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Abstract. In this survey paper, we analyse and compare the re-
cent curvature estimates for three types of 4-dimensional gradient
Ricci solitons, especially between Ricci shrinkers [58] and expanders
[17]. In addition, we provide some new curvature estimates for 4-
dimensional gradient steady Ricci solitons, including the sharp cur-
vature estimate |Rm| ≤ CR for gradient steady Ricci solitons with
positive Ricci curvature (see Theorem 5.2).
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1 Introduction

A complete Riemannian manifold (Mn, g) is called a gradient Ricci
soliton if there exists a smooth function f on Mn such that the Ricci tensor
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Rc = {Rij} of the metric g = {gij} satisfies the equation Rc+∇2f = λg

for some λ ∈ R, or in local coordinates,

Rij +∇i∇jf = λgij . (1.1)

Here, ∇2f = {∇i∇jf} denotes the Hessian of f . The Ricci soliton
(Mn, g, f) is said to be shrinking, or steady, or expanding if λ > 0, or
λ = 0, or λ < 0, respectively. The function f is called a potential func-
tion of the gradient Ricci soliton. Clearly, when f is a constant function
g is simply an Einstein metric. Thus, gradient Ricci solitons are a nat-
ural extension of Einstein manifolds. They are also self-similar solutions
to Hamilton’s Ricci flow and often model formation of singularities [46],
thus playing an important role in the study of the Ricci flow. In par-
ticular, shrinking and steady solitons arise as possible finite time Type I
and Type II, respectively, singularity models in the Ricci flow on compact
manifolds. We refer the readers to a survey article of the author [10], and
the references therein, for a basic overview.

There have been a lot of advances by experts in the field in investigat-
ing the geometry of gradient shrinking and steady Ricci solitons and their
classifications in the past two decades, while the research activities on ex-
panding solitons have also picked up in recent years. In particular, there is
now a complete classification of 3-dimensional finite time singularity mod-
els. In the shrinking case, as a consequence of the famous Hamilton-Ivey
curvature pinching theorem [46, 48], Ivey [48] observed that a compact
3-dimensional gradient shrinking soliton must be a finite quotient of the
round sphere S3. Subsequently, Perelman [64] showed that complete non-
flat noncollapsed gradient shrinking solitons with bounded and nonnega-
tive curvature are finite quotients of either S3 or S2×R (see also Hamilton
[46]). Naber [60] showed that gradient shrinking solitons with bounded cur-
vature are necessarily noncollapsed. Finally, Cao-Chen-Zhu [14], together
with Ni-Wallach [62], classified 3-dimensional complete gradient shrinking
solitons (see also related work by Petersen-Wylie [66]). For gradient steady
solitons, Brendle [4] proved that the only 3-dimensional non-flat noncol-
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lapsed gradient steady soliotn is the rotationally symmetric Bryant soliton
[6] on R3, as claimed by Perelman [64]. Note that such a steady soliton
necessarily has positive sectional curvature by a result of B.-L. Chen [25].
More recently, Brendle [5] classified 3-dimensional complete noncollapsed
ancient solutions and especially proved Perelman’s conjecture that any 3-
dimensional noncollapsed eternal solution with bounded positive sectional
curvature must be a gradient steady soliton (hence the Bryant soliton).
In conclusion, the works of Hamilton [46], Perelman [64], and Brendle [5],
prove that any 3-dimensional finite time singularity model for the Ricci
flow on a compact 3-manifold is a finite quotient of either S3/Γ or a round
cylinder S2 × R or its Z2-quotient, or isometric to the Bryant soliton.

One of the special features of the Ricci flow in dimension n = 3 is that
the positivity of the Ricci curvature (and the sectional curvature) is pre-
served by the Ricci flow [43, 69]. Especially, a magic of 3-dimensional Ricci
flow is the Hamilton-Ivey curvature pinching property: whenever a solu-
tion g(t) to the Ricci flow on a 3-manifold forms a finite time singularity,
meaning K(t) = maxx∈M3 |Rm|(x, t) of the curvature tensor Rm tends to
the infinity as t tends to the blow-up time T < ∞, the positive curvature
is much larger than the (absolute value of) negative curvature; as a con-
sequence, the limit of any sequence of parabolic rescaled solutions around
almost maximal curvature points will converge to a noncollapsed ancient
solution g̃(t) to the Ricci flow with bounded and nonnegative curvature
0 ≤ R̃m ≤ C (such a solution g̃(t) is called an ancient κ-solution by Perel-
man [64]). Moreover, Chen [25] proved that any complete 3-dimensional
ancient solution g(t), −∞ < t < T , to the Ricci flow must have non-
negative sectional curvature (i.e., Rm ≥ 0 when n = 3). Since shrinking
solitons and steady solitons are special ancient solutions, it follows that all
3-dimensional shrinking and steady Ricci solitons have nonnegative sec-
tional curvature. In particular, their curvature tensor Rm is controlled by
the scalar curvature R, i.e., |Rm| ≤ cR for some universal constant c > 0.

In general, when studying complete noncompact Riemannian mani-
folds it is crucial to gain information on curvature control at infinity.
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Thus, it is important to understand the curvature behavior of higher di-
mensional gradient Ricci solitons. However, when dimension n ≥ 4, the
Ricci flow no longer preserves the positivity of the Ricci curvature or sec-
tional curvature in general; see, e.g., Ni [61], Knopf [50], Máximo [55] and
Bettiol-Krishnan [3]. While gradient shrinking solitons enjoy some special
geometric properties, such as the optimal asymptotic growth estimates
for potential functions by Cao-Zhou [19], the volume growth estimates by
Cao-Zhou [19] and Munteanu-Wang [57], the positivity of scalar curva-
ture by Chen [25] and Pigola-Rimoldi-Setti [67], and the quadratic decay
lower bound for the scalar curvature by Chow-Lu-Yang [30] etc, there ex-
ist examples of gradient shrinking (and steady) solitons that have mixed
Ricci or sectional curvatures; see, e.g., Koiso [51] and Cao [9], Wang-Zhu
[70], Feldman-Ilmanen-Knopf [40], and Dancer-Wang [35]. Thus, one can-
not expect any Hamilton-Ivey type pinching property or a result similar
to Chen [25] for the curvature tensor of a general n-dimensional ancient
solution when n ≥ 4.

Therefore, it was rather surprising that Munteanu and Wang [58] were
able to prove the curvature estimate |Rm| ≤ CR for 4-dimensional com-
plete (noncompact) gradient shrinking solitons with bounded scalar curva-
ture R ≤ R0. Their curvature estimate, together with the uniqueness re-
sult of Kotschwar-Wang [52], has played a crucial role in the recent progress
of classifying 4-dimensional complete noncompact gradient shrinking Ricci
solitons, as well as in the classification of complex 2-dimensional complete
gradient Kähler-Ricci solitons with scalar curvature going to zero at in-
finity by Conlon-Deruelle-Sun [32]. Subsequently, inspired by the work of
Munteanu and Wang [58], Cao-Cui [16] and Chan [21] studied the corre-
sponding curvature estimates for steady solitons either with positive Ricci
curvature or with scalar curvature decaying to zero at infinity; see also
a recent extension of the curvature estimate of Munteanu and Wang to
4-dimensional gradient shrinking solitons with suitable scalar curvature
growth by Cao-Ribeiro-Zhou [18], and the work of Chow-Freedman-Shin-
Zhang [28] on curvature estimates for 4-dimensional gradient Ricci soliton
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singularity models.

While expanding solitons are abundant and in general behave rather
differently than shrinking solitons, there are some similarities between gra-
dient expanding solitons with nonnegative Ricci curvature and gradient
shrinking solitons, such as the optimal asymptotic growth estimates for
potential functions (see, e.g., [13, 20]) and the maximal volume growth
estimate by Hamilton [47] (see also [29]).

Moreover, recently P.-Y. Chan [22] proved that if (M4, g, f) is a com-
plete noncompact expanding Ricci soliton with bounded scalar curvature
|R| ≤ R0 and proper potential function f so that limr(x)→∞ f(x) = −∞,
then the curvature tensor Rm is bounded. Note that Rc ≥ 0 implies
0 ≤ R ≤ R0, for some R0 > 0, and f proper (see Propositions 4.1-4.2),
hence it follows that 4-dimensional complete gradient expanding solitons
with nonnegative Ricci curvature Rc ≥ 0 must have bounded Riemann
curvature tensor |Rm| ≤ C.

Motivated by the work of Munteanu-Wang [58], as well as Cao-Cui
[16] and Chan [21], it is then natural to ask if one could also control the
Riemann curvature tensor Rm of a 4-dimensional complete gradient ex-
panding soliton with nonnegative Ricci curvature by its scalar curvature
R. Despite some key differences with the shrinking case, notably the lack
of scalar curvature quadratic (or polynomial) decay lower bound for ex-
panders, this turns out to be possible as shown in the very recent work of
T. Liu and the author [17] (see also Theorems 4.1 and 4.2).

The main purpose of this article is to analyse and compare the curva-
ture estimates for the three types of 4-dimensional gradient Ricci solitons,
especially between Ricci shrinkers and expanders. We hope this will be
useful in understanding similarities and differences of the three types of
gradient Ricci solitons in dimension four and also shed some light to the
higher dimensional case. Furthermore, we obtain some new curvature es-
timates for 4-dimensional gradient steady solitons, including the sharp
curvature estimate |Rm| ≤ CR for gradient steady Ricci solitons with
positive Ricci curvature (Theorem 5.2).
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2 Preliminaries

In this section, we recall some basic facts and collect several known dif-
ferential identities or inequalities on curvatures for gradient Ricci solitons
that satisfy the equation

Rij +∇i∇jf = λgij .

Moreover, we recall a key estimate of the curvature tensor Rm in terms
of Rc, ∇Rc, and the potential function f for 4-dimensional gradient Ricci
solitons due to Munteanu and Wang [58].

Throughout the paper, we denote by

Rm = {Rijkl}, Rc = {Rik}, R

the Riemann curvature tensor, the Ricci tensor, and the scalar curvature
of the metric g = {gij}, respectively.

Lemma 2.1. (Hamilton [46]) Let (Mn, g, f) be a gradient Ricci soliton
satisfying Eq. (1.1). Then

R+∆f = nλ, (2.1)

∇iR = 2Rij∇jf, (2.2)

R+ |∇f |2 = 2λf + C0 (2.3)

for some constant C0.

