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Abstract. Strictly minimal linearly topologized rings are introduced
and it is shown that every discrete valuation ring is strictly minimal.
Necessary and sufficient conditions for a Hausdorff linearly topolo-
gized ring to be strictly minimal are obtained, as well as necessary
and sufficient conditions for a complete Hausdorff linearly topolo-
gized ring to be strictly minimal.
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1 Introduction

Hausdorff [4] proved that every n-dimensional normed space over the
field R of real numbers is isomorphic to Rn, a result generalized to arbitrary
n-dimensional Hausdorff topological vector spaces over R by Tychonoff [9].
The decisive contribution in this direction was given by Nachbin [5]. As a
matter of fact, he introduced the notion of a strictly minimal topological
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division ring and showed that, for a given Hausdorff topological division
ring K to be strictly minimal, it is necessary and sufficient that every not
identically zero linear form on an arbitrary topological vector space over
K, whose kernel is closed, be continuous. Nachbin’s approach has also
been considered in the framework of topological rings [6].

In the spirit of the above-mentioned work of Nachbin, the notion of
a strictly minimal linearly topologized ring is introduced in this paper,
where it is proved that every discrete valuation ring is strictly minimal. A
characterization of strictly minimal linearly topologized rings by means of
universal properties is established. In the same vein, a characterization of
strictly minimal complete linearly topologized rings by means of universal
properties is also established. A few consequences of the just-mentioned
results are presented.

In this work ring will mean commutative ring with an identity element
1 ̸= 0 and module will mean unitary module.

2 The notion of a strictly minimal linearly topol-
ogized ring

Let R be a topological ring. A linearly topologized R-module E is a
topological R-module whose origin admits a fundamental system of neigh-
borhoods consisting of submodules of E. R is said to be a linearly topolo-
gized ring if R is a linearly topologized R-module, R being endowed with its
canonical R-module structure (thus the origin of R admits a fundamental
system of neighborhoods consisting of ideals of R). Linearly topologized
modules and linearly topologized rings play an important role in Algebraic
Geometry [3], Commutative Algebra [2] and Number Theory [1, 8].

It is obvious that any ring endowed with the discrete topology is a
complete Hausdorff linearly topologized ring.

Before we proceed let us recall the following important concept ([7],
Chap. I).

Definition 2.1. A principal ring R is said to be a discrete valuation ring
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if the set M of non-invertible elements of R is a non-trivial ideal of R

(hence R is not a field).
Then M is a maximal ideal of R and

M1 = M ⊃ M2 ⊃ . . . ⊃ Mn ⊃ Mn+1 ⊃ . . .

is a decreasing sequence of ideals of R such that
⋂
n≥1

Mn = {0}. By

Theorem 11.4 of [10], there is a unique ring topology τM on R for which
(Mn)n≥1 is a fundamental system of τM -neighborhoods of 0. Thus (R, τM )

is a Hausdorff linearly topologized ring and τM does not coincide with the
discrete topology on R.

Example 2.2. The following noteworthy examples of discrete valuation
rings may be mentioned [1, 7]:
(a) The ring Zp of p-adic integers (p a prime natural number), M being
pZp.
(b) The ring K[[X]] of formal power series with coefficients in an arbitrary
field K, M being XK[[X]].
(c) For each z0 ∈ C, the ring Hz0 of complex analytic mappings on an
open ball (in C) with center at z0, M being (z − z0)Hz0 .

Discrete valuation rings satisfy an interesting property:

Proposition 2.3. Let (R, τM ) be a discrete valuation ring and let τ be a
Hausdorff topology on R making R a linearly topologized (R, τM )-module.
Then τ = τM .

Proof. Since the mapping

(λ, µ) ∈ (R×R, τM × τ) 7−→ λµ ∈ (R, τ)

is continuous, the mapping

λ ∈ (R, τM ) 7−→ λ ∈ (R, τ)

is continuous, and τ is coarser than τM .
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In order to show that τM is coarser than τ , write M = πR and let n be
an arbitrary integer ≥ 1. Let v be a discrete valuation on the field of frac-
tions K of R so that R = {λ ∈ K; v(λ) ≥ 0} and M = {λ ∈ K; v(λ) > 0}
([7], p. 17), and let U be a τ -neighborhood of 0 in R such that U is an ideal
of R and πn /∈ U . We claim that U ⊂ Mn. If not, there would exist a ξ ∈ U

so that ξ /∈ Mn, that is, v(ξ) ∈ {0, 1, . . . , n− 1}. Therefore ξ ̸= 0 and,
since 0 = v(1) = v(ξξ−1) = v(ξ)+ v(ξ−1), v(ξ−1) ∈ {−(n− 1), . . . ,−1, 0}.
Hence ξ−1πn ∈ R, because v(ξ−1πn) = v(ξ−1) + n > 0. Consequently,
πn = ξ(ξ−1πn) ∈ UR ⊂ U , which does not occur. Thus U ⊂ Mn.

