

LOCAL'STABILITY OF THE FIRST EIGENVALUE OF THE LAPLACIAN

Luquésio P. de M. Jorge D Levi L. de Lima

Abstract

It is proved a Morse index formula for the variation problem arising from smoothly deforming a bounded regular domain in Euclidean space and computing the variational formulae for the first Dirichlet eigenvalue of the Laplacian along the deformation. As a consequence, a local stability result, first proved by N. Shimakura, is retrieved.

Let $\Omega \subset \mathbb{R}^n$ be a bounded regular domain, $\lambda_1 = \lambda_1(\Omega)$ the first eigenvalue for the Dirichlet problem

$$\begin{cases} \Delta u + \lambda u = 0 & \text{in} \quad \Omega \\ u = 0 & \text{in} \quad \Sigma = \partial \Omega \end{cases}$$
 (1)

and u the (normalized) first eigenfunction, i.e., u satisfies (1) for $\lambda = \lambda_1$ and, furthermore, u > 0 in Ω and $\int_{\Omega} u^2 = 1$. In this work, we shall study the dependence of λ_1 on Ω . More precisely, let $t \in (-\epsilon, \epsilon) \mapsto \varphi_t : \mathbb{R}^n \to \mathbb{R}^n$, $\varphi_0 = Id_{\mathbb{R}^n}$, be a smooth variation by diffeomorphisms. We shall put $\Omega_t = \varphi_t(\Omega)$ and denote by $V : \Sigma \to \mathbb{R}$ the variational vector field associated to φ_t , i.e.,

$$V(x) = \frac{d}{dt}\varphi_t(x)|_{t=0}, x \in \Sigma.$$

We shall suppose that φ_t preserves volume, i.e., $\operatorname{vol}(\Omega_t) = \operatorname{vol}(\Omega)$. This means that $\int_{\Sigma} f = 0$ where $f = \langle V, \nu \rangle$ and ν is the interior unit normal field to Ω . Conversely, if $f : \Sigma \mapsto R$ is given satisfying $\int_{\Sigma} f = 0$, it is possible to construct a volume preserving variation whose variational field V satisfies $f = \langle V, \nu \rangle$.

A first result concerning the functional $t \mapsto \lambda(t) = \lambda_1(\Omega_t)$ is the following classical first variational formula due to Hadamard ([S]):

$$\lambda'(0) = \int_{\Sigma} f\left(\frac{\partial u}{\partial \nu}\right)^2,\tag{2}$$

Let $\Sigma' \subset \Sigma$ be open and connected. Following Shimakura ([S]), we say that Ω is Σ' -critical if $\lambda'(0) = 0$ for any variation supported on Σ' (i.e. such that f(x) = 0 for $x \in \Sigma \setminus \Sigma'$). From (2), this is the case if and only if $\partial u/\partial \nu = k = \text{const.}$ on Σ' . A theorem of Serrin ([Se]) then implies that the only Σ -critical domains are the spheres $S_r(x_0) = \{x \in R^n; |x - x_0| = r\}, x_0 \in R^n, r > 0$. Furthermore, the annulus

$$S_{r_1,r_2} = \{ x \in \mathbb{R}^n; r_1 < |x - x_0| < r_2 \}$$

is Σ_i -critical, where $\Sigma_i = S_{r_i}(x_0), i = 1, 2$.

From now on we suppose that Ω is Σ' -critical. Then we have the second variation formula ([S]):

$$\lambda''(0) = 2k^2 \int_{\Sigma} \left\{ -f \frac{\partial f}{\partial \nu} + H f^2 \right\}. \tag{3}$$

In the formula, H denotes the mean curvature of Σ and $\partial f/\partial \nu$ is defined as follows. Let $W_f: \Omega \to R$ be the unique solution to the problem

$$\begin{cases} \Delta W_f + \lambda_1 W_f = 0 & \text{in} \quad \Omega \\ W_f = f & \text{in} \quad \Sigma \\ \int_{\Omega} W_f u = 0 \end{cases}$$
(4)

Then $\partial f/\partial \nu = \partial W_f/\partial \nu$.

