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1 Introduction

The notion of anisotropic mean curvature arises naturally in the study
of variational problems as a generalization of the usual mean curvature.
Moreover, in the Euclidean space this notion of curvature has also a natural
geometric interpretation. In fact, consider the parametric functional of the
form

F(X) =

∫
M
F (N) dM,
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where the integrand F ∈ C∞(Rn+1\{0}) is a positive Lagrangian satisfying
the homogeneity condition

F (tz) = tF (z), for all z ∈ Sn, t > 0,

and X : M 7−→ Rn+1 is an immersed closed and oriented hypersurface
with Gauss mapping N and induced volume element dM. Moreover, F is
always assumed to be elliptic, i.e.,

D2F (z) =
( ∂2F

∂zi∂zj
(z)
)
i,j=1,...,n+1

: z⊥ 7−→ z⊥ (1.1)

is a positive definite endomorphism for all z ∈ Sn, or equivalently

λ = λ(F ) = inf
z∈Sn, v∈z⊥, |v|=1

⟨D2F (z) · v, v⟩ > 0.

Geometrically, the ellipticity condition (1.1) implies that F is the support
function of some convex body⋂

z∈Sn
{y ∈ Rn+1 : ⟨y, z⟩ ≤ F (z)},

the boundary WF of which is the convex hypersurfaces parametrized by

Φ : Sn 7−→ WF , Φ(z) = DF (z).

In the terminology of Taylor [9], WF = Φ(Sn) is called the Wulff shape.
Finally, notice that F generalizes the area functional

A(X) =

∫
M

dM,

which is obtained when F (N) = ∥N∥ = 1 is the area integrand.
Let us now consider an arbitrary variationXε ofX = X0 with variation

vector field Y = d
dε(Xε)|ε=0. Decomposing Y = φN + tangential terms, it

is well known (see [8], [11] and [4]) that the first variation of F is given by

δF(X,Y ) =
d

dε
F(Xε)|ε=0 = −

∫
M
HFφdM,
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where HF is the anisotropic mean curvature of X which is defined as
follows. Let

NF :M 7−→ WF , NF = Φ ◦N,

denotes the generalized Gauss mapping into the Wulff shape. The operator
SF = −dX−1 ◦ dNF is named the anisotropic Weingarten operator. We
note that

SF = AF ◦A,

where A = −dX−1 ◦dN is the classical Weingarten operator of X and AF

is the symmetric positive definite (1, 1)-tensor given by

AF = dX−1 ◦ dΦ ◦ dX = −dX−1 ◦D2F (N) ◦ dX.

Finally, the anisotropic mean curvature of X is defined by

HF = tr(SF ).

For instance, the anisotropic mean curvature of the sphere Sn(r) of radius
r is

HF = ∆F (−z), z ∈ Sn(r). (1.2)

In fact, the unit normal vector of Sn(r) at a point z is N = −1
rz and its

Weingarten operator is A = 1
r I. Hence,

HF (z) =
1

r
tr
(
D2F

(
− 1

r
z
))

= ∆F (−z),

since D2F is homogeneous of degree −1 and D2F |N (N,N) = 0.

Although the anisotropic Weingarten operator is not necessarily sym-
metric, it has n real eigenvalues (see e.g. [6]). In fact, to see this we define
the abstract metric

gF (v, w) = ⟨A−1
F v, w⟩, v, w ∈ TM.

Note that the operator AF is positive definite, hence it is invertible and
its inverse is also positive. We have

gF (SF v, w) = ⟨A−1
F (AFA)v, w⟩ = ⟨Av,w⟩ = ⟨v,Aw⟩ = gF (v, SFw)
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for all v, w ∈ TM, which gives that SF is symmetric with respect to this
inner product. Thus there exists an orthonormal basis (with respect to
the metric gF ) that diagonalize SF . The eigenvalues λ1, . . . , λn of SF are
called the anisotropic principal curvatures of X and HF is the sum of these
curvatures.