Furthermore, in the shrinking or expanding case (i.e., λ ̸= 0), we can
normalize the potential function f in (2.3) so that

R+ |∇f |2 = 2λf. (2.4)

We now collect several well-known differential identities for the curva-
tures R,Rc and Rm that we shall use later.
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Lemma 2.2. Let (Mn, g, f) be a gradient Ricci soliton satisfying Eq.
(1.1). Then, we have

∆fR = 2λR− 2|Rc|2,

∆fRik = 2λRik − 2RijklRjl,

∆fRm = 2λRm+Rm ∗Rm,

∇lRijkl = ∇jRik −∇iRjk = Rijkl∇lf,

where, on the RHS of the third equation, Rm ∗ Rm denotes the sum of a
finite number of terms involving quadratics in Rm, and ∆f =: ∆−∇f ·∇
is the weighted Laplace operator, which is self-adjoint with respect to the
weighted measure e−fdVg.

It is also useful to note the following differential identity,

∆f (R
−a) = aR−a

(
−2λ+ 2R−1|Rc|2 + (a+ 1)|∇ lnR|2

)
, (2.5)

which will be used frequently later.
Moreover, based on Lemma 2.2, one can easily derive the following

differential inequalities (see also [58, 16, 17]):

Lemma 2.3. Let (Mn, g, f) be a gradient Ricci soliton satisfying Eq.
(1.1). Then

∆f |Rc|2 ≥ 2|∇Rc|2 + 4λ|Rc|2 − 4|Rm||Rc|2,

∆f |Rm|2 ≥ 2|∇Rm|2 + 4λ|Rm|2 − c|Rm|3,

∆f |Rm| ≥ 2λ|Rm| − c|Rm|2.

Here c > 0 is some universal constant depending only on the dimension n.

Remark 2.1. To derive the third inequality, one needs to use Kato’s
inequality |∇|Rm|| ≤ |∇Rm|.

We also have the following differential inequalities on the covariant
derivative ∇Rm of the curvature tensor (also see [58] for the shrinking
case and [17] for the expanding case).
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Lemma 2.4. Let (Mn, g, f) be a gradient Ricci soliton satisfying Eq.
(1.1). Then

∆f |∇Rm|2 ≥ 2|∇2Rm|2 + 6λ|∇Rm|2 − c|Rm||∇Rm|2 and

∆f |∇Rm| ≥ 3λ|∇Rm| − c|Rm||∇Rm|,

where c > 0 is some universal constant depending only on the dimension
n.

Proof. First of all, by commuting covariant differentiations and Lemma 2.2,

∆f (∇qRm)

= ∇p∇p(∇qRm)−∇p(∇qRm) · ∇pf

= ∇p

(
∇q∇pRm+Rm ∗Rm

)
−
(
∇q∇pRm+Rpq••Rm

)
· ∇pf

= ∇q(∆Rm)−∇q(∇pRm∇pf) + (∇pRm)(∇q∇pf) +Rm ∗ ∇qRm

= ∇q(∆fRm) + λ∇qRm+Rm ∗ ∇qRm

= 3λ∇qRm+Rm ∗ ∇qRm,

where we have used the 4th identity in Lemma 2.2 in the third equality
and the soliton equation (1.1) in the 4th equality. Thus,

∆f |∇Rm|2 = 2|∇2Rm|2 + 2(∇Rm)∆f (∇Rm)

≥ 2|∇2Rm|2 + 6λ|∇Rm|2 − c|Rm||∇Rm|2.

This proves the first inequality. The second inequality follows easily from
the first one and Kato’s inequality.

Finally, we need the following key observation for 4-dimensional gradi-
ent Ricci solitons due to Munteanu and Wang [58] (see also Lemma 1 in
[21]).

Lemma 2.5. (Munteanu-Wang) Let (M4, g, f) be a 4-dimensional gra-
dient Ricci soliton. Then, there exists some universal constant A0 > 0

such that, at any point where ∇f ̸= 0,

|Rm| ≤ A0

(
|Rc|+ |∇Rc|

|∇f |

)
.
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Proof. Suppose ∇f ̸= 0 at a point p ∈ M . If we choose an orthonormal
basis {E1, · · · , E4} at p with E4 = ∇f/|∇f |, then

R1212 =
1

2

(
R11 +R22 −R33 −R44

)
+R3434,

R1313 =
1

2

(
R11 +R33 −R22 −R44

)
+R2424,

R2323 =
1

2

(
R22 +R33 −R11 −R44

)
+R1414.

Moreover, by Lemma 2.2,

|Rijk4||∇f | = |∇4Rijk4| = |∇jRik −∇iRjk| ≤ 2|∇Rc|.

Therefore, all sectional curvatures Kp at p are bounded by

|Kp| ≤ 2|Rc|(p) + 2
|∇Rc|
|∇f |

(p).

This completes the proof of Lemma 2.5.

3 Curvature estimates for 4D gradient shrinking
Ricci solitons

Gradient shrinking Ricci solitons are important geometric objects in
understanding Hamilton’s Ricci flow. They typically arise as Type I singu-
larity models and play a crucial role in the singularity analysis of the Ricci
flow. Indeed, it is known by the works of Naber [60] and Enders-Müller-
Topping [39] that the blow-ups around any finite time Type I singularity
point of a solution to the Ricci flow on a compact manifold converge to a
(nontrivial) gradient shrinking Ricci soliton.

By scaling, we may assume λ = 1
2 in (1.1) so that the gradient shrinking

Ricci soliton equation becomes

Rc+∇2f =
1

2
g or Rij +∇i∇jf =

1

2
gij . (3.1)
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Note that, by (2.1) and (2.4), we have

|∇f |2 = f −R (3.2)

and
∆ff = −f +

n

2
(3.3)

where ∆f =: ∆ −∇f · ∇ is the weighted Laplace operator, which is self-
adjoint with respect to the weighted measure e−fdVg.

Also, by Lemmas 2.2-2.4, we have the following differential identities
and inequalities for gradient shrinking Ricci solitons satisfying Eq. (3.1).

∆fR = R− 2|Rc|2,

∆fRik = Rik − 2RijklRjl,

∆fRm = Rm+Rm ∗Rm,

∇lRijkl = ∇jRik −∇iRjk = Rijkl∇lf,

∆f |Rc|2 ≥ 2|∇Rc|2 + 2|Rc|2 − 4|Rm||Rc|2, (3.4)

∆f |Rm|2 ≥ 2|∇Rm|2 + 2|Rm|2 − c|Rm|3,

∆f |Rm| ≥ |Rm| − c|Rm|2

∆f |∇Rm|2 ≥ 2|∇2Rm|2 + 3|∇Rm|2 − c|Rm||∇Rm|2,

∆f |∇Rm| ≥ 3

2
|∇Rm| − c|Rm||∇Rm|.

Here, c > 0 is some universal constant depending only on the dimension
n.

Next, let us recall several important geometric properties of general
gradient shrinking Ricci solitons that will be useful in the curvature esti-
mates.

Proposition 3.1. (Cao-Zhou [19]) Let (Mn, g, f) be a complete non-
compact gradient shrinking Ricci soliton satisfying (3.1). Then the poten-
tial function f satisfies the estimates

1

4
(r(x)− c1)

2 ≤ f(x) ≤ 1

4
(r(x) + 2

√
−f(x0))2, (3.5)

where r(x) is the distance function from any fixed base point x0 in M .
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Proposition 3.2. (Chen [25]) Let (Mn, g, f) be a complete noncompact
gradient shrinking Ricci soliton satisfying (3.1). Then the scalar curvature
is nonnegative,

R ≥ 0 on M .

Remark 3.1. Moreover, R > 0 on M unless (Mn, g, f) is the Gaussian
shrinking soliton (see Pigola-Rimoldi-Setti [67]).

Proposition 3.3. (Chow-Lu-Yang [30]) Let (Mn, g, f) be a complete
noncompact gradient shrinking Ricci soliton. Then there exists a constant
C > 0 such that

R ≥ C/f . (3.6)

In particular, by Proposition 3.1, R has at most quadratic decay.

Now we can state the main curvature estimates for 4-dimensional gra-
dient shrinking Ricci solitons due to Munteanu and Wang [58].

Theorem 3.1. (Munteanu-Wang [58]) Let
(
M4, g, f

)
be a 4-dimensional

complete noncompact gradient shrinking Ricci soliton with bounded scalar
curvature R ≤ R0. Then there exists a constant C > 0 such that

|Rm| ≤ C R and |∇Rm| ≤ C R on M .

In order to compare the similarities and the differences among shrink-
ing, expanding, and steady solitons in the 4-dimensional curvature esti-
mates, we shall present here a sketch of the proof of Theorem 3.1 by
Munteanu and Wang (taking a good amount of detailed arguments from
[58] in the relevant parts of the proof), and refer the interested readers to
their original paper [58] for a complete proof.

Sketch of the Proof of Theorem 3.1 . We denote by

D(t) := {x ∈M : f(x) ≤ t}. (3.7)

By (3.2), Proposition 3.1, and the scalar curvature assumption R ≤ R0, it
is obvious that there exists r0 > 0, depending only on R0, such that

|∇f | ≥ 1

2

√
f ≥ 1 on M\D (r0) . (3.8)
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The entire proof consists of a series of elaborate pointwise estimates on
Rc, Rm, ∇Rm, as well as a gradient estimate on the scalar curvature R.

Step 1 (Initial |Rc| estimate). There exists a constant C > 0 such
that

|Rc|2 ≤ CR1/2 on M. (3.9)

First of all, note that by (3.4), Lemma 2.5 and (3.8), we have

∆f |Rc|2 ≥ 2 |∇Rc|2 − c |Rm| |Rc|2 (3.10)

≥ 2 |∇Rc|2 − c√
f
|∇Rc| |Rc|2 − c |Rc|3 .