Again following Shimakura, we say that Ω is Σ' -stable if $\lambda''(0) \geq 0$ for any variation supported on Σ' . In ([S]) it is proved the following result.

Theorem 1. Suppose that Ω is Σ' -critical then Ω is locally stable in the sense that for each $x \in \Sigma'$ we can find a neighborhood $W \subset \Sigma'$ such that $x \in W$ and Ω is W-stable.

In this work we give a new proof of this result. In fact, we shall put Shimakura's result in a more conceptual framework by proving a Morse index formula (see our theorem below) for the underlying variational problem, as explained in the sequel. We shall use standard facts on Sobolev spaces which can be found in [LM].

Let $m \geq 1/2$ and $\gamma: H^m(\Omega) \to H^{m-1/2}(\Sigma)$ be the trace map. We know that γ is linear continuous, surjective and $\ker \gamma = H_0^m(\Omega)$. Hence, γ induces an isomorphism $\gamma^*: H^m(\Omega)/H_0^m(\Omega) \to H^{m-1/2}(\Sigma)$. Furthermore, the map $f \in H^{m-1/2}(\Sigma) \mapsto \xi(f) = W_f \in H^{m-3/2}(\Omega) \subset H^m(\Omega)$, defined by solving the elliptic problem (4), is also linear and continuous and, since for $f \equiv 0$ we get, up to a constant, $\xi(f) = u \in H_0^m(\Omega)$, Fredholm alternative implies that ξ is an inverse for γ^* . We use this for m = 1/2 and m = 1 to obtain the estimates

$$|W_f|_{H^0(\Omega)} \le |W_f|_{H^{1/2}(\Omega)} \le c_1 |f|_{H^0(\Sigma)},$$

$$|f|_{H^{1/2}(\Sigma)} \le c_2 |W_f|_{H^1(\Omega)}.$$
 (5)

We shall view $\partial/\partial\nu$ as an operator from $H^{1/2}(\Sigma)$ to $H^1(\Sigma) \subset H^0(\Sigma)$ so that the righthandside of (3) can be written as

$$\int_{\Sigma} f \mathcal{L} f, \tag{6}$$

where $\mathcal{L} = 2k^2(-\partial/\partial\nu + h) : H^{1/2}(\Sigma) \to H^0(\Sigma)$. We see easily that $\partial/\partial\nu$ is symmetric. In fact, by Green's formula,

$$\int_{\Sigma} g \frac{\partial f}{\partial \nu} - \int_{\Sigma} f \frac{\partial g}{\partial \nu} = \int_{\Omega} W_f \Delta W_2 - \int_{\Omega} W_g \Delta W_f$$

$$= \int_{\Omega} W_f (-\lambda_1 W_g) - \int_{\Omega} W_g (-\lambda_1 W_f)$$

$$= 0$$

Hence, \mathcal{L} is also symmetric and (6) defines a quadratic form in f, denoted Q(f). We shall prove below that Q satisfies an inequality of Garding type

$$Q(f) \ge c_3 |f|_{H^1/2(\Sigma)}^2 - c_4 |f|_{H^0(\Sigma)}^2 \tag{7}$$

This, together with the symmetry of \mathcal{L} and standard spectral theory, implies that \mathcal{L} has a discrete real spectrum accumulating at $+\infty$. Furthermore, if

 $\Sigma'' \subset \Sigma'$ is open and $H_0^{1/2}(\Sigma'') = \{ f \in H^{1/2}(\Sigma''); f \text{ is supported on } \Sigma'' \}$, then the *index* and *nullity* of Σ'' , defined by

$$\operatorname{ind}(\Sigma'') = \dim\{f \in H_0^{1/2}(\Sigma''); Q(f) < 0\},$$

$$\operatorname{nul}(\Sigma'') = \dim\{f \in H_0^{1/2}(\Sigma''); Q(f) = 0\}$$

are both finite. Now consider a smooth deformation $t \in [0,1] \mapsto \Sigma_t'' \subset \Sigma$ such that $\Sigma_0'' = \Sigma''$ and $\Sigma_1'' = \{x\} \subset \Sigma''$. With this notation, our result is the following index formula.