The central notion of our work reads:

Definition 2.4. A Hausdorff linearly topologized ring (R, τR) is said to
be strictly minimal if, for every Hausdorff topology τ on R making (R, τ)

a linearly topologized (R, τR)-module (which implies that τ is coarser than
τR), one has τ = τR.

We have seen in Proposition 2.3 that every discrete valuation ring is
strictly minimal. In the next example we shall furnish a Hausdorff linearly
topologized ring which is not strictly minimal.

Example 2.5. Let (R, τM ) be an arbitrary discrete valuation ring and let
τR be the discrete topology on R. Then (R, τM ) is a linearly topologized
(R, τR)-module. In fact, since (R, τM ) is an additive topological group, it
is enough to show the continuity of the mapping

(λ, µ) ∈ (R×R, τR × τM ) 7−→ λµ ∈ (R, τM )

at an arbitrary element (λ0, µ0) ∈ R×R, which follows from the inclusion

{λ0} × (µ0 +Mn) ⊂ (λ0µ0) +Mn,

valid for each integer n ≥ 1.
Therefore (R, τR) is not strictly minimal.
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3 A characterization of strictly minimal linearly
topologized rings

The next result establishes necessary and sufficient conditions for a
Hausdorff linearly topologized ring to be strictly minimal by means of
universal properties.

Theorem 3.1. For a Hausdorff linearly topologized ring (R, τR), the fol-
lowing conditions are equivalent:
(a) (R, τR) is strictly minimal.
(b) For every Hausdorff linearly topologized (R, τR)-module F which is a
free R-module with a basis of 1 element, every R-module isomorphism from
R onto F is a homeomorphism from (R, τR) onto F .
(c) For every free R-module F with a basis of 1 element, there is only one
Hausdorff topology making F a linearly topologized (R, τR)-module.
(d) For every linearly topologized (R, τR)-module E and for every Haus-
dorff linearly topologized (R, τR)-module F which is a free R-module with a
basis of 1 element, every surjective R-linear mapping from E into F with
a closed kernel is continuous.
(e) For every linearly topologized (R, τR)-module E and for every Haus-
dorff linearly topologized (R, τR)-module F which is a free R-module with
a basis of 1 element, every R-linear mapping from E into F with a closed
graph is continuous.

As a consequence of Proposition 2.3 and Theorem 3.1, one concludes
that conditions (b), (c), (d) and (e) are valid if the Hausdorff linearly topol-
ogized ring under consideration is a discrete valuation ring.

In order to prove Theorem 3.1 we shall need two auxiliary lemmas.

Lemma 3.2. Let (E, τ) be a linearly topologized (R, τR)-module, let F be
an R-module and suppose that u : E → F is a surjective R-linear mapping.
Let τu be the direct image of τ under u (τu is the topology on F under which
Y ⊂ F is τu-open if u−1(Y ) ⊂ E is τ -open). Then (F, τu) is a linearly
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topologized (R, τR)-module. Moreover, τu is a Hausdorff topology if and
only if Ker(u) (the kernel of u) is τ -closed.

Proof. First let us observe that a subset Y of F is τu-open if and only
if Y = u(X) for some τ -open subset X of E. In fact, if Y is τu-open,
X = u−1(Y ) is τ -open and u(X) = Y . Conversely, if X is τ -open and
u(X) = Y , then the equality

u−1(Y ) = Ker(u) +X =
⋃

t∈Ker(u)

(t+X)

implies that Y is τu-open. Consequently, since the direct image under u

of a submodule of E is a submodule of F , it is easily seen that (F, τu) is a
linearly topologized (R, τR)-module.

Finally, Ker(u) is obviously τ -closed if τu is a Hausdorff topology.
Conversely, if Ker(u) is τ -closed, u(E\Ker(u)) is τu-open. Therefore
{0} = F\u(E\Ker(u)) is τu-closed, from which we conclude that τu is
a Hausdorff topology.

Lemma 3.3. Let F be a linearly topologized (R, τR)-module. If for every
linearly topologized (R, τR)-module E we have that every surjective R-linear
mapping from E into F with a closed kernel is continuous, then for every
linearly topologized (R, τR)-module E we have that every R-linear mapping
from E into F with a closed graph is continuous.

Proof. Let E be an arbitrary linearly topologized R-module and let u :

E → F be an R-linear mapping whose graph Gr(u) is closed. Consider
E × F endowed with the product topology, which makes E × F a linearly
topologized (R, τR)-module, and define v : E×F → F by v(x, y) = u(x)−
y. Then v is a surjective R-linear mapping such that Ker(v) = Gr(u).
Thus, by hypothesis, v is continuous. Therefore u is continuous, because
u(x) = v(x, 0) for all x ∈ E.