For any a ∈ (0, 1), set u := |Rc|2/Ra. Then direct computations and using
(2.5) and (3.8) yield the following differential inequality,

∆fu ≥
(
2a− c

1− a

R

f

)
u2Ra−1 − c u

3
2 R

a
2 − c u, on M\D (r0) . (3.11)

Here, c > 0 is a universal constant. Now, setting a = 1/2, then

∆fu ≥ (1− C/f)u2R−1/2 − C u
3
2 − C u

≥ 1

2
u2R−1/2 − C u

3
2 − C u on M\D (r1) ,

where u = R−1/2|Rc|2, C > 0 depends only on R0, and r1 > r0 > 0 is
chosen so that

1− C/f ≥ 1/2 on M\D (r1) ,

which is possible by Proposition 3.1.
Next, let φ(t) be a nonnegative smooth function on R+ defined by

φ(t) =


1, ρ ≤ t ≤ 2ρ,

0, 0 ≤ t ≤ ρ/2 and t ≥ 3ρ,

such that

t2
(
|φ′(t)|2 + |φ′′(t)|

)
≤ c (3.12)
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for some universal constant c and arbitrarily large ρ > 2r1. Now take
φ = φ(f(x)) as a cut-off function, with support in D(3ρ)\D (ρ/2). Note
that

|∇φ| = |φ′∇f | ≤ c

ρ
|∇f | ≤ c

√
ρ

and (3.13)

|∆f (φ)| = |φ′∆ff + φ′′|∇f |2| ≤ c

ρ
f +

c

ρ2
|∇f |2 ≤ 2c (3.14)

on D(3ρ)\D(ρ/2).
Set G = φ2u. Then direct computations yield that

φ2∆fG ≥ 1

2
G2R−1/2 − CG3/2 − CG+ 2∇G · ∇φ2.

Now it follows from the standard maximum principle argument thatG ≤ C

on D(3ρ) for some constant C > 0 depending on R0, but independent of
ρ. Hence, on D(2ρ)\D(ρ),

R−1/2|Rc|2 = G ≤ C.

Since ρ > 0 is arbitrarily large, we get

|Rc|2 ≤ CR1/2 ≤ CR
1/2
0 on M.

Remark 3.2. By the same argument, one can actually show that

|Rc|2 ≤ CaR
a on M, (3.15)

for any a ∈ (0, 1), with Ca → ∞ as a→ 1.

Step 2 (Initial |Rm| and |∇Rm| estimates). There exists a constant
C > 0 such that

|Rm|+ |∇Rm| ≤ C on M. (3.16)

Using (3.4), one sees that

∆f |Rm| ≥ −c |Rm|2 .

Rewrite this as
∆f |Rm| ≥ |Rm|2 − (c+ 1) |Rm|2 . (3.17)
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By Lemma 2.5 and (3.9), we have

|Rm|2 ≤ C

(
1

f
|∇Rc|2 + 1

)
.

Plugging into (3.17), we get

∆f |Rm| ≥ |Rm|2 − C

f
|∇Rc|2 − C. (3.18)

On the other hand, we know from (3.10) and (3.9) that

∆f |Rc|2 ≥ |∇Rc|2 − C. (3.19)

Therefore, combining (3.18) and (3.19), we obtain

∆f

(
|Rm|+ |Rc|2

)
≥ 1

2

(
|Rm|+ |Rc|2

)2
− C.

That is, the function
v := |Rm|+ |Rc|2

satisfies the differential inequality

∆fv ≥ 1

2
v2 − C on M\D (r0) .

By applying the same cut-off function and the maximum principle argu-
ment as in Step 1 above, we conclude that v ≤ C on M\D (r0) . This
implies

sup
M

|Rm| ≤ C. (3.20)

Next, using (3.20) and (3.4), we have

∆f |∇Rm| ≥ −C |∇Rm| .

We also know from (3.4) that

∆f |Rm|2 ≥ 2 |∇Rm|2 − c |Rm|3 ≥ 2 |∇Rm|2 − C.

Hence,

∆f

(
|∇Rm|+ |Rm|2

)
≥

(
|∇Rm|+ |Rm|2

)2
− C.



Curvature estimates for 4D gradient Ricci solitons 101

Now a maximum principle argument as above shows that |∇Rm|+ |Rm|2

is bounded on M. So
|∇Rm| ≤ C

for some constant C > 0.

Step 3 (Improved |Rc| estimate). There exists C > 0 such that

|Rc|2 ≤ CR on M. (3.21)

For u = |Rc|2/Ra, let us recall the following differential inequality from
(3.11):

∆fu ≥
(
2a− c

1− a

R

f

)
u2Ra−1 − c u

3
2 R

a
2 − c u, on M\D (r0) .

Now, we take the same cut-off function φ as in Step 1 above and set
G = φ2u. Then, by direct computations, we have

φ2∆fG ≥
(
2a− c

1− a

R

f

)
G2Ra−1 − CG3/2 − CG+ 2∇G · ∇φ2.

Since φ has support in D(3ρ)\D (ρ/2), we know that f ≥ ρ/2 on the
support of φ. Hence, one may choose a = 1 − C/ρ for C > 0 sufficiently
large so that

2a− c

1− a

R

f
≥ 1 on D(3ρ)\D (ρ/2) .

Consequently,

φ2∆fG ≥ G2Ra−1 − CG3/2 − CG+ 2∇G · ∇φ2.

Since a < 1 and Ra−1 ≥ Ra−1
0 , it follows from the standard maximum

principle that G ≤ C on D(2ρ)\D(ρ). Hence, on D(2ρ)\D(ρ),

R−1|Rc|2 = GRa−1 ≤ CRa−1.

On the other hand, by Proposition 3.3, R ≥ C/f on M . Thus, since
a− 1 = −C/ρ and R ≥ C/ρ on D(2ρ), it follows that Ra−1 ≤ C for some
C > 0. Therefore,

|Rc|2 ≤ CR on M.
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Step 4 (Improved |Rm| estimate). There exists C > 0 such that

|Rm|2 ≤ CR on M. (3.22)

This follows immediately from Lemma 2.5, the estimate |Rc|2 ≤ CR in
Step 3, the estimate |∇Rm| ≤ C in Step 2 and the scalar curvature lower
bound R ≥ C/f .

Step 5 (Improved |∇Rm| estimate). There exists C > 0 such that

|∇Rm|2 ≤ CR on M. (3.23)

By (3.4) and direct computations, one obtains

∆f

(
|∇Rm|2R−1

)
≥ 2 |∇Rm|2R−1 − c |Rm| |∇Rm|2R−1.

On the other hand, using the estimates |Rm|2 ≤ CR in Step 4 and
|∇Rm| ≤ C in Step 2, one gets

c |Rm| |∇Rm|2R−1 ≤ C |∇Rm|R− 1
2 ≤ |∇Rm|2R−1 + C.

Thus, the function
w := |∇Rm|2R−1 − C

satisfies
∆fw ≥ w. (3.24)

Note that the RHS of the above differential inequality (3.24) is only linear
in w, so the standard maximum principle argument as in Step 1 or Step
2 does not apply. Nonetheless, Munteanu and Wang were able to adapt
the maximum principle argument to achieve the desired estimate (3.23) by
making a clever use of the scalar curvature lower bound R ≥ C/f due to
Chow-Lu-Yang [30] as follows. Consider

ψ(t) =


1− t/ρ, 0 ≤ t ≤ ρ,

0, t ≥ ρ.
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Then the cut-off function ψ (f) on M satisfies

|∇ψ| = |∇f |
ρ

and ∆fψ =
1

ρ
(f − 2) . (3.25)

Therefore, for G := ψ2w, using (3.24), we have

ψ2∆fG ≥
(
ψ2 + ψ

2

ρ
(f − 2)− 6 |∇ψ|2

)
G+ 2

〈
∇G,∇ψ2

〉
. (3.26)

Case 1: G (q) < 0 at the maximum point q of G. Then w ≤ 0 on
D (R), which implies that

sup
D(ρ/2)

(
|∇Rm|2R−1

)
≤ C.

Case 2: G (q) > 0 at the maximum point q of G. Then (3.26) implies
that

2

ρ
(f − 2)ψ ≤ 6 |∇ψ|2 ≤ 6

1

ρ2
f. (3.27)

If q ∈ D (r0), then

sup
D(ρ/2)

(
|∇Rm|2R−1

)
≤ C + 4 sup

D(ρ/2)
G

≤ C + 4 sup
D(r0)

G ≤ C.

If q ∈M\D (r0), then f (q)− 2 ≥ 1
2f (q). By (3.27), ψ (q) ≤ 6/ρ. This

shows that f (q) ≥ ρ− 6. Hence, since |∇Rm| ≤ C and Rf ≥ C > 0,

1

4
sup

D(ρ/2)

(
|∇Rm|2R−1 − C

)
≤ sup

D(ρ/2)
G ≤ G (q)

≤ 36

ρ2
sup
D(R)

(
|∇Rm|2R−1

)
≤ C

ρ
,

Therefore, supD(ρ/2)

(
|∇Rm|2 S−1

)
≤ C also when G (q) > 0. In conclu-

sion,
sup

D(ρ/2)

(
|∇Rm|2 S−1

)
≤ C.

This completes Step 5.
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Step 6 (Gradient estimate for R). There exists C > 0 such that

|∇ lnR|2 ≤ C ln(f + 2) on M. (3.28)

This is achieved by adopting an argument in [59]. The proof also
depends on estimates (3.21) and (3.23), and the scalar curvature lower
bound R ≥ C/f by Chow-Lu-Yang [30]. We refer the interested readers
to the original paper of Munteanu-Wang [58] for details.

Step 7 (Sharp |Rc| estimate). There exists C > 0 such that

|Rc| ≤ CR on M. (3.29)

By direct computations and using the estimate |Rm| ≤ C in Step 2,
the function u := |Ric|2R−2 satisfies the differential inequality

∆f−2 lnR (u) ≥ 3u2R− c uR (3.30)

on M\D (r0). Here, c > 0 is a universal constant.
Now, by taking the same cut-off function ψ (f) as in Step 5 and apply-

ing the gradient estimate (3.28), we have

∆f−2 lnR (ψ) = ∆fψ + 2 ⟨∇ lnR,∇ψ⟩

≥ 1

ρ
(f − 2)− 2

ρ
|∇ lnR| |∇f |

≥ 1

ρ
(f − 2)− C

ρ

√
f ln (f + 2) .