Here we are interested on the existence of closed hypersurfaces with
prescribed anisotropic mean curvature. Treibergs and Wei considered this
problem for the mean curvature in [10]. More precisely, they considered
the following problem raised by Yau: Is there an embedding Y : Sn 7−→
Rn+1 of the n-dimensional sphere into Euclidean (n + 1)-space, whose
mean curvature is a preassigned sufficiently smooth function H defined on
Rn+1? A theorem of Bakelman and Kantor [1] together with the results
obtained in [10] asserts the existence of such hypersurfaces assuming only
the natural condition that H decay faster than the mean curvature of
concentric spheres. Specifically, they proved that, if H is a C1 positive
function defined on the closure of the annular region U = {z ∈ Rn+1 :

r1 < |z| < r2}, where 0 < r1 ≤ 1 ≤ r2, that satisfies

∂

∂ρ
ρH(ρz) ≤ 0 for all ρz ∈ U (1.3)

and

H(z) > |z|−1 for |z| = r1

H(z) < |z|−1 for |z| = r2
(1.4)

then, for some 0 < α < 1, there exists an embedded hypersphere Y ∈
C2,α(Sn) with mean curvature H which is also a graph over the unit sphere
and also satisfies r1 ≤ |Y | ≤ r2. It is worth to point out that the Dirichlet
problem associated to the anisotropic mean curvature equation was inves-
tigated recently in [3], where the authors were able to establish a existence
theorem for vertical graphs with prescribed anisotropic curvature similar
to the classical Serrin’s Theorem.

Our main result is an extension of Treibergs-Wei theorem for the
anisotropic mean curvature under natural hypothesis. More precisely,
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Theorem 1.1. Assume H ∈ C1(Ū) satisfies condition (1.3) and

H(z) > ∆F (−z) if |z| ≤ r1 andH(z) < ∆F (−z) if |z| ≥ r2. (1.5)

Then there exists u ∈ C2(Sn) whose radial graph is contained in U and has
prescribed anisotropic curvature H. Moreover, if there is a second function
v ∈ C2(Sn) whose radial graph also lives in U and has prescribed anisotro-
pic curvature H, then

v = (1 + t0)u

for some t0 > −1, and, for all 0 ≤ θ ≤ 1, the radial graph of vθ = (1+θt0)u

has anisotropic mean curvature H.

We reduce the proof of Theorem 1.1 to the existence of solutions for
a quasi-nonlinear elliptic equation over Sn. The existence of solution is
proved by applying the method of continuity and a degree theory argu-
ment once the a priori gradiente estimates for the solutions have been
established.

The article is organized as follows. In Section 2 we list some basic
formulae which are needed later and describe an appropriate analytical
formulation for the problem. In Section 3 we deal with the a priori gradi-
ente estimates for prospective solutions. Finally in Section 4 we complete
the proof of Theorem 1.1 using the continuity method and a degree theory
argument with the aid of previously established estimates.

2 The Anisotropic Mean Curvature

In this section we will derive a suitable expression for the anisotropic
mean curvature of a radial graph. First we calculate the second funda-
mental form of the graph using moving frames. In this section we adopt
the convention that lower case indices i, j, k, . . . are summed from 1 to n
and a, b, c, . . . from 1 to n+ 1.

Let {e1, · · · , en+1} be a local orthonormal frame field defined in Rn+1

such that en+1 is the outward radial direction.
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Let u be a smooth function defined on the sphere Sn. We denote by
∇ the connection of Sn. The graph Y of u is conveniently represented by
Y = euen+1 and we extend u to Rn+1 \ {0} as a constant along radii.

The vector fields Ei = ei + euuien+1 form a basis to the tangent space
at Y and, in terms of this basis, the induced metric of Y has components

gij = ⟨Ei, Ej⟩ = δij + e2uuiuj .

Hence its inverse matrix is given by gij = δij −W−2e2uuiuj , where

W =
√

(1 + e2u|∇u|2)

The unit normal vector to Y is

N =
1

W
(euuiei − en+1).

Therefore, the components of the second fundamental form b of Y are

bij = −⟨dN(Ei), Ej⟩ =
e−u

W
(δij + e2uuiuj − e2uuij).