Now, let us turn to the proof of Theorem 3.1.
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Proof. First let us prove that (a) implies (b). Indeed, let F be as in (b) and
let u : R → F be an R-module isomorphism. Since u(λ) = λu(1) for all
λ ∈ R, u is a continuous R-linear mapping from (R, τR) onto F . If θ is the
initial topology on R under u, it is easily seen that (R, θ) is a Hausdorff
linearly topologized (R, τR)-module. Thus, by hypothesis, θ = τR, and
hence u−1 : F → (R, τR) is continuous. Therefore u : (R, τR) → F is a
homeomorphism.

Let us prove that (b) implies (c). Indeed, let F be as in (c) and let τ1

and τ2 be two Hausdorff topologies on F such that both (F, τ1) and (F, τ2)

are linearly topologized (R, τR)-modules. Let u : R → F be an R-module
isomorphism. Then u : (R, τR) → (F, τ1) and u : (R, τR) → (F, τ2) are
homeomorphisms by hypothesis, from which we conclude that the identity
mapping 1F : (F, τ1) → (F, τ2) is a homeomorphism. Therefore τ1 = τ2 ,
proving (c).

Now, let us prove that (c) implies (d). Indeed, let E and F be as in (d)
and let u : E → F be a surjective R-linear mapping whose kernel is closed.
By Lemma 3.2, (F, τu) is a Hausdorff linearly topologized (R, τR)-module,
where τ denotes the topology of E and τu denotes the direct image of τ
under u. By hypothesis, τu coincides with the topology of F , which implies
the continuity of u. This proves (d).

Finally, since Lemma 3.3 guarantees that (d) implies (e), it remains to
prove that (e) implies (a). Indeed, let θ be a Hausdorff topology on R such
that (R, θ) is a linearly topologized (R, τR)-module. Since we already know
that θ is coarser than τR, it remains to prove that the identity mapping
1R : (R, θ) → (R, τR) is continuous. Notice that, if λ, µ ∈ R and λ ̸= µ,
then there are a θ-neighborhood U of λ in R and a θ-neighborhood V of
µ in R so that U ∩ V = ∅. Since θ is coarser than τR, U × V is a (θ× τR)-
neighborhood of (λ, µ) in R×R with (U×V )∩Gr(1R) = ∅, where Gr(1R)

denotes the graph of 1R. Therefore Gr(1R) is (θ × τR)-closed, and the
hypothesis guarantees the continuity of 1R : (R, θ) → (R, τR).

This completes the proof of the theorem.

We shall close this section with two consequences of Theorem 3.1.
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Corollary 3.4. Let (R, τR) be a strictly minimal linearly topologized ring
and let E be a Hausdorff linearly topologized (R, τR)-module. Let M and
N be two submodules of E such that N is a free R-module with a basis of
1 element, M is closed in E and E = M ⊕N . Then E is the topological
direct sum of M and N .

Proof. Let pN : E → N be the projection of E onto N along M . Then
Ker(pN ) = M is closed by hypothesis. If N is endowed with the topology
induced by that of E, then N is a Hausdorff linearly topologized (R, τR)-
module. Therefore, by Theorem 3.1, pN is continuous, as was to be shown.

Corollary 3.5. Let (R, τR) be a strictly minimal linearly topologized ring,
let E be a linearly topologized (R, τR)-module and suppose that F is a
Hausdorff linearly topologized (R, τR)-module which is a free R-module with
a basis of 1 element. If u : E → F is a surjective continuous R-linear
mapping, then u is open.

Proof. Let π : E → E/Ker(u) be the canonical surjection and let ũ :

E/Ker(u) → F be the unique R-module isomorphism so that u = ũ◦π. If
we endow E/Ker(u) with the quotient topology, E/Ker(u) is a Hausdorff
linearly topologized (R, τR)-module by Lemma 3.2; moreover, E/Ker(u)

is a free R-module with a basis of 1 element. Consequently, by Theorem
3.1, ũ is a homeomorphism. Therefore u is open, because π is open.

4 A characterization of strictly minimal complete
linearly topologized rings

The main result of this section establishes necessary and sufficient con-
ditions for a complete Hausdorff linearly topologized ring to be strictly
minimal by means of universal properties.