This shows that there exists a constant t0 > 0 so that on D (ρ) \D (t0) ,

∆f−2 lnR (ψ) ≥ f/2ρ ≥ 0. (3.31)

Using (3.30) and (3.31), for the function G := ψ2u we have that on
M\D (t0) ,

ψ2∆f−2 lnR (G) ≥ 3G2R− cGR+G∆f−2 lnR

(
ψ2

)
+ 2ψ2∇u · ∇ψ2

≥ 3G2R− cGR+ 2∇G · ∇ψ2 − 8 |∇ψ|2G.
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By (3.25) and the scalar curvature lower bound Rf ≥ C > 0, we have

|∇ψ|2G ≤ 1

ρ
G ≤ 1

C
RG.

Therefore,

ψ2∆f−2 lnR (G) ≥
(
3G2 − cG

)
R+ 2∇G · ∇ψ2.

Now the maximum principle implies thatGmust be bounded onM\D (t0),
and it follows that |Rc| ≤ CR.

Step 8 (Sharp |Rm| estimate). There exists C > 0 such that

|Rm| ≤ CR on M. (3.32)

This follows immediately from Lemma 2.5, the estimates |∇Rm|2 ≤
CR in Step 5 and |Rc| ≤ CR in Step 7, and the scalar curvature lower
bound R ≥ C/f .

Step 9 (Further improved |∇Rm| estimate). There exists C > 0 such
that

|∇Rm| ≤ CR on M. (3.33)

In particular,
|∇ lnR| ≤ C on M. (3.34)

By (3.4) and direct computations, the function w := |∇Rm|2R−2 sat-
isfies the differential inequality

∆f−2 lnR (w) ≥ w − c |Rm|w (3.35)

≥ w (1− C1R) .

Note, like (3.24), we again have a term linear in w on the RHS of (3.35).
By using the same cut-off function ψ (f) with support in D(ρ) as before,
the function G := ψ2w satisfies

ψ2∆f−2 lnR (G) ≥ ψ2G (1− C1R)+2ψ∆f−2 lnR (ψ)G−6 |∇ψ|2G+2∇G·∇ψ2.
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Let q ∈ D (ρ) be the maximum point of G. If q ∈ D (r0) , then w is
bounded on D (ρ/2) . So we only need to consider when q ∈ D (ρ) \D (r0).
Furthermore, if 1 − C1R(q) ≤ 0 so that R−1(q0) ≤ C1, then G(q) ≤
C2
1 |∇Rm|2(q) ≤ C, so G ≤ G(q) ≤ C on D (ρ). Again, this proves that w

is bounded on D (ρ/2). So we may assume that 1−C1R (q) ≥ 0. Now the
maximum principle implies that at q we have

0 ≥ ψ∆f−2 lnR (ψ)− 3 |∇ψ|2 . (3.36)

Since q ∈ D (ρ) \D (r0), (3.31) holds. Therefore, (3.36) implies that at q,

f

ρ
ψ ≤ 6 |∇ψ|2 ≤ 6

f

ρ2
or ψ ≤ 6/ρ.

This means that f (q) ≥ ρ− 6 and

sup
D(ρ/2)

(
|∇Rm|2R−2

)
≤ 4G (q)

≤ 144

ρ2
sup
D(ρ)

(
|∇Rm|2R−2

)
≤ c

ρ
,

where in the above last line we have used the estimate |∇Rm|2 ≤ CR in
Step 5 and the scalar curvature lower bound Rf ≥ C > 0 by Chow-Lu-
Yang [30]. This again proves that |∇Rm|2R−2 is bounded on D(ρ/2). In
conclusion,

sup
D(ρ/2)

(
|∇Rm|2R−2

)
≤ C.

Since ρ is arbitrary, this proves the desired estimate (3.33) and completes
the sketch of the proof.

The fact that the curvature operator Rm of 4-dimensional gradient
shrinking Ricci solitons enjoys similar control (by the scalar curvature R)
as in the dimension three case provides the hope for a possible classifica-
tion of (noncompact) Ricci shrinkers. As an application of Theorem 3.1,
Munteanu and Wang [58] proved sharp decay estimates for the Riemann
curvature tensor and its covariant derivatives under the assumption that
the scalar curvature R goes to zero at infinity. Indeed, they showed that
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if scalar curvature R goes to zero at infinity, then it must decay at least
quadratically as well: R ≤ c/f for some constant c > 0. By Theorem
3.1, this scalar curvature upper bound, together with the lower bound
R ≥ C/f by Chow-Lu-Yang [30], implies that the Riemann curvature
tensor Rm must decay quadratically from above and below. This in par-
ticular enabled them to conclude that such a Ricci shrinker must in fact
be smoothly asymptotic to a cone at infinity.

Recall that an n-dimensional cone over a closed (n − 1)-dimensional
Riemannian manifold (Σn−1, gΣ) is given by [0,∞) × Σ endowed with
Riemannian metric gc = dr2 + r2 gΣ. Denote by Eρ = (ρ,∞) × Σ for
ρ ≥ 0 and define the dilation by λ to be the map σλ : E0 → E0 given by
σλ(r, θ) = (λ r, θ). Then a Riemannian manifold (Mn, g) is said to be Ck

asymptotic to a cone (E0, gc) if, for some ρ > 0, there is a diffeomorphism
Φ : Eρ → M \ Ω such that λ−2 σ∗λΦ

∗ g → gc as λ → ∞ in Ck
loc(E0, gc),

where Ω is a compact subset of M.

Now we can state precisely their conical structure result.
Theorem 3.2. (Munteanu-Wang [58]) Let

(
M4, g, f

)
be a 4-dimensional

complete noncompact gradient shrinking Ricci soliton with scalar curvature
going to zero at infinity. Then there exists a cone E0 such that (M4, g) is
Ck asymptotic to E0 for all k ≥ 1.

Kotschwar and L. Wang [52] proved that if two complete noncompact
gradient shrinking Ricci solitons are C2 asymptotic to the same cone then
they must be isometric. Together with Theorem 3.2, this implies that
the classification problem for 4-dimensional complete noncompact gradient
shrinking Ricci solitons with scalar curvature going to zero at infinity is
reduced to the one for limiting cones.

4 Curvature estimates for 4D gradient expanding
Ricci solitons

Gradient expanding Ricci solitons may arise as Type III singular-
ity models in the Ricci flow (under suitable positive curvature assump-
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tions) [12, 26], and over which the matrix Li-Yau-Hamilton inequality
(also known as the matrix differential Harnack inequality) becomes equal-
ity [45, 11]. Indeed, Schulze-Simon [68] obtained gradient expanding soli-
tons out of the asymptotic cones at infinity of solutions to the Ricci flow
on complete noncompact Riemannian manifolds with bounded and non-
negative curvature operator and positive asymptotic volume ratio; see also
more recent work [37, 31].

By scaling, we may assume λ = −1/2, so that the gradient expanding
Ricci soliton equation is of the form Rij+∇i∇jf = −1

2gij , or equivalently,

Rij +
1

2
gij = ∇i∇jF, with F = −f +

n

2
. (4.1)

It is well-known that compact expanding solitons are necessarily Einstein.
Hence the study of expanding solitons has been focused on complete non-
compact ones. Here we are concerned with 4-dimensional complete non-
compact gradient expanding solitons with nonnegative Ricci curvature
Rc ≥ 0.

The simplest example of a complete (noncompact) gradient expanding
soliton is the Gaussian expander on Rn, with the standard flat metric and
potential function f(x) = −|x|2/4. In addition, Bryant [6] and the au-
thor [12] constructed non-flat rotationally symmetric expanding gradient
Ricci and Kähler-Ricci solitons, including one-parameter families of ex-
panding solitons with positive sectional curvature that are asymptotic to
a cone at infinity, on Rn and Cn respectively. Moreover, the constructions
in [9, 12] have been extended by Feldman-Ilmanen-Knopf [40] to a con-
struction of gradient expanding Kähler-Ricci solitons on the complex line
bundles O(−k) (k > n) over the complex projective space CPn (n ≥ 1),
and further generalized by Dancer-Wang [35]. For additional examples
and other constructions, see, e.g., [63, 53, 42, 2, 34, 41, 8, 1, 71] and the
references therein.

For curvature estimates, P.-Y. Chan [22] recently proved that if the
triple (M4, g, f) is a complete noncompact gradient expanding Ricci soli-
ton with bounded scalar curvature |R| ≤ R0 and proper potential func-
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tion f (i.e. limr(x)→∞ F (x) = ∞), then the curvature tensor Rm is
bounded. Note that Rc ≥ 0 implies 0 ≤ R ≤ R0, for some R0 > 0,
and limr(x)→∞ F (x) = ∞ (see Propositions 4.1-4.2 below). It follows
that 4-dimensional complete gradient expanding solitons with nonnega-
tive Ricci curvature Rc ≥ 0 must have bounded Riemann curvature tensor
|Rm| ≤ C. Motivated by the curvature estimates of Munteanu-Wang [58]
for 4-dimensional gradient shrinking Ricci solitons as presented in Section
3, as well as the corresponding curvature estimates of Cao-Cui [16] and
Chan [21] for 4-dimensional gradient steady solitons (see also Section 5),
it is natural to ask if one could also control the Riemann curvature tensor
Rm in terms of the scalar curvature R for 4-dimensional complete gradient
expanding solitons with nonnegative Ricci curvature.

We remark that, as we have seen from the proof sketch of Theorem
3.1 in Section 3, one of the important facts used repeatedly in the work
of Munteanu and Wang [58] is the scalar curvature lower bound R ≥ C/f

for n-dimensional non-flat complete noncompact gradient shrinking soliton
due to Chow-Lu-Yang [30]. Note that by the optimal asymptotic growth
estimate of Cao-Zhou [19] on the potential function f (Proposition 3.1),
this is equivalent to the scalar curvature R has at most quadratic decay at
infinity. Another key feature, which resulted in the less standard maximum
principle arguments in Step 5 and Step 9 in the proof of Theorem 3.1, is
the differential inequality of the form ∆fw ≥ w, or ∆f−2 lnR(w) ≥ w, that
is due to the curvature differential inequalities

∆f |Rm| ≥ |Rm| − c|Rm|2 and ∆f |∇Rm| ≥ 3

2
|∇Rm| − c|Rm||∇Rm|

satisfied by gradient shrinking solitons. In contrast, for gradient expanding
solitons, we have instead

∆f |Rm| ≥ −|Rm|−c|Rm|2 and ∆f |∇Rm| ≥ −3

2
|∇Rm|−c|Rm||∇Rm|,

so the corresponding differential inequality we have to deal with is ∆fw ≥
−w, or ∆f−2 lnR(w) ≥ −w, if we try to adopt a similar argument to
get estimates for w. Unfortunately, this does not seem to work in the
expanding case.
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Despite the above mentioned differences with gradient shrinking soli-
tons, as it turns out, it is possible to obtain curvature estimates on Rm

and ∇Rm in terms of the scalar curvature R for 4-dimensional gradient
expanding solitons with nonnegative Ricci curvature, as shown in our very
recent work with T. Liu [17].