By the homogeneity of the derivatives of u, we can equate their values on
Y and Sn. Pulling back, we conclude that on Sn

bij = (1 + |∇u|2)−1/2e−u(δij + uiuj − uij). (2.1)

On the other hand, the components of the bilinear form AF metrically
equivalent to the operator AF are

(AF )ij =AF (Ei, Ej) = ⟨AF (Ei), Ej⟩

=FabE
a
i E

b
j

=e2uFn+1n+1uiuj + euFn+1iui + euFn+1juj + Fij ,

where Fab denote the components of the Hessian of F in terms of the
frame field {ea}. Note that the above derivatives of F are calculated in N.
In terms of matrices,

SF = AFA = (g−1AF )g
−1b = (g−1AF g

−1)b.
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On the other hand, decomposing the Hessian matrix of F as

D2F =

(
F̂ Fin+1

Fin+1 Fn+1n+1

)
,

we get from the Euler relation Fab(z)z
b = 0 that

(gF̂ g)ij =gikFklgjl

=(δik + e2uuiuk)(Fkl)(δjl + e2uujul)

=Fij + e2uujukFik + e2uuiukFkj + e4uuiujukulFkl

=Fij + euuiFn+1j + euuiFn+1i + e2uFn+1n+1uiuj

=(AF )ij .

Then, in terms of matrices,

SF = F̂ b.

We denote SF (Ei) =
∑

j sijEj . So

sij =
∑
k

Fik(N)bkj , (2.2)

which implies that

HF =
∑
i,j

Fij(N)bij . (2.3)

Hence the anisotropic mean curvature of the graph of u is given by

euWHF = Fij(N)(δij + uiuj − uij). (2.4)

Thus, the radial graph of a function u has prescribed anisotropic mean
curvature H if and only if u is a solution of the quasilinear elliptic equation

Q[x, u, ui, uij ]−H = 0,

where

Q[x, u, ui, uij ] = e−uW−1Fij(N)(δij + uiuj − uij).



Hyperspheres with Prescribed Anisotropic Mean Curvature 61

The second fundamental form of a Euclidean graph (x, v(x)) ∈ Rn+1, of a
smooth function v defined in a domain Ω ⊂ Rn, has components

bij = − vij√
1 + |Dv|2

.

Hence, as it was done above, we conclude that the anisotropic mean cur-
vature of the graph of v is√

1 + |Dv|2HF = −Fij(N)vij .

We finalize this section with a maximum principle for graphs with
prescribed anisotropic mean curvature.

Proposition 2.1. Suppose the radial graph Y has prescribed anisotropic
mean curvature H and the function H ∈ C1(Rn+1 \ {0}) satisfies the
conditions (1.3) and (1.5). Then r1 < |Y | < r2.

Proof. Let u be the function whose radial graph is Σ. By contradiction
assume that R = sup eu = eu(x0) ≥ r2. Let S be the sphere of radius R
centered at the origin. Observe that Σ and S are tangent at the point
Y (x0) = eu(x0)x0. Furthermore, with respect to the inwards normal vector
common to both hypersurfaces at this point, Σ lies above S. Then the
principal curvatures κi of Σ at this point are greater than or equal to 1

R .

Since the unit normal of Σ at Y (x0) is

N =
1√

1 + e2u|∇u|2
(
∇u− Y ) = − 1

R
Y,

we conclude that

H = tr
(
SF

)
=
∑
i

⟨AFA(ei), ei⟩

=
∑
i

κi⟨AF (ei), ei⟩ ≥
1

R

∑
i

⟨AF (ei), ei⟩

=
1

R
∆F

(
− 1

R
Y (x0)

)
= ∆F

(
− Y (x0)

)
,

where {ei} is an orthonormal basis of (Tx0Σ, ⟨·, ·⟩) formed by eigenvectors
of A. But the above inequality contradicts (1.5). Hence u ≤ r2. Proceeding
in a similar way with the minimum of eu we conclude that eu ≥ r1.
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3 Gradient Estimates

In this section, we prove a priori global estimate for gradient of prospec-
tive solutions of equation (2.4). To prove this estimate we follow the tech-
nique presented in [2].

