
+
∫ 2π
0 p0(t)dt

.

Let µm : Ω→ C be the function defined by

µm(x, t) =

m∑
j=0

vj(t)x
j .

We have
Lµm − pµm − f = xm+1h,

where h : Ω→ C is a smooth function.
Now, for ` ∈ Z+ to be choosen later, assume that p − p0 ∈ F`(Σ). It

follows from Theorem 2.9 that there is w ∈ C`(Ωε), with w 6= 0 on Σ,
and g ∈ C`((−ε, ε)) vanishing of finite order at x = 0, such that ν(x, t) =

g(x)w(x, t) is a solution of the equation Lν = pν, in a neighborhood of Σ.
Thanks the properties of g (see remark 2.10), for a suitable choice of `

and m we obtain that F : Ω→ C given by

F (x, t) = −x
m+1h(x, t)

ν(x, t)

belongs to Cr(Ω), with r large enough as in remark 2.2. Hence, the equa-
tion Lv = F has a Ck solution v.

Define u = µm + νv. Hence, u ∈ Ck(Ω) and

Lu = Lµm + (Lν)v + ν(Lv)

= pµm + f + xm+1h+ pνv− ν x
m+1h

ν

= pu+ f,

in a neighborhood of Σ.
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Theorem 2.13. Let L be given by (2.1). Let p and q be positive integer
numbers such that b0(0) = p/q and gcd(p, q) = 1. Assume that for some
j ∈ Z+ the function p ∈ C∞(Ωε) satisfies

1

2πi

∫ 2π

0
p(0, t)dt− j p

q
∈ Z. (2.20)

Then, for each fixed k ∈ Z+ there exist positive integers ` = `(k) and
N = N(k) such that if, besides (2.14), p−p0 ∈ F`(Σ), where p0 is given by
(2.9), and f satisfies certain conditions bearing on its derivatives of order
up to N , then there exists u ∈ Ck(Ω) solution to the equation Lu = pu+f ,
in a neighborhood of Σ.

Proof. The proof is analogous that of Theorem 2.12. Indeed, assume that
for N ∈ Z+ to be choosen later, for each j ≤ N such that (2.20) holds,
the function f safisfies

∫ 2π

0
e
ij p

q
s−
∫ s
0 p0(σ)dσ

(
j−1∑
k=1

(pj−k − kcj−k+1)vk + pjv0 + fj

)
dt = 0,

where v0 and vk are given by the equations (2.15)-(2.19).

Hence, we can find µN so that LµN − pµN − f = xN+1h(x, t), with h
smooth. Therefore, by applying conveniently Theorem 2.5, and proceeding
as in the proof of Theorem 2.12 we can find u ∈ Ck solution to Lu = pu+f

in a neighborhood of Σ.

Remark 2.14. In the case where p ≡ 0, the hypotheses on f in Theorem
2.13 is in agreement with those given in Theorem 2.1.
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