Theorem 4.1. (Cao-Liu [17]) Let (M4, g, f) be a 4-dimensional com-
plete noncompact gradient expanding Ricci soliton with nonnegative Ricci
curvature Rc ≥ 0. Then, there exists a constant C > 0 such that, for any
0 ≤ a < 1, the following estimates hold:

|Rm| ≤ C

1− a
Ra and |∇Rm| ≤ C

1− a
Ra on M4. (4.2)

Moreover, if in addition the scalar curvature R has at most polynomial
decay then

|Rm| ≤ CR on M4. (4.3)

By using Theorem 4.1, we also obtain a very useful result about asymp-
totic curvature behavior for 4-dimensional gradient expanding Ricci soli-
tons with Rc ≥ 0.

Theorem 4.2. (Cao-Liu [17]) Let (M4, g, f) be a 4-dimensional com-
plete noncompact gradient expanding Ricci soliton with nonnegative Ricci
curvature Rc ≥ 0. Assume it has finite asymptotic scalar curvature ratio

lim sup
r→∞

Rr2 <∞, (4.4)

where r = r(x) is the distance function to a fixed base point in M . Then
(M4, g, f) has finite asymptotic curvature ratio

A := lim sup
r→∞

|Rm|r2 <∞. (4.5)

Remark 4.1. If we only assume Rc ≥ 0 outside some compact setK ⊂M ,
then the conclusions in Theorem 4.1 and Theorem 4.2 remain true over
M \K.
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As an application of Theorem 4.2, by combining with a result of Chen
and Deruelle [27] (see Theorem 1.2 of [27]), we get

Corollary 4.1. (Cao-Liu [17]) Let (M4, g, f) be a 4-dimensional com-
plete noncompact non-flat gradient expanding Ricci soliton with nonnega-
tive Ricci curvature Rc ≥ 0 and finite asymptotic scalar curvature ratio.
Then (M4, g, f) has a C1,α asymptotic cone structure at infinity, for any
α ∈ (0, 1).

4.1 Background for expanding solitons with Rc ≥ 0

According to Munteanu-Wang [57], the potential function of a general
complete gradient expanding Ricci soliton (Mn, g, f) satisfying (4.1), with
respect to any reference point p ∈M , satisfies the following estimates

1

4
r2 − Cr3/2

√
ln r ≤ sup

∂Bp(r)
F (x) ≤ 1

4
r2 + Cr, (4.6)

for some constant C > 0.
On the other hand, if (Mn, g, f) has nonnegative Ricci curvature Rc ≥

0 then we have the following well-known fact about the asymptotic behav-
ior of the potential function (see, e.g., Lemma 5.5 in [13] or Lemma 2.2 in
[27]).

Proposition 4.1. Let (Mn, g, f) be a complete noncompact gradient ex-
panding Ricci soliton satisfying (4.1) and with nonnegative Ricci curvature
Rc ≥ 0. Then, there exists some constant c1 > 0 such that, outside some
compact subset of Mn, the potential function F = −f + n/2 satisfies the
estimates

1

4
(r(x)− c1)

2 ≤ F (x) ≤ 1

4
(r(x) + 2

√
F (x0))

2, (4.7)

where r(x) is the distance function from some fixed base point in Mn. In
particular, F is a strictly convex exhaustion function achieving its mini-
mum at its unique interior point x0, which we shall take as the base point,
and the underlying manifold Mn is diffeomorphic to Rn.



112 Huai-Dong Cao

Another useful fact is the boundedness of the scalar curvature of a
gradient expanding soliton with nonnegative Ricci curvature; see Ma-Chen
[54] (and also [36, 38]).

Proposition 4.2. Let (Mn, g, f) be a complete noncompact gradient ex-
panding Ricci soliton with nonnegative Ricci curvature Rc ≥ 0. Then its
scalar curvature R is bounded from above, i.e.,

R ≤ R0 for some positive constant R0.

Moreover, R > 0 everywhere unless (Mn, g, f) is the Gaussian expanding
soliton.

Remark 4.2. In [54], the authors asserted that either R > 0 or (Mn, g) is
Ricci flat. However, a complete non-compact Ricci-flat gradient expanding
Ricci soliton must be the Gaussian expanding soliton on Rn (see, e.g.,
Proposition 3.1 in [65]).

Furthermore, by combining (2.1) and (2.4), we obtain

∆f − |∇f |2 = f − n

2
, i.e., ∆ff = f − n

2

where ∆f =: ∆−∇f · ∇ is the weighted Laplace operator. Equivalently,
for F = −f + n/2,

|∇F |2 = F −R− n

2
and ∆fF = F. (4.8)

Again, by Lemmas 2.2-2.4, we have the following differential identities
and inequalities for any complete gradient expanding Ricci soliton satisfy-
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ing Eq. (4.1).

∆fR = −R− 2|Rc|2,

∆fRik = −Rik − 2RijklRjl,

∆fRm = −Rm+Rm ∗Rm,

∇lRijkl = ∇jRik −∇iRjk = Rijkl∇lf,

∆f |Rc|2 ≥ 2|∇Rc|2 − 2|Rc|2 − 4|Rm||Rc|2, (4.9)

∆f |Rm|2 ≥ 2|∇Rm|2 − 2|Rm|2 − c|Rm|3,

∆f |Rm| ≥ −|Rm| − c|Rm|2,

∆f |∇Rm|2 ≥ 2|∇2Rm|2 − 3|∇Rm|2 − c|Rm||∇Rm|2,

∆f |∇Rm| ≥ −3

2
|∇Rm| − c|Rm||∇Rm|.

Here, c > 0 is some universal constant depending only on the dimension
n.

4.2 Sketch of the proofs of Theorem 4.1 and Theorem 4.2

In this subsection, we shall provide a sketch of the proofs of Theorem
4.1 and Theorem 4.2, and refer the readers to our paper [17] for further
details.

We denote by

D(t) := {x ∈M : F (x) ≤ t}. (4.10)

As a consequence of Lemma 2.5, Proposition 4.1 and Proposition 4.2, one
easily gets the following

Lemma 4.1. Let (M4, g, f) be a 4-dimensional complete noncompact gra-
dient expanding Ricci soliton satisfying Eq. (4.1) and with nonnegative
Ricci curvature. Then, for any constant Λ > 1, there exists some constant
r0 > 0 (depending on Λ) such that

|∇Rc|2 ≥ Λ

2A2
0

|Rm|2 − Λ|Rc|2 outside D(r0).
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Let us first consider the proof of Theorem 4.1.

Sketch of the Proof of Theorem 4.1. Again the proof consists of several
estimates on Rm and |∇Rm|.

Step A (Initial |Rm| estimate). There exists a constant C > 0, de-
pending on the constant A0 (in Lemma 2.5) and the scalar curvature upper
bound R0 (in Proposition 4.2), such that

|Rm| ≤ C on M. (4.11)

Remark 4.3. As we pointed out before, The above estimate |Rm| ≤ C

in Step A is a special case of a more general result due to P.-Y. Chan [22].

The proof follows essentially from the same argument as in [58] (Step
2 in the proof of Theorem 3.1) or the proof of Theorem 3.1 in [16]. Indeed,
by the assumption of Rc ≥ 0 and Proposition 4.2, it follows that

|Rc| ≤ R ≤ R0. (4.12)

Thus, by (4.12) and Lemma 4.1 (taking Λ = 4A2
0), we get

|∇Rc|2 ≥ 2|Rm|2 − 4A2
0R

2
0 (4.13)

outside some compact set D(r0).
On the other hand, by (4.9), (4.12) and (4.13),

∆f (|Rm|+ λ|Rc|2) ≥ 2λ|∇Rc|2 − c|Rm|2 − λC1|Rm| − λC1

≥ (4λ− c)|Rm|2 − λC1|Rm| − λC2,

where C1 = C1(R0) > 0 depends on the scalar curvature upper bound R0,
and C2 = C2(A0, R0) depends on the constants A0 and R0. By picking

4λ = c+ 2,

it follows that

∆f (|Rm|+ λ|Rc|2) ≥ 2|Rm|2 − λC1|Rm| − λC2

≥ (|Rm|+ λ|Rc|2)2 − C1(|Rm|+ λ|Rc|2)− C2.
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Let u = |Rm|+ λ|Rc|2, then

∆fu ≥ u2 − C1u− C2.

Now it follows from a standard cut-off function and maximum principle
argument (as in Step 1 of the proof of Theorem 3.1) that

sup
x∈M

|Rm| ≤ sup
x∈M

(
|Rm|+ λ|Rc|2

)
≤ C.

Step B (The |Rm| estimate). There exists some constant C > 0, depend-
ing on A0 and R0, such that for any 0 < a < 1,

|Rm| ≤ C

1− a
Ra on M4. (4.14)

By Proposition 4.2, it suffices to consider the case when the scalar cur-
vature R > 0 everywhere on M . For any a ∈ (0, 1), by direct computations
and using (2.5), we have

∆f−2a lnR(R
−a|Rm|) ≥ −CR−a|Rm|+ a(1− a)R−a|Rm||∇ lnR|2,

∆f−2a lnR(R
−2a|Rc|2) ≥ 2(1− a)R−2a|∇Rc|2 − CR−2a|Rc|2. (4.15)

Here, C > 0 is a constant depending on the constants A0 and R0.
Now, we consider the function

v :=
|Rm|
Ra

+
|Rc|2

R2a
.