Let u ∈ C3(Sn) be a solution of the anisotropic mean curvature equa-
tion HF = H. To estimate |∇u| we will obtain a uniform positive constant
a = a(n,H, F, sup |u|) that satisfies

⟨Y,N⟩2 ≥ a > 0, (3.1)

where N denotes the unit normal vector along Σ = graph|u and Y (x) =

eu(x)x, is the position vector. This inequality implies the estimate of the
gradient of u. In fact, since

N(Y (x)) =
1

eu
√
1 + |∇u|2

(
∇u− eux

)
, x ∈ Sn,

we have

⟨N,Y ⟩2 = e2u

1 + |∇u|2
,

which implies

⟨N,Y ⟩2 ≥ a ⇔ |∇u|2 ≤ e2u

a
− 1.

The estimate (3.1) will be obtained by estimating the maximum of the
function φ defined on Sn by

φ(x) =
1

|Y |2
exp

(
1

A⟨Y,N⟩2

)
=: s exp(t),

where A is a positive constant to be chosen later. Clearly, an upper bound
for φ implies the estimate (3.1). We may assume (unless a rotation in the
Rn+1) that φ achieves its maximum at the north pole q = (0, · · · , 0, 1) ∈
Sn. In a small neighborhood of Y (q) in Σ we may then use a local Cartesian
representation for Σ, i.e., there exists a function v ∈ C3(U), such that
Y = (z, v(z)) ∈ Rn+1, z ∈ U, where U ⊂ Rn × {0} ≡ Rn ⊂ Rn+1 contains
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the origin and (0, v(0)) = Y (q). In terms of v, the unit normal vector and
the second fundamental form of Σ are given by

N =

(
Dv

W
,− 1

W

)
, bij = −vij

W
,

where W 2 = 1 + |Dv|2. Near q we may write φ as

φ(z) =
1

|z|2 + v2
exp

(
1 + |Dv|2

A(zkvk − v)2

)
, z ∈ U.

In particular,

φ(0) =
1

v2
exp

(
1 + |Dv|2

Av2

)
.

Hence, the maximum value of φ, which is φ(0), is controlled by |Dv(0)|.
Therefore, it is sufficient to obtain a uniform constant C = C(n,H, F, sup |u|)
that satisfies |Dv(0)| ≤ C.

We may assume that |Dv(0)| > 1, otherwise we are done. After a
rotation of the coordinates of Rn ⊂ Rn+1, if necessary, we have

Dv(0) = (v1, 0, . . . , 0) ∈ Rn.

Since z = 0 is a maximum point of φ, we have Dφ(0) = 0 and also
(
φij(0)

)
is a negative definite matrix.

We compute
Dφ = et(Ds+ sDt),

so Dφ(0) = 0 implies

si(0) = −sti(0), i = 1, . . . , n.

It follows that the expression

φij(0) = et(sij + sitj + sjsi + stitj + tij)(0)

takes the form
φij(0) = (sij + stij − stitj)e

t(0). (3.2)
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Now we compute the derivatives of the functions

s(z) =
1

|z|2 + v2
and t(z) =

1 + |∇v|2

A(zkvk − v)2
, z ∈ U.

We have

si(z) =− 2
zi + vvi

(|z|2 + v2)2
,

sij(z) =8
(zi + vvi)(z

j + vvj)

(|z|2 + v2)3
− 2

δij + vivj + vvij
(|z|2 + v2)2

and

ti(z) =
2

A

{
vkvki

(zkvk − v)2
+
zkvki(1 + |∇v|2)

(zkvk − v)3

}
,

tij(z) =
2

A

vki vkj + vkvkij
(zkvk − v)2

+
8

A

vkzlvkivlj
(xkvk − v)3

+
2

A

vij + zkvkij(1 + |∇v|2)
(zkvk − v)3

+
6

A

zkzlvkivlj(1 + |∇v|2)
(zkvk − v)4

.

In particular, at the origin we have

si = − 2

v3
vi, sij =

8

v4
vivj −

2

v4
(δij + vivj + vvij) (3.3)

and

ti =
2

Av2
vkvki, tij =

2

Av2
(vki vkj + vkvkij) +

2

Av3
W 2vij . (3.4)

As we showed above, the anisotropic mean curvature of a Euclidean graph
is given by

WHF = −F ij(N)vij ,

where, for sake of convenience, we use the notation F ij = ∂2F
∂zi∂zj

, with
(z1, . . . , zn) being the Cartesian coordinates of Rn ⊂ Rn+1. We derive the
equation HF = H with respect to zk to obtain

vlvlk
W 3

F ijvij − F ij
α N

α
k vij − F ijvijk = Hk +Hn+1vk. (3.5)
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Since

N l
k =

vlk
W

−
vlvpvpk
W 3

, Nn+1
k = −v

lvlk
W 3

,

for 1 ≤ l ≤ n, we have

Hk +Hn+1vk =
vlvlk
W 3

F ijvij −
1

W 2
F ij
l v

l
kvij

+
vpvpk
W 3

(
vl

W
F ij
l − 1

W
F ij
n+1

)
vij −

1

W
F ijvij .