Theorem 2.
$$\operatorname{ind}(\Sigma'') = \sum_{0 < t < 1} \operatorname{nul}(\Sigma''_t).$$

For completeness, we shall indicate the well-known argument that shows how Shimakura's result cited above follows from our theorem. Suppose that Ω is Σ' -critical and let $x \in \Sigma'$. Let $\Sigma'' \subset \Sigma'$ be a small neighbordhood containing x and Σ''_t a deformation as above. By our theorem, there are $t_1, > \ldots > t_n$ such that

$$\operatorname{ind}(\Sigma'') = \sum_{i=1}^{n} \operatorname{nul}(\Sigma''_{t_i}). \tag{8}$$

Let $t^* > t_n$. Now, if ind $(\Sigma_{t^*}'') > 0$, we can find, again by the index formula, $t^{**} > t^*$ such $\text{nul}(\Sigma_{t^{**}}'') > 0$ and this contradicts (8). Hence, $\text{ind}(\Sigma_{t^*}'') = 0$, i.e., Ω is W-stable with $W = \Sigma_{t^*}''$.

Now we give the proof of our theorem. We shall follow the recipe of ([FT]), so that we have to prove two facts about the operator \mathcal{L} , namely, that:

- the quadratic form Q associated to \mathcal{L} satisfies Garding enequality (7);
- \mathcal{L} satisfies the unique continuation property, i.e., if $\mathcal{L}f = \mu f$ on Σ, μ real, and $f \equiv 0$ in $U \subset \Sigma$ then $f \equiv 0$ in Σ .

Clearly, it suffices to prove Garding inequality for $-\partial/\partial\nu$ (since $H=\mathcal{L}+\partial/\partial\nu$ is a zero order operator and a zero order perturbation of an operator, satisfying Garding inequality also satisfies the same inequality) and this is an

easy consequence of Green's formula and estimates (5). In fact,

$$\begin{split} -\int_{\Sigma} f \frac{\partial f}{\partial \nu} &= \int_{\Omega} W_f \Delta W_f + \int_{\Omega} |\Delta W_f|^2 \\ &= -\lambda_1 \int_{\Omega} W_f^2 + \int_{\Omega} |\Delta W_f|^2 \\ &= -(\lambda_1 + 1) |W_f|_{H^0(\Omega)}^2 + |W_f|_{H^1(\Omega)}^2 \\ &= c_3 |f|_{H^{1/2}(\Sigma)}^2 - c_4 |f|_{H^0(\Sigma)}^2 \end{split}$$

where $c_3=1/c_2^2$ and $c_4=c_1^2(\lambda_1+1)$, as desired. As for the unique continuation property, notice that, under the stated conditions, we also have $\frac{\partial f}{\partial \nu}\equiv 0$ on U. Since the operator $L=\Delta+\lambda_1$ is elliptic, U is non-characteristic for L, and we are in a position to apply Holmgren's uniqueness theorem ([H]) to conclude that $W_f\equiv 0$ in a neighborhood of Ω adjacent to U. Now recall that L, as a second order elliptic operator, satisfies the unique continuation property ([H]). Hence, $W_f\equiv 0$ in Ω and from this we get $f\equiv 0$ in Σ . The theorem is proved.

References

- [FT] Fried, H. and Thayer, F. J., An abstract version of the Morese index formula and its application to hypersurfaces of constant mean curvature, Bol. da Soc. Bras. de Mat., 20, (1979).
- [H] Hormander, L., Linear Partial differential operators, Springer-Verlag, Berlin, (1969).
- [LM] Lions, J. L. and Magenes, E., Non-homogeneous boundary value problems and applications I, Springer-Verlag, Belin.
- [Se] Serrin, J., A symmetry problem in potential theory, Arch. Rat. Mech. and Anal., 43 (1973), 304-318.
- [S] Shimakura, N., La premiere valeur propre du Laplacien pour le probleme de Dirichlet, J. des Math. Pures et Ap., 62 (1983), 129-152.

Luquésio P. de M. Jorge
Levi L. de Lima
Departamento de Matemática
Universidade Federal do Ceará
Campus do Pici
60455-760 Fortaleza-Ce, Brazil
e-mail: ljorge@lia.ufc.br

e-mail: levi@lia.ufc.br