Then, by (4.15) and Lemma 4.1 (with Λ = 4A2
0),

∆f−2a lnR(v) ≥ 2(1− a)
|∇Rc|2

R2a
− C1

|Rm|
Ra

− C2
|Rc|2

R2a

≥ 2(1− a)v2 − C1v − C2 on M \D(r0),

where C1 > 0 and C2 > 0 depend on A0 and R0.
Next, let φ(t) be a smooth function on R+ defined by

φ(t) =


1, ρ ≤ t ≤ 2ρ,

0, 0 ≤ t ≤ ρ/2 or t ≥ 3ρ,
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such that
t2
(
|φ′(t)|2 + |φ′′(t)|

)
≤ c (4.16)

for some universal constant c and arbitrary large ρ > 2r0. Take φ =

φ(F (x)) as a cut-off function, with support in D(3ρ). Note that

|∇φ| = |φ′∇F | ≤ c

ρ
|∇F | and (4.17)

|∆fφ| = |φ′∆fF + φ′′|∇F |2| ≤ c

ρ
F +

c

ρ2
|∇F |2 ≤ 2c (4.18)

on D(3ρ) \D(ρ/2).
Set G = φ2v. Then,

φ2∆f−2a lnR(G) ≥ 2(1− a)G2 − C1G− C2 +G∆f−2a lnR(φ
2)

+2∇G · ∇φ2 − 8G|∇φ|2.

Note that, by (4.17),

|∇φ|2 ≤ c2

ρ2
|∇F |2 ≤ c

ρ
.

Moreover,
∆f−2a lnR(φ) = ∆f (φ) + 2a∇φ · ∇ lnR

and
|∇ lnR| ≤ 2

|Rc|
R

|∇F | ≤ 2|∇F |. (4.19)

Thus, by (4.17)-(4.19), we obtain

∆f−2a lnR(φ) ≥ −6c

for some universal constant c > 0. Therefore,

φ2∆f−2a lnRG ≥ 2(1− a)G2 − CG− C + 2∇G · ∇φ2.

Now, by the standard maximum principle argument, it follows that v ≤
C

1−a on Mn for some constant C > 0 depending on A0 and R0. Therefore,

|Rm|
Ra

≤ |Rm|
Ra

+
|Rc|2

R2a
≤ C

1− a
on M4.
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We can also prove a similar estimate for the covariant derivative ∇Rm
of the curvature tensor.

Step C (The |∇Rm| estimate). There exists some constant C > 0,
depending on A0 and R0, such that for any 0 ≤ a < 1,

|∇Rm| ≤ C

1− a
Ra on M4. (4.20)

By (4.9) and the estimate |Rm| ≤ C in Step A, we have

∆f |∇Rm| ≥ −3

2
|∇Rm| − c|Rm||∇Rm| ≥ −C|∇Rm|,

∆f |Rm|2 ≥ 2|∇Rm|2 − 2|Rm|2 − C|Rm|3 ≥ 2|∇Rm|2 − C|Rm|2.

Then, by direct computations, we obtain

∆f
|∇Rm|
Ra

≥ −C |∇Rm|
Ra

+ a(1− a)
|∇Rm|
Ra

|∇ lnR|2

−2a∇
(
|∇Rm|
Ra

)
· ∇ lnR

∆f

(
|Rm|2

R2a

)
≥ 2(1− a)

|∇Rm|2

R2a
− C

|Rm|2

R2a
− 2a∇

(
|Rm|2

R2a

)
· ∇R
R
.

Thus, the function

w :=
|∇Rm|
Ra

+
|Rm|2

R2a

satisfies the differential inequality

∆f−2a lnR(w) ≥ (1− a)w2 − C1w − C2.

Here, we have used the estimate on |Rm| in Step B.
Now the desired estimate (4.20) follows from a similar maximum prin-

ciple argument as in the proof of Step B above.

Step D (The shap estimate on |Rm| when R has polynomial decay). Sup-
pose in addition the scalar curvature R has at most polynomial decay, then
there exists a constant C > 0 such that

|Rm| ≤ CR on M.
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Assume that the scalar curvature satisfies R ≥ C/rd(x) for some d ≥ 1

outside a compact set. Then, we get

R ≥ C

r(x)d
≥ C

|∇f |d
. (4.21)

It follows from Lemma 2.5, |Rc| ≤ R, (4.21) and (4.20) (with a = 1− 1/d)
that

|Rm| ≤ A0

(
|Rc|+ |∇Rc|

|∇f |

)
≤ A0(R+ CdR1−1/dR1/d) ≤ C1R.

This finishes the sketch proof of Theorem 4.1.

Proof of Theorem 4.2. Recall that, by Lemma 2.5, we have

|Rm| ≤ A0

(
|Rc|+ |∇Rc|

|∇f |

)
. (4.22)

On the other hand, it follows from Rc ≥ 0 and the assumption of the
finite asymptotic scalar curvature ratio (4.4) that

|Rc| ≤ R ≤ C1

r2
, (4.23)

for some constant C1 > 0. Moreover, by picking a = 1/2 in (4.20), we get

|∇Rc| ≤ c|∇Rm| ≤ CR1/2 ≤ C2

r
, (4.24)

while

|∇f |2 = −f −R = O(r2) (4.25)

by (2.4), Proposition 4.1 and Proposition 4.2.
Plugging (4.23)-(4.25) into (4.22) leads to

|Rm| ≤ C

r2
.
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4.3 Curvature estimates for expanders with R > 0 and
proper f

It turns out that one can also adapt the arguments in the proof of
Theorem 4.1 to obtain curvature estimates for 4-dimensional complete non-
compact gradient expanding Ricci solitons with bounded, positive scalar
curvature 0 < R ≤ R0 and proper potential function.

Theorem 4.3. (Cao-Liu [17]) Let (M4, g, f) be a 4-dimensional com-
plete noncompact gradient expanding Ricci soliton with bounded and pos-
itive scalar curvature 0 < R ≤ R0. Assume that f is proper so that
limr(x)→∞ f(x) = −∞. Then, for any α ∈ (0, 1/2),

|Rm| ≤ CαR
α and |∇Rm| ≤ CαR

α on M4

for some positive constant Cα > 0 with Cα → ∞ as α→ 1/2.

Remark 4.4. For α = 0, the estimate |Rm| ≤ C in Theorem 4.3 is a
special case of Chan [22], where he assumed f is proper but R is only
bounded (i.e., |R| ≤ R0).

Sketch of the Proof of Theorem 4.3. Again, we shall divide the proof of
Theorem 4.3 into several estimates.

Step I (Initial |Rc| estimate). There exists a constant C > 0 such that

|Rc|2 ≤ CR1/2 on M. (4.26)

This follows essentially from the same argument as in Munteanu-Wang
[58] (Step 1 in the proof of Theorem 3.1). By (4.9) and Lemma 2.5, we
have

∆f |Rc|2 ≥ 2 |∇Rc|2 − c

|∇F |
|∇Rc| |Rc|2 − c |Rc|3 .

For any a ∈ (0, 1), set u := |Rc|2/Ra. Then direct computations and using
(2.5) yield the following differential inequality,

∆fu ≥
(
2a− c

1− a

R

|∇F |2

)
u2Ra−1 − c u

3
2 R

a
2 − c u,
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where c > 0 is a universal constant. Now, setting a = 1/2, then

∆fu ≥
(
1− 2cR0/|∇F |2

)
u2R

−1/2
0 − c u

3
2R

1/2
0 − C u

≥ 1

2
u2R

−1/2
0 − C u

3
2 − C u on M\D (r1) ,

where u = R−1/2|Rc|2, C > 0 depends only on R0, and r1 > 0 is chosen
so that

1− 2cR0/|∇F |2 ≥ 1/2 on M\D (r1) ,

which is possible by Propositions 4.1-4.2 and (4.8).
Now a standard cut-off function and maximum principle argument

shows that u ≤ C on M .

Step II (Initial |Rm| estimate). There exists a constant C > 0 such
that

|Rm| ≤ C on M. (4.27)

Since we now have the bound |Rc| ≤ C, this follows from essentially
the same argument as in Step A of the proof of Theorem 4.1.

Step III (Improved |Rc| estimate). There exists a constant C > 0

such that

|Rc|2 ≤ CR on M. (4.28)

For any 0 < a ≤ 1, by (2.5), (4.9), (4.27) and direct computations, we
obtain

∆f

(
|Rc|2

Ra

)
≥ 2(1− a)

1 + a

|∇Rc|2

Ra
− (4C0 + 2)

|Rc|2

Ra
+ 2a

|Rc|4

R1+a
. (4.29)

Thus, taking a = 1 and setting u = |Rc|2
R , we have

∆f (u) ≥ 2u2 − (4C0 + 2)u.

Now, estimate (4.28) follows from a standard cut-off function and maxi-
mum principle argument.
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Step IV (The |Rm| estimate). There exists a constant C > 0 such
that for any α ∈ (0, 1/2),

|Rm| ≤ CαR
α on M. (4.30)

We consider the quantity of the following form suggested to us by P.-Y.
Chan,

|Rm|2p

Rb
+

|Rc|2

Ra
.

By (4.9), (2.5), the estimate |Rm| ≤ C in Step II and direct computations,
for any p > 0 and b > 0 we get (whenever |Rm| ≠ 0 in case p < 1)

∆f

(
|Rm|2p

Rb

)
≥

[
2p(2p− 1)− 4p2b

(b+ 1)

]
|Rm|2p−2

Rb
|∇|Rm||2 − Cp

|Rm|2p

Rb
.

(4.31)
Now, for any 0 < a < 1 and b ∈ (0, 1), let 2p = 1+ b ∈ (1, 2). Then, by

(4.29), (4.31), the estimate |Rc|2 ≤ CR in Step III, and applying Lemma
4.1 (with Λ = 2A2

0), we obtain

∆f

(
|Rm|1+b

Rb
+

|Rc|2

Ra

)
≥ (1− a)

|Rm|2

Ra
− C1

(
|Rm|1+b

Rb
+

|Rc|2

Ra

)
− C2.

(4.32)
Then, for any α ∈ (0, 1/2), we choose a = 2α ∈ (0, 1), b = α/(1− α) < a

and set

v =
|Rm|1+b

Rb
+

|Rc|2

Ra
.