Applying the Euler relation

F ij
α (X)Xα = −F ij(X), α = 1, . . . , n+ 1, (3.6)

we get
vl

W
F ij
l − 1

W
F ij
n+1 = −F ij .

Replacing this into the above equation,

− 1

W 2
F ij
l v

l
kvij −

1

W
F ijvijk = Hk +Hn+1vk.

As gi = −gfi at the origin, it follows from (3.3) and (3.4) that vkvki =
Avvi. In particular,

v11 = Av and v1i = 0, (i > 1).

Thus, contracting equation (3.5) with vk, we obtain (at the origin)

− v1
W 2

F ij
1 v11vij −

v1
W
F ijvij1 = H1v1 +Hn+1v

2
1. (3.7)

We use the Euler relation (3.6) again to get

− v1
W
F ij
1 = − 1

W
F ij
n+1 + F ij .

Hence, equation (3.7) becomes

v11
W

F ijvij −
v11
W 2

F ij
n+1vij −

v1
W
F ijvij1 = H1v1 +Hn+1v

2
1. (3.8)
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Using again that WHF = −F ijvij =WH,

− v11
W 2

F ij
n+1vij −

v1
W
F ijvij1 = Hv11 +H1v1 +Hn+1v

2
1. (3.9)

Now we will eliminate from equation (3.9) the first and the second deri-
vatives of v. To proceed, we note that F ijφij ≤ 0, since the matrix

(
F ij
)

is positive definite and
(
φij

)
is negative. Thus, it follows from (3.2) that

F ijsij + sF ijtij − sF ijtitj ≤ 0.

Using (3.3) and (3.4) the above inequality becomes

0 ≥ 8

v4
F ijvivj −

2

v4
F ij(δij + vivj + vvij)−

4

A2v6
F ijvkvlvkivlj

+
2

Av4
F ij(vki vkj + vkvkij) +

2W 2

Av5
F ijvij .

Dividing this inequality by v4

2 we get

−vkF ijvkij ≥4AF ijvivj −AF ij(δij + vivj + vvij)−
2

Av2
F ijvkvlvkivlj

+ F ijvki vkj +
W 2

v
F ijvij .

Since WHF = −F ijvij =WH and vi = 0, (i > 1), v11 = Av, we have

−v1F ijv1ij ≥ AF 11v21 + F ijvki vkj −AF ijδij +AWvH − W 3

v
H. (3.10)

After rotation of the coordinates (z2, . . . , zn) we may assume that
(
vij(0)

)
is diagonal. Hence,

− v1
W
F ijv1ij ≥

A

W
F 11v21 +

1

W
F iiv2ii −

A

W
F ijδij +AvH − W 2

v
H. (3.11)

Since v1ij = vij1, we may apply inequality (3.11) to obtain from (3.9) that

Hv11 +H1v1 +Hn+1v
2
1 ≥− v11

W 2
F ii
n+1vii +

A

W
F 11v21 +

1

W
F iiv2ii

− A

W
F ijδij+AvH − W 2

v
H.

(3.12)
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Note that we eliminate the third derivatives of v on the last equation. To
do the same with the second derivatives we first note that F ii > 0, for any
i = 1, · · ·n. In fact,

F ii = Hess(F )|N (ei, ei) = Hess(F )|N (e
T
i , e

T
i ) ≥ λ|eTi |2 > 0,

since the tangent component eTi of the vector ei do not vanish whereas
N is not multiple of ei. Thus we may apply the Cauchy inequality with
epsilon,

ab ≤ εa2 +
1

ε
b2,

with a = |vii|, b = |F ii
n+1| and ε = WF ii

v11
> 0, for each 1 ≤ i ≤ n fixed.

