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OF THE LAPLACIAN
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Abstract

It is proved a Morse index formula for the variation problem arising
from smoothly deforming a bounded regular domain in Euclidean space
and computing the variational formulae for the first Dirichlet eigenvalue
of the Laplacian along the deformation. As a consequence, a local sta-
bility result, first proved by N. Shimakura, is retrieved.

Let @ C R™ be a bounded regular domain, A; = A;(Q2) the first eigenvalue
for the Dirichlet problem

Au+du=0 in Q (1)
u=20 in =00

and u the (normalized) first eigenfunction, i.e., u satisfies (1) for A = A; and,
furthermore, u > 0 in Q and fyu? = 1. In this work, we shall study the
dependence of A1 on . More precisely, let t € (—¢,€) = ¢y : R* = R*, @0 =
Idgn, be a smooth variation by diffeomorphisms. We shall put Q; = ¢;(2) and
denote by V : ¥ — R the variational vector field associated to ¢y, i.e.,

d
< #t(2)]t=0, 7 € Z.

V(=) =3

We shall suppose that ¢, preserves volume, i.e., vol(€;) = vol(?). This
means that [ f = 0 where f = (V,v) and v is the interior unit normal field
to Q. Conversely, if f : ¥ — R is given satisfying [z f = 0, it is possible
to construct a volume preserving variation whose variational field V satisfies

f=Ww).
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A first result concerning the functional ¢ — A(t) = A(€) is the following

classical first variational formula due to Hadamard ([S]):

x0) = [1(3)

Let ¥ C ¥ be open and connected. Following Shimakura ([S]), we say that

2
)

()

Q) is X'-critical if N'(0) = 0 for any variation supported on ¥’ (i.e. such that
f(z) =0 for z € £\¥'). From (2), this is the case if and only if du/dv = k =
const. on ¥'. A theorem of Serrin ([Se]) then implies that the only X-critical
domains are the spheres S.(z0) = {z € R";|t — 20| = r},z0 € R*,r > 0.

Furthermore, the annulus
S"l.rz = {.7,‘ € Rn;Tl < |.’L‘ = :c0| < 7‘2}

is X;-critical, where &; = S,;(z0),7 =1,2.
From now on we suppose that Q is X'-critical. Then we have the second

variation formula ([S]):

of

" — 2 _ 2

A"(0) = 2k /z{ f_6u+Hf}' 3)
In the formula, H denotes the mean curvature of ¥ and 9f/dv is defined as

follows. Let Wy : Q@ — R be the unique solution to the problem

AWf-i-)\le:O imn
Wy=f in X (4)

/nW/u=0

Then 0f /0v = OWy/0v.
Again following Shimakura, we say that  is ¥'-stable if A”(0) > 0 for any

variation supported on ¥’. In ([S]) it is proved the following result.

Theorem 1. Suppose that Q is ¥'-critical then Q is locally stable in the sense
that for each = € ¥’ we can find a neighborhood W C ¥’ such that z € W and
Q is W-stable.
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In this work we give a new proof of this result. In fact, we shall put Shi-
makura’s result'in a more conceptual framework by proving a Morse index
formula (see our theorem below) for the underlying variational problem, as ex-
plained in the sequel. We shall use standard facts on Sobolev spaces which can
be found in [LM].

Let m > 1/2 and v : H™() — H™ V(%) be the trace map. We know
that v is linear continuous, surjective and ker ¥ = H*(R). Hence, v induces
an isomorphism v* : H™(Q)/H(Q) — H™Y%(%). Furthermore, the map
fe H YD) s £(f) = W, € H™3%2(Q) C H™(QY), defined by solving the
elliptic problem (4), is also linear and continuous and, since for f = 0 we get,
up to a constant, {(f) = u € HJ*(Q), Fredholm alternative implies that £ is an

inverse for v*. We use this for m = 1/2 and m =1 to obtain the estimates

[Welro@) < [Wylmngy < e1lflioz), %)

|flaray < calWylm ).

We shall view 9/0v as an operator from H'/*(Z) to H!(Z) C H°(Z) so that
the righthandside of (3) can be written as

J#ef, (©)

where £ = 2k*(—0/0v + h) : H'/*(Z) — H°(L). We see easily that d/0v is

symmetric. In fact, by Green’s formula,

kg~ k73

/n W AW, — /ﬂ W,AW,

L Winw,) = [ wy-xwy)
=0

Hence, £ is also symmetric and (6) defines a quadratic form in f, denoted Q(f).
We shall prove below that Q satisfies an inequality of Garding type

Qf) 2 eslflin oy — eal flirogs, (7)

This, together with the symmetry of £ and standard spectral theory, implies

that £ has a discrete real spectrum accumulating at +oo. Furthermore, if
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¥” C ¥’ is open and H;/Z(E”) = {f € HY*(Z"); f is supported on £"}, then
the indez and nullity of £", defined by

ind(2") = dim{f € Hy/*(2"); Q(f) < 0},
nul(3") = dim{f € Hy/*(£"); Q(f) = 0}

are both finite. Now consider a smooth deformation ¢ € [0,1] — £} C Z
such that £ = £” and &} = {z} C £”. With this notation, our result is the

following index formula.

Theorem 2. ind(2") = Y nul(Z}).
0<i<1
For completeness, we shall indicate the well-known argument that shows
how Shimakura’s result cited above follows from our theorem. Suppose that
is ¥'-critical and let z € ¥'. Let £” C ¥’ be a small neighbordhood containing
z and ¥} a deformation as above. By our theorem, there are t;,> ... > t, such
that

ind(X") = gnul(E:'_.). (8)

Let t* > t,. Now, if ind (X}.) > 0, we can find, again by the index formula,
t** > t* such nul(Z%.) > 0 and this contradicts (8). Hence, ind(Z}.) =0, i.e.,
Q is W-stable with W = XJ..

Now we give the proof of our theorem. We shall follow the recipe of ([FT]),

so that we have to prove two facts about the operator £, namely, that:
o the quadratic form @ associated to L satisfies Garding enequality (7);

o L satisfies the unique continuation property, i.e.,if Lf = pf on X, u real,
and f=0in U C X then f =01in X.

Clearly, it suffices to prove Garding inequality for —9/0v (since H = L +
0/0v is a zero order operator and a zero order perturbation of an operator,

satisfying Garding inequality also satisfies the same inequality) and this is an
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easy consequence of Green’s formula and estimates (5). In fact,

-Lfg—l{ = /QWIAWI+/Q|AWJ|2

= /W"’ /AW 2
1 Wit n| fl
—(M+ DIW, o) + Wi

Cs|f|§n/2(g) - C4|f|§10(2:)

where ¢3 = 1/} and ¢4 = c}(A; +1), as desired. As for the unique continuation
property, notice that, under the stated conditions, we also have %‘é =0onU.
Since the operator L = A + ), is elliptic, U is non-characteristic for L, and
we are in a position to apply Holmgren’s uniqueness theorem ([H]) to conclude
that W, = 0ina neighborhood of  adjacent to U. Now recall that L, as a
second order elliptic operator, satisfies the unique continuation property ([H]).

Hence, W; = 0 in 2 and from this we get f = 0 in £. The theorem is proved.
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