Without loss of generality, we may assume v ≤ 2R−b|Rm|1+b. Then,

∆f (v) ≥
1− 2α

4
v2(1−α) − C1v − C2. (4.33)

Since 1 < 2(1 − α), by a standard maximum principle argument we can
conclude from (4.32) that v ≤ Cα for some positive constant Cα > 0, with
Cα → ∞ as α→ 1/2. Therefore, |Rm|1+b ≤ CαR

b, or equivalently

|Rm| ≤ CαR
b

1+b = CαR
α on M4.
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Step V (The |∇Rm| estimate). There exists a constant C > 0 such
that for any α ∈ (0, 1/2),

|∇Rm| ≤ CαR
α. (4.34)

By direct computations, we have

∆f

(
|∇Rm|1+b

Rb
+

|Rm|2

Ra

)
≥ (1−a) |∇Rm|2

Ra
−C3

(
|∇Rm|1+b

Rb
+

|Rm|2

Ra

)
,

which is similar to (4.31).
Now estimate (4.32) follows similarly as in Step IV.

5 Curvature estimates for 4D gradient steady Ricci
solitons

In this section, we present the curvature estimates for 4-dimensional
gradient steady Ricci solitons proved by Cao-Cui [16] and P.-Y. Chan
[21]. In addition, we derive some new estimates for 4-dimensional gradient
steady Ricci solitons (Theorem 5.2 and Theorem 5.3).

Let (M4, g, f) be a 4-dimensional gradient steady Ricci solitons satis-
fying the equation Rij +∇i∇jf = 0. Equivalently, by setting F = −f , we
have

Rij = ∇i∇jF. (5.1)

As is well-known, compact steady solitons must be Ricci-flat. In di-
mension n = 2, Hamilton [44] discovered the first example of a complete
noncompact gradient steady soliton on R2, called the cigar soliton, where
the metric is given by

ds2 =
dx2 + dy2

1 + x2 + y2
.

The cigar soliton has potential function F = log(1 + x2 + y2) (which has
linear growth in geodesic distance), positive (scalar) curvature R = 4e−F ,
and is asymptotic to a round cylinder at infinity. Furthermore, Hamilton
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[44] showed that the only complete steady soliton on a two-dimensional
manifold with bounded (scalar) curvature R which assumes its maximum
at an origin is, up to scaling, the cigar soliton. For n ≥ 3, Bryant [6]
proved that there exists, up to scaling, a unique complete rotationally
symmetric gradient Ricci soliton on Rn. The Bryant soliton has linear
growth potential function F , positive curvature operator Rm > 0, linear
curvature decay R ≤ c/F , and volume growth of geodesic balls B(0, r)

on the order of r(n+1)/2. In the Kähler case, the author [9] constructed
a complete U(m)-invariant gradient steady Kähler-Ricci soliton on Cm,
for m ≥ 2, with positive sectional curvature and linear growth potential
function F ; its geodesic ball of radius r has volume growth on the order
of rm and the scalar curvature has linear decay at infinity. Note that in
each of these three examples, the maximum of the scalar curvature R is
attained at the origin. One can find additional examples of steady solitons,
e.g., in [49, 40, 33, 35, 7] etc; see also [10] and the references therein.

Inspired by the work of Munteanu-Wang [58], Cui and the author [16]1

studied curvature estimates of 4-dimensional complete noncompact gradi-
ent steady solitons.

Proposition 5.1. (Cao-Cui [16]) Let (M4, g, f), which is not Ricci-flat,
be a complete noncompact 4-dimensional gradient steady Ricci soliton. If
limx→∞R(x) = 0, then, for each 0 < a < 1, there exists a constant C > 0

such that
|Rc|2 ≤ CRa and sup

x∈M
|Rm| ≤ C. (5.2)

Suppose in addition R has at most polynomial decay. Then, for each 0 <

a < 1, there exists a constant C > 0 such that

|Rm|2 ≤ CRa. (5.3)

Subqequently, using the estimates in (5.2), P.-Y. Chan [21] improved
the curvature estimate (5.3) and obtained the following sharp result with-
out assuming the polynomial decay of R.

1The preprint was posted on the arXiv in 2014.



124 Huai-Dong Cao

Theorem 5.1. (Chan [21]) Let (M4, g, f) be a 4-dimensional complete
non-Ricci flat gradient steady Ricci soliton with limx→∞R(x) = 0. Then
there exists a positive constant C > 0 such that

|Rm| ≤ CR on M.

Remark 5.1. One of the key steps in Chan’s proof is to obtain the sharp
Ricci curvature estimate. Namely, there exist positive constants r0 > 0,
and C1 > 0 depending on the constant A0 in Lemma 2.5 and max |Rc|/R
over the ball Bx0(r0), such that

|Rc| ≤ C1R on M. (5.4)

This is achieved by applying the maximum principle argument to the func-
tion

u := |Rc|2 + |Rc| − CR

for a suitably large constant C > 0 such that u < 0 on ∂Bx0(r0) and
showing that

∆f (|Rc|2 + |Rc|) ≥ (6A0 + 20A2
0)|Rc|2 (5.5)

by using the curvature estimates in (5.2). We refer the reader to Chan [21]
for more details.

Moreover, Cui and the author proved the following estimates for 4-
dimensional gradient steady Ricci soliton with positive Ricci curvature
Rc > 0.

Proposition 5.2. (Cao-Cui [16]) Let (M4, g, f) be a complete noncom-
pact 4-dimensional gradient steady Ricci soliton with positive Ricci curva-
ture Rc > 0 such that the scalar curvature R attains its maximum at some
point x0 ∈M4. Then, (M4, g, f) has bounded Riemann curvature tensor,

|Rm| ≤ C on M (5.6)

for some constant C > 0. Moreover, if in addition R has at most linear
decay, then

|Rm| ≤ CR on M.
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Similar to Theorem 5.1, we can also remove the assumption that R has
at most linear decay in Proposition 5.2.

Theorem 5.2. Let (M4, g, f) be a complete noncompact 4-dimensional
gradient steady Ricci soliton with positive Ricci curvature Rc > 0 such
that the scalar curvature R attains its maximum at some point x0 ∈ M .
Then,

|Rm| ≤ CR on M.

Proof. Since the scalar curvature R > 0, by scaling the metric g, we can
normalize Eq. (2.3) as

R+ |∇f |2 = 1.

Thus,

R ≤ 1 and |∇f |2 ≤ 1 on M. (5.7)

At the same time, since Rc > 0, F = −f is convex. From [15] we also
know that F grows linearly in geodesic distance,

c1r(x)− c2 ≤ F (x) ≤ r(x) + F (x0) (5.8)

for some constants c1 > 0 and c2 > 0, where r(x) = d(x0, x) is the
distance function from x0. Then it follows that x0 is also the unique
minimum/critical point of F , and R(x0) = maxx∈M R = 1. Next, by
(2.5), we have

∆f (R
−a) ≥ a(a+ 1)R−a|∇ lnR|2. (5.9)

Also, by Lemma 2.3, curvature estimate (5.6) and direct computations,

∆f (R
−1|Rm|)

= R−1∆f |Rm|+ |Rm|∆f (R
−1) + 2∇(R−1|Rm|R) · ∇(R−1)

≥ −cR−1|Rm|2 + 2R−1|Rm||∇ lnR|2 − 2∇(R−1|Rm|) · ∇ lnR

−2R−1|Rm||∇ lnR|2

≥ −cR−1|Rm|2 − 2∇(R−1|Rm|) · ∇ lnR.



126 Huai-Dong Cao

Thus,

∆f−2 lnR

(
|Rm|
R

)
≥ −c |Rm|2

R
, (5.10)

where c is a universal constant.
Similarly, by Lemma 2.3 and direct computations, we have

∆f

(
|Rc|2

R2

)
= R−2∆f (|Rc|2) + |Rc|2∆f (R

−2) + 2∇|Rc|2 · ∇(R−2)

≥ 2
|∇Rc|2

R2
− C

|Rc|2

R2
+ 2

|Rc|2

R2

(
2
|Rc|2

R
+ 3|∇ lnR|2

)
−2∇

(
|Rc|2

R2

)
· ∇ lnR− 4

|Rc|2

R2
|∇ lnR|2 − 4

|Rc|
R

|∇Rc|
R

|∇ lnR|

≥ 2
|∇Rc|2

R2
− C

|Rc|2

R2
+ 2

|Rc|2

R2
|∇ lnR|2 − 4

|Rc|
R

|∇Rc|
R

|∇ lnR|

−2∇
(
|Rc|2

R2

)
· ∇ lnR

≥ |∇Rc|2

R2
− C

|Rc|2

R2
− 2

|Rc|2

R2
|∇ lnR|2 − 2∇

(
|Rc|2

R2

)
· ∇ lnR,

where we have used the fact that

|∇Rc|2

R2
+ 4

|Rc|2

R2
|∇ lnR|2 ≥ 4

|Rc|
R

|∇Rc|
R

|∇ lnR|.

On the other hand, from (5.7) we observe that

|Rc|2 ≤ R2 ≤ 1 and |∇F |2 ≤ 1.

Hence,
|∇ lnR| ≤ 2R−1|Rc||∇F | ≤ 2. (5.11)

Therefore,

∆f−2 lnR

(
|Rc|2

R2

)
≥ |∇Rc|2

R2
− C. (5.12)

Combining (5.10) and (5.12), we get

∆f−2 lnR

(
|Rm|
R

+ λ
|Rc|2

R2

)
≥ λ

|∇Rc|2

R2
− c

|Rm|2

R
− λC.
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Since Rc > 0, ∇R = −2Rc(∇F, ·), and ∇F ̸= 0 on M\{x0}, the scalar
curvature R is strictly decreasing along ∇F direction. Thus, it follows
from R + |∇F |2 = 1 that |∇F | ≥ c for some constant c > 0 outside the
compact set {F ≥ r0} for some r0 > 0 sufficiently large.

Now, by applying Lemma 2.5 and choosing λ suitably large, the func-
tion

v :=
|Rm|
R

+ λ
|Rc|2

R2

satisfies the differential inequality

∆f−2 lnR(v) ≥ v2 − C.

Thus, a standard maximum principle argument implies v ≤ C, hence

|Rm| ≤ CR on M.

Finally, we can also prove estimates for the covariant derivative ∇Rm
of the curvature tensor in both Theorem 5.1 and Theorem 5.2.