Then

v11|F ii
n+1vii| ≤WF iiv2ii + v211

(F ii
n+1)

2

WF ii
≤WF iiv2ii +A2v2

(F ii
n+1)

2

Wλ
.

Adding on i we get

v11|F ii
n+1vii| ≤WF iiv2ii +

A2B

W
,

where

B = v(0)2 sup
Sn

(F ii
n+1)

2

λ
> 0.

Hence,

v11
W 2

F ii
n+1vii ≥ −v11

W
|F ii

n+1vii| ≥ − 1

W
F iiv2ii −

A2B

W 3
≥ − 1

W
F iiv2ii −A2B.

Replacing the last inequality into (3.12) we obtain

Hv11 +H1v1 +Hn+1v
2
1 ≥−A2B +

A

W
F 11v21 −

A

W
F ijδij

+AvH − W 2

v
H.

(3.13)

As we have v11 = Av e W 2 = 1 + v21 (at the origin), the above equation
may be rewritten as

H1v1 + v21(Hn+1 +
H

v
) +

H

v
≥ −A2B +

A

W
F 11v21 −

A

W
F ijδij .
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It follows from hypothesis (1.3) that

Hn+1 +
H

v
≤ 0.

In fact,

0 ≥ ∂

∂ρ
(ρH(ρ(0, v(0)))|ρ=1

= H(0, v(0)) + v(0)Hn+1(0, v(0)).

Hence, we conclude from (3.13) that

H1v1 +
H

v
≥ −A2B +

A

W
F 11v21 −

A

W
F ijδij . (3.14)

Since v1 > 1 we have v21
W ≥ v1√

2
, so

v21
W
F 11 ≥ v1√

2
F 11 ≥ v1√

2
λ.

Therefore,

H1v1 +
H

v
≥ −A2B +A

v1√
2
λ− A

W
F ijδij . (3.15)

Since
1

W
F ijδij ≤ nΛ,

where Λ is the largest eigenvalue of D2F, then it follows from (3.15) that

v1

(Aλ√
2
−H1

)
≤ H

v
+A2B + nAΛ.

Thus, if we choose the constant A > 0 large such that A >
√
2
λ sup |DH|,

we obtain

v1 ≤
H/v +A2B + nAΛ

Aλ√
2
−H1

.

So, denoting

C̄ =
H
v (0) +A2B + nAΛ

Aλ√
2
−H1(0)

,

we obtain |Dv(0)| ≤ C̄, with C̄ = C̄(n,H, F, sup |u|), which proves the
following theorem.
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Theorem 3.1. Under the conditions of Theorem 1.1, if u ∈ C3(Sn) is a
solution of the prescribed anisotropic mean curvature equation HF = H,

then there exists a uniform constant C = C(n,H, F, sup |u|) such that

|∇u| ≤ C.

4 Proof of Theorem 1.1

In order to prove Theorem 1.1 we use the degree theory for nonlinear
elliptic partial differential equations developed by Yan Yan Li. We refer
the reader to [7] for more details.

We consider for each t, 0 ≤ t ≤ 1, the map

Ht(z) = tH(z) + (1− t)ϕ(|z|)∆F (−z), z ∈ U, (4.1)

where ϕ is a positive real function defined in R+ which satisfies the following
conditions

ϕ(t) > 1 for t ≤ r1,

ϕ(t) < 1 for t ≥ r2
(4.2)

and ϕ′ < 0. Note that these conditions imply the existence of a unique
point r0 ∈ (r1, r2) such that ϕ(r0) = 1. We point out that, with this choice
of the function ϕ, Ht also satisfies the conditions in Theorem 1.1. In fact,
it follows from (1.5) that

Ht(z) =tH(z) + (1− t)ϕ(|z|)∆F (−z)

>(t+ (1− t)ϕ(|z|))∆F (−z) ≥ ∆F (−z)

for |z| ≤ r1. Similarly, we verify that Ht(z) < ∆F (−z) for |z| ≥ r2. To
prove condition (1.3) we compute

∂

∂ρ

(
ρHt(ρz)

)
=
∂

∂ρ

(
tρH(ρz) + ρ(1− t)ϕ(ρ|z|)∆F (−ρz)

)
=t

∂

∂ρ

(
ρH(ρz)

)
+ (1− t)|z|ϕ′(|z|)∆F (−z)

≤t ∂
∂ρ

(
ρH(ρz)

)
≤ 0,
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where we use that ∆F is homogeneous of degree −1 and is a positive
function.