Theorem 4.1. For a complete Hausdorff linearly topologized ring (R, τR),
the following conditions are equivalent:
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(a) (R, τR) is strictly minimal.
(b) For every integer n ≥ 1 and for every Hausdorff linearly topologized
(R, τR)-module F which is a free R-module with a basis of n elements,
every R-module isomorphism from Rn onto F is a homeomorphism, Rn

being endowed with the product topology.
(c) For every integer n ≥ 1 and for every free R-module F with a basis
of n elements, there is only one Hausdorff topology making F a linearly
topologized (R, τR)-module.
(d) For every integer n ≥ 1, for every linearly topologized (R, τR)-module
E and for every Hausdorff linearly topologized (R, τR)-module F which is a
free R-module with a basis of n elements, every surjective R-linear mapping
from E into F with a closed kernel is continuous.
(e) For every integer n ≥ 1, for every linearly topologized (R, τR)-module
E and for every Hausdorff linearly topologized (R, τR)-module F which is
a free R-module with a basis of n elements, every R-linear mapping from
E into F with a closed graph is continuous.

As a consequence of Proposition 2.3 and Theorem 4.1, one concludes
that conditions (b), (c), (d) and (e) of Theorem 4.1 are valid if the com-
plete Hausdorff linearly topologized ring under consideration is a complete
discrete valuation ring. Now let us turn to the proof of Theorem 4.1.

Proof. In order to prove that (a) implies (b) we shall argue by induction
on n, the case n = 1 being a consequence of Theorem 3.1. Let n ≥ 2 and
assume the result valid for n−1. Let F be a Hausdorff linearly topologized
(R, τR)-module which is a free R-module with a basis of n elements and let
u : Rn → F be an R-module isomorphism. If e1 = (1, 0, . . . , 0) ∈ Rn, e2 =

(0, 1, 0, . . . , 0) ∈ Rn, . . . , en = (0, 0, . . . , 0, 1) ∈ Rn and di = u(ei) ∈ F for
i = 1, . . . , n, {d1, . . . , dn} is a basis of F . Moreover, if M is the submodule
of F generated by {d1, . . . , dn−1} and N is the submodule of F generated
by {dn}, F is the direct sum of M and N . Since the mapping

(λ1, . . . , λn−1) ∈ Rn−1 7−→
n−1∑
i=1

λidi ∈ M
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is an R-module isomorphism, the induction hypothesis implies that it is a
homeomorphism of Rn−1 onto M (Rn−1 endowed with the product topol-
ogy, under which it is a complete Hausdorff linearly topologized (R, τR)-
module; M endowed with the topology induced by that of F , under which
it is a Hausdorff linearly topologized (R, τR)-module). Since Rn−1 is com-
plete, M is complete, and hence M is closed in F . Thus, by Corollary 3.1,
F is the topological direct sum of M and N . Consequently, the mapping

(λ1, . . . , λn−1, λn) ∈ Rn−1 ×R 7−→
n∑

i=1

λidi ∈ F

is a homeomorphism, proving that u is a homeomorphism. This proves
(b).

Let us prove that (b) implies (c). In fact, let n be an integer ≥ 1

and let F be a free R-module with a basis of n elements, and let τ1, τ2 be
Hausdorff topologies on F such that (F, τ1), (F, τ2) are linearly topologized
(R, τR)-modules. If u : Rn → F is an R-module isomorphism and Rn is
endowed with the product topology, the hypothesis ensures that u : Rn →
(F, τ1) and u : Rn → (F, τ2) are homeomorphisms. Therefore the identity
mapping 1F : (F, τ1) → (F, τ2) is a homeomorphism, that is, τ1 = τ2.

Now, let us prove that (c) implies (d). Indeed, let n, E and F be as in
(d), and let u : E → F be a surjective R-linear mapping whose kernel is
closed. By Lemma 3.2, (F, τu) is a Hausdorff linearly topologized (R, τR)-
module, where τ denotes the topology of E and τu denotes the direct image
of τ under u. By hypothesis, τu coincides with the topology of F , which
furnishes the continuity of u.

Finally, (d) implies (e) in view of Lemma 3.3, and it follows immedi-
ately from Theorem 3.1 that (e) implies (a).

This completes the proof of the theorem.

Corollary 4.2. Let (R, τR) be a complete strictly minimal linearly topol-
ogized ring and let E be a Hausdorff linearly topologized (R, τR)-module.
Suppose that n is an integer ≥ 1, N is a submodule of E which is a free
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R-module with a basis of n elements and M is a closed submodule of E so
that E = M ⊕N . Then E is the topological direct sum of M and N .

Proof. Analogous to that of Corollary 3.4, by applying Theorem 4.1 in-
stead of Theorem 3.1.

Corollary 4.3. Let (R, τR) be a complete strictly minimal linearly topol-
ogized ring and let E be a linearly topologized (R, τR)-module. Suppose
that n is an integer ≥ 1 and F is a Hausdorff linearly topologized (R, τR)-
module which is a free R-module with a basis of n elements. If u : E → F

is a surjective continuous R-linear mapping, then u is open.

Proof. Analogous to that of Corollary 3.5, by applying Theorem 4.1 in-
stead of Theorem 3.1.
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