Theorem 5.3. Let (M4, g, f) be a 4-dimensional complete noncompact
non Ricci-flat gradient steady Ricci soliton with either

(a) limx→∞R(x) = 0, or

(b) Rc > 0 and R attains its maximum at some point x0 ∈M .

Then, there exists some constant C > 0, depending on A0 such that

|∇Rm| ≤ CR on M.

Proof. By Lemma 2.4 and (5.2) or (5.6), we have

∆f |∇Rm| ≥ −c|Rm||∇Rm| ≥ −C|∇Rm|.
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Then, by (5.9) and direct computations,

∆f (R
−1|∇Rm|) = R−1∆f |∇Rm|+ |∇Rm|∆f (R

−1)

+2∇(R−1|∇Rm|R) · ∇(R−1)

≥ −CR−1|∇Rm|+ 2R−1|∇Rm|(R−1|Rc|2 + |∇ lnR|2)

−2∇(R−1|∇Rm|) · ∇ lnR− 2R−1|∇Rm| · |∇ lnR|2

≥ −CR−1|∇Rm| − 2∇(R−1|∇Rm|) · ∇ lnR.

Thus,
∆f−2 lnR(R

−1|∇Rm|) ≥ −CR−1|∇Rm|. (5.13)

Also, by Lemma 2.4 and (5.2) or (5.6), we have

∆f |Rm|2 ≥ 2|∇Rm|2 − C|Rm|3 ≥ 2|∇Rm|2 − C|Rm|2.

Then, by (5.9) and direct computations, we obtain

∆f (
|Rm|2

R2
)

= R−2∆f (|Rm|2) + |Rm|2∆f (R
−2) + 2∇|Rm|2 · ∇(R−2)

≥ 2
|∇Rm|2

R2
− C

|Rm|2

R2
+ 2

|Rm|2

R2

(
|Rc|2

R
+ 3

|∇R|2

R2

)
−2∇

(
|Rm|2

R2

)
· ∇R
R

− 4
|Rm|2

R2

|∇R|2

R2
− 4

|Rm|
R

|∇Rm|
R

|∇ lnR|

≥ 2
|∇Rm|2

R2
− C

|Rm|2

R2
− 2∇

(
|Rm|2

R2

)
· ∇R
R

+2
|Rm|2

R2
|∇ lnR|2 − 4

|Rm|
R

|∇Rm|
R

|∇ lnR|

≥ |∇Rm|2

R2
− C

|Rm|2

R2
− 2

|Rm|2

R2
|∇ lnR|2 − 2∇

(
|Rm|2

R2

)
· ∇ lnR.

Since |Rc|2 ≤ CR2 and |∇F |2 ≤ 1, we have

|∇ lnR| ≤ 2R−1|Rc||∇F | ≤ C. (5.14)

It follows that

∆f−2 lnR

(
|Rm|2

R2

)
≥ |∇Rm|2

R2
− C

|Rm|2

R2
. (5.15)
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Combining (5.13) and (5.15), and setting

w =
|∇Rm|
R

+
|Rm|2

R2
,

we get

∆f−2a lnR(w) ≥ |∇Rm|2

R2
− 2C1

|∇Rm|
R

− C2
|Rm|2

R2

≥
(
|∇Rm|
R

+
|Rm|2

R2

)2

− C
|Rm|4

R4
− C1

|∇Rm|
R

−C2
|Rm|2

R2

≥ w2 − C1w − C2,

where in the last inequality we have used Theorem 5.1 and Theorem 5.2.
Now, it follows from a standard maximum principle argument that w ≤ C,
hence

|∇Rm| ≤ CR on M.

6 Further Discussion

In this last section, we draw some conclusions and raise some open
questions.

Conclusion 1. The scalar curvature lower bound R ≥ C/f of Chow-
Lu-Yang [30] played a crucial rule in the curvature estimates |Rm| ≤ CR

and |∇Rm| ≤ CR for shrinkers by Munteanu and Wang [58], especially
in Step 5-Step 9 of the sketched proof. While lacking such a scalar
curvature lower bound in the expanding case, by picking the curvature
quantities suitably, we still managed to prove the almost sharp curvature
estimate for Rm and ∇Rm for 4-dimensional gradient expanding solitons
with nonnegative Ricci curvature Rc ≥ 0. On the other hand, if there
is any polynomial lower bound for R, then we would achieve the sharp
curvature estimate |Rm| ≤ CR in the expanding case.
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Question 1. Suppose (Mn, g, f) is a complete noncompact non-flat
gradient expanding soliton with nonnegative Ricci curvature Rc ≥ 0. Does
its scalar curvature R have at most polynomial decay R ≥ C/F d for some
d ≥ 2 at infinity?

Remark 6.1. By comparing the proofs of Theorem 3.1 and Theorem 4.3,
one see that the scalar curvature lower bound R ≥ C/f is not really needed
in Step 3 (for Theorem 3.1) if one makes use of the bound |Rm| ≤ C as
in Step III (for Theorem 4.3).

Remark 6.2. Recently, P.-Y. Chan [22] has proved an exponential decay
scalar curvature lower bound for expanding solitons with positive scalar
curvature R > 0 and proper f : Suppose (Mn, g, f), n ≥ 2, is any n-
dimensional complete noncompact gradient expanding Ricci soliton with
positive scalar curvature R > 0 and proper potential function F . Then

R ≥ CF 1−n
2 e−F on Mn

for some constant C > 0.
Moreover, based on the constructions of Deruelle [37, 38], very recently

Chan and Zhu [23] have exhibited an example of 3-dimensional complete
noncompact asymptotically conical gradient expanding soliton with non-
negative curvature operator Rm ≥ 0 such that

lim inf
r→∞

F |Rm| = 0 and lim sup
r→∞

F |Rm| <∞.

Conclusion 2. Gradient estimates for scalar curvature R is quite es-
sential whenever we involve the operator ∆f−2 lnR in the maximum prin-
ciple argument.

In the shrinking case, in Step 7 and Step 9, the gradient estimate
|∇ lnR|2 ≤ C ln(f + 2) in Step 6 is used to derive the sharp Rc estimate
|Rc| ≤ CR (hence the sharp Rm estimate |Rm| ≤ CR) and the estimate
|∇Rm| ≤ CR.

Similarly, for expanders with Rc ≥ 0, the gradient estimate |∇ lnR| ≤
2|∇F | in (4.19) is responsible for obtaining the almost sharp Rm estimate
and the estimate on |∇Rm|.
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In the steady case, we have the sharp gradient estimate |∇ lnR| ≤ C,
which made the sharp estimates |Rm| ≤ CR and |∇Rm| ≤ CR possible.

Question 2. Suppose (M4, g, f) is a complete noncompact gradient
expanding Ricci soliton with 0 < R ≤ R0 and proper f . Does the gradient
estimate |∇ lnR| ≤ C|∇F |, or more precisely,

R−1Rc(∇F,∇F ) ≤ C, (6.1)

hold for some constant C > 0 ?

Remark 6.3. If (6.1) holds for (M4, g, f), then one would be able to
improve the conclusions in Theorem 4.3 to |Rm|2 ≤ CR and |∇Rm|2 ≤
CR.

Also, in the shrinking case, the estimate |∇Rm| ≤ CR implies the
sharp gradient estimate

|∇ lnR| ≤ C on M. (6.2)

In the expanding case, from |∇Rm| ≤ CRa for any 0 < a < 1 we also have

|∇ lnR| ≤ CaR
a−1 on M. (6.3)

Question 3. Does gradient estimate (6.2) for R hold for 4-dimensional
gradient expanding Ricci solitons with nonnegative Ricci curvature? Is it
possible to prove (6.2) directly in the shrinking case?

Remark 6.4. If the answer to Question 3 is affirmative, then one would
be able to improve the conclusions in Theorem 4.1 to |Rm| ≤ CR and
|∇Rm| ≤ CR without any extra assumption.

Conclusion 3. Some key steps, e.g., Step 5 and Step 9, in the proof
of the shrinking case do not seem to work for expanders (even if one has
the improved gradient estimate |∇ lnR|2 ≤ C1(lnF + C2) for expanders).
This seems to be mainly due to the fundamentally distinct nature between
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shrinkers and expanders which is partly reflected in the different curvature
differential identities:

∆fRm = Rm+Rm ∗Rm versus ∆fRm = −Rm+Rm ∗Rm.

If one draws a comparison to the heat equation, in the shrinking case
∆f := ∆ − ∇f · ∇ behaves like a heat operator, where the ∇f term
corresponds to the time derivative, whereas in the expanding case ∆f

behaves like a backward heat operator. To some extent, this seems to
explain why the same arguments do not work in the expanding case. In
any case, it remains a challenge to prove the sharp estimate |Rm| ≤ CR

for 4-dimensional expanders (with Rc ≥ 0).

Finally, we would like to point out that recently Chow et al [28] have
proved the following curvature estimates for complete gradient shrinking
and steady solitons that are singularity models. Here, by gradient shrink-
ing or steady Ricci soliton singularity model, it means that (M4, g, f) arises
as a limit of parabolic dilations at a finite time singularity of the Ricci flow
ḡ(t) on a closed oriented 4-manifold M̄4.

Theorem 6.1. (Chow-Friedman-Shin-Zhang [28] ). Any 4-dimensional
gradient shrinking Ricci soliton singularity model (M4, g, f) must have (at
most) quadratic curvature growth, i.e., there exists some C > 0 such that

|Rm| ≤ C(1 + r(x))2 on M,

where r(x) is the distance function on M from some fixed base point.

Remark 6.5. Since R+ |∇f |2 = f and R > 0, it follows from Proposition
3.1 that

R ≤ 1

4
(r(x) + c2)

2 (6.4)

for any complete noncompact gradient shrinking Ricci soliton.

Theorem 6.2. (Chow-Friedman-Shin-Zhang [28] ). Any 4-dimensional
gradient steady Ricci soliton singularity model (M4, g, f) must have bounded
curvature, i.e., there exists some C > 0 such that

|Rm| ≤ C on M.
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Naturally, one can ask

Question 4. Does |Rm| ≤ CR hold in Theorem 6.1 and Theorem 6.2?

NOTE ADDED IN PROOF
In the steady soliton case, Question 4 has been answered affirmatively

by Chan-Ma-Zhang [24] very recently. Namely, |Rm| ≤ CR holds in The-
orem 6.2.
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