Now we consider the family of equations

Υ(t, u) = HF

(
Y
)
−Ht(Y ) = 0, Y = eu(x)x, x ∈ Sn, (4.3)

where HF is the anisotropic mean curvature of the radial graph defined by
u ∈ C2(Sn). It follows from the expression obtained above to HF that we
may write (4.3) in the form

Υ(t, x, u,∇u,∇2u) = 0, x ∈ Sn. (4.4)

Notice that the constant function u = ln r0 is a solution to the problem
corresponding to t = 0. We denote it by u0. The following result ensures
the uniqueness of u0.

Lemma 4.1. Fixed t = 0 there exists a unique solution u0 of the equation
Υ(t, u(x)) = 0, namely u0 = ln r0, where r0 satisfies ϕ(r0) = 1.

Proof. That u0 is a solution to the problem it follows from (1.2) and

Υ(0, u0) =HF

(
Y
)
− ϕ

(
|Y |
)
∆F

(
− Y

)
=∆F

(
− Y

)
−∆F

(
− Y

)
= 0,

where Y (x) = eu0x = r0x, x ∈ Sn. Let ū be a solution of Υ(0, u(x)) = 0.

This means that

HF

(
Ȳ
)
− ϕ

(
|Ȳ |
)
∆F

(
− Ȳ

)
= 0, Ȳ (x) = eū(x)x, x ∈ Sn.

Now, let x0 ∈ Sn be a minimum point of ū. At this point, we have ∇ū = 0

and ∇2ū is positive-definite. We compute explicity at Ȳ (x0)

bij = e−ū(δij − ūij).

Therefore, if we consider a local frame {ei} around x0 which is orthonormal
at x0 and which diagonalize ∇2ū at this point, we obtain

κi ≤ e−ū,
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where κi are the principal curvature of the radial graph defined by ū.

Hence, since at Ȳ (x0) the unit normal of the graph Ȳ is

N̄ = − 1

|Ȳ |
Ȳ = −e−ūȲ ,

the anisotropic mean curvature of Ȳ satisfies

HF

(
Ȳ (x0)

)
=
∑
i

κi⟨AF ei, ei⟩ ≤ e−ū∆F
(
N(x0)

)
= ∆F

(
− Ȳ (x0)

)
.

Therefore, at x0,

ϕ
(
|Ȳ |
)
∆F

(
− Ȳ

)
= HF

(
Ȳ
)
≤ ∆F

(
− Ȳ

)
= ϕ

(
|Y |
)
∆F

(
− Ȳ

)
.

Hence, since ϕ is a decreasing function we conclude from the choice of x0
as a minimum point that

ū(x) ≥ ū(x0) ≥ u0,

for all x ∈ Sn. In a similar way, we prove that

ū(x) ≤ u0

for all x ∈ Sn. Thus, we get ū = u0. This finishes the proof.

In the two last sections we proved that a differentiable function u which
solves the equations Υ(t, u) = 0 for some 0 ≤ t ≤ 1 satisfies the following
bounds

r1 ≤ eu ≤ r2 (4.5)

and
|u|1 ≤ C, (4.6)

for some positive constant C which depends on n, r1, r2, H and F. The
standard elliptic regularity theory then provides C2,α estimates. If we
suppose that H is a C2,α data, then the regularity of the solution may be
improved for C4,α. Thus, we obtain a bound

|u|4,α < Ĉ (4.7)
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for some constant Ĉ > 0.

We then denote by O the open ball in C4,α(Sn) with radius Ĉ. Thus,
our reasoning above shows that any solution u of Υ(t, u) = 0 for some
0 ≤ t ≤ 1 is contained in O. In particular, if we consider the restriction

Υ : Ō ⊂ C4,α(Sn) 7−→ C2,α(Sn),

then we conclude that

Υ(t, · )−1(0) ∩ ∂O = ∅, 0 ≤ t ≤ 1.

Thus, according to Definition 2.2 in [7] the degree deg(Υ(t, · ),O, 0) is
well-defined for all 0 ≤ t ≤ 1.

Since Lemma 4.1 assures that u0 = ln r0 is the unique solution to
Υ(0, u) = 0 in C4,α(Sn), we must prove that the Frechét derivative Υu(0, u0)

calculated around u0 is an invertible operator from C4,α(Sn) to C2,α(Sn).
We compute

Υ(0, ρu0) =HF

(
Yρ
)
− ϕ

(
|Yρ|
)
∆F

(
− Yρ

)
=∆F

(
− Yρ

)
− ϕ

(
|Yρ|
)
∆F

(
− Yρ

)
,

where Yρ(x) = eρu0x, x ∈ Sn. Using the fact that ϕ(r0) = 1 and that
ϕ′(r0) < 0 we get

Υu(0, u0) · u0 =
d

dρ
Υ(0, ρu0)|ρ=1 = −ϕ′(r0)∆F

(
− Y1

)
> 0.

On the other hand, since obviously ∇u0 = 0 and ∇2u0 = 0, then Υu(0, u0)·
u0 is just a multiple of the zeroth order term in Υu(0, u0). We conclude
that Υu(0, u0) is an invertible elliptic operator.

We finally calculate deg(Υ(1, · ),O, 0). From Proposition 2.2 in [7], it
follows that deg(Υ(t, · ),O, 0) does not depend on t. In particular,

deg(Υ(1, · ),O, 0) = deg(Υ(0, · ),O, 0).

On the other hand, we had just proved that the equation Υ(0, u) = 0 has a
unique solution u0 and that the linearized operator Υu(0, u0) is invertible.
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Thus, by Proposition 2.3 in [7] we get

deg(Υ(0, · ),O, 0) = deg(Υu(0, u0),O, 0) = ±1,

and, therefore,
deg(Υ(1, · ),O, 0) = ±1.

Thus, the equation Υ(1, u) = 0 has at least one solution u ∈ O. This com-
pletes the proof of the existence in Theorem 1.1. To obtain the uniqueness
result we follow the idea presented in [10]. First we extend the prescribed
function H to Rn+1 \ {0} on such a way that (1.3) remains true. Let
Y i(x) = eu

i
x, i = 1, 2, solutions of the prescribed anisotropic mean curva-

ture equation. It follows from Proposition 2.1 that r1 < |Y i| < r2. Suppose
that u1 > u2 at some point. Let t > 1 such that the radial graph

Ỹ 2 := teu
2
= eũ

2

satisfies |Y 2| ≥ |Y 1| and Ỹ 2(x0) = Y 1(x0) for some point x0 ∈ Sn. Let H i
F

and H̃2
F be the anisotropic mean curvature of Y i and Ỹ 2, respectively. We

have
H̃2

F (Ỹ
2) =

1

t
H2

F (Y
2) =

1

t
H(Y 2).

On the other hand, since the function ψ(ρ) = ρH(ρz) is decreasing we
have

1

t
H(Y 2) =

1

t
H(

1

t
Ỹ 2) ≥ H(Ỹ 2). (4.8)

Hence
H̃2

F (Ỹ
2) ≥ H(Ỹ 2),

which implies that
−Q[ũ2] +H(Ỹ 2) ≤ 0.

As
−Q[u1] +H(Y 1) = 0,

u1 ≤ ũ2, and u1(x0) = ũ2(x0), we may apply the maximum principle to
obtain (see e.g., [2]) that ũ2 = u1. In particular, Ỹ 2 = Y 1 is a solution of
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the anisotropic mean curvature equation, hence equality (4.8) holds. Using
condition (1.3) we may conclude from (4.8) that

1

s
H(

1

s
Y 1) = H(Y 1), 1 ≤ s ≤ t.

Thus, since HF (sY ) = 1
sHF (Y ), each radial graph Ỹ = sY 1, 1 ≤ s ≤ t, is

a solution. In fact,

HF (Ỹ ) =
1

s
HF (Y

1) =
1

s
H(Y 1) =

1

s
H(

1

s
sY 1) = H(sY 1) = H(Ỹ ).

This completes the proof of Theorem 1.1.
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