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1. Introduction

The Intrinsic Generalized Equation was introduced by Campos and Tenenblat
in [7] as a class of systems of differential equations which contains the Intrin-
sic Generalized Wave and sine-Gordon Equations and the Intrinsic Generalized

Laplace and Elliptic sinh-Gordon Equations.

The solutions of the Intrinsic Generalized Equation generically define
Riemannian metrics with constant sectional curvature K, on open subsets
M C R™. These Riemannian manifolds M™(K) of constant sectional curvature
K have the extraordinary property of being isometrically immersed (locally) in a
(2n —1)-dimensional simply connected pseudo-Riemannian manifold M2=1(K)
of constant sectional curvature K, with K # I and index s, 0 < s <n—1 [2]

(see also [1,5,6,8,10,12,16]).

Campos and Tenenblat in [7] give a Backlund Transformation for the Intrin-
sic Generalized Equation. Such transformation provides new solutions for the

equation from a given one.

In this work, we determine the symmetry group of the Intrinsic Generalized
Equation. The symmetry group of a system of differential equations consists of
transformations which act on the space of independent and dependent variables

for the system. These transformations transform solutions graph on solutions
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graph of the system. Moreover, the knowledge of such a group has other appli-
cations [11]. In this paper, we use this group to determine special solutions of

the Intrinsic Generalized Equation, called invariant group solutions.

In section 2, we show that the symmetry group of the Intrinsic Generalized
Equation consists only of translations if K # 0 and of translations and dilations
if K = 0. In section 3, we determine all the solutions which are invariant under

an (n — 1)-dimensional translation subgroup of the symmetry group.

The submanifolds M"(K) C M2"'(K) associated to such invariant solu-
tions have interesting properties. For instance, when the solutions depend only
on one variable many of these submanifolds are toroidal submarifolds [5,6,12].
In the general case, geometrical properties are given by Barbosa, Ferreira and
Tenenblat in [2]. There it is shown, for instance, that such submanifolds are
foliated by (n — 1)-dimensional flat submanifolds which have constant mean
curvature and each leaf of the foliation is itself foliated by curves of M which

have constant curvatures.
This work is part of my doctoral thesis at the Universidade de Brasilia. I

would like to thank professor Keti Tenenblat for proposing the problem, for

helpful conversations and encouragement during the preparation of the work.

2. The Intrinsic Generalized Equation

The Intrinsic Generalized Equation was defined by Campos and Tenenblat in

[7] as the following system of differential equations on R"

vJo! — 1=0 : (2.1)
v, — vh'=0, i#j (2.2)
vi. + i) Jev'h® =0 (2.3)

s#i
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W4 M TR Ko =0, < (24)
s#g
hd — h*h% =0, ijs distinct (2.5)
Jishd + Juhdi + ;;,,h"’h”:o i<j (2.6)
SFH]

where J = (J;;) is the n x n diagonal matrix

J = diag(1,...,1,—1,...,~1

p times g times

with p+ g =n.

A solution of system (2.1)-(2.6), defined on an open subset Q C R™, is a pair
(v, k) where v(z) = (v'(z),...,v"(z)) is a vector field in 0 and k(z) = (h(z))

is an off-diagonal n x n matrix.

A solution of equations (2.1)-(2.6) such that vi(z) # 0, 1 < i < n, on an
open subset & C R", defines a metric on Q given by gij = 8;;(v')? for which
the sectional curvature is constant equal to K. In this case, the matrix A is
determined by v and the equations (2.3) and (2.6) follow from equations (2.1)
and (2.2).

When J is the identity matrix the system (2.1)-(2.6) is called the Generalized
Intrinsic sine-Gordon and Wave Equations [4]. Tenenblat and Winternitz in
[15] computed the Symmetry Groups of these equations. When p = 1 and
g =n —1 the system (2.1)-(2.6) is called the Generalized Intrinsic sinh-Gordon
and Laplace Equations [16]. Forn =2,p =2and n = 2 ,p =1, respectively, by
taking v = cos%,sing-) and v = (coshg, sinh%) , respectively, the equations

(2.1)-(2.6) reduce to the classical equations
Uzyz) = Uspe, = —Ksinu  and  ugg, + Ugys, = —Ksinhu

respectively.
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Theorem 1. The symmetry group of the system (2.1)-(2.6), for n > 3, is the

group of transformations
(z,v,h) — (e*z +b,v,e™*h), \€R and beR" if K=0

or
(z,v,h) = (z+b,v,h), beR" if K #0.

Initially we show that system (2.1)-(2.6) has maximal rank through the

following lemma [11].
Lemma 2. The system (2.1)-(2.6) has mazimal rank.

Proof. The jet space for the system (2.1)-(2.6) is the space

IO = {(zi,0', kY, 0} b ) 11 < 4,8 < myi # j} 2RI,

’1,'71:

The function F(z;,v*, A, v} , h¥ ) which defines the system as level submanifold
of J() gets value into R™ where m = 1 4+ n — n? 4+ n® is the number of the

equations of the system. We observe that the m vectors

OF OF OF

. oF .
o1’ 6v' ’3h"’ with ¢ < j,——, with

ohd’

7 With ¢ < j, are linearly independent in all the points of
<

the F~1(0). So, the system has maximal rank.

1,7, s distinct and

Proof of the Theorem. Let

V=Zn35"($,v,h)%+f:¢‘(w,v B2+ 3 die,v )75
i=1 i i=1 ij=1

1#]

hu

be a vector field into the space of the independent and dependent variables.

The first prolongation of V is the vector field on J()

3 a 3
OV =4 3 g0 +Z¢$,’ 50
1,8=1 05,8

i#]
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where:
n

& = D,(¢') -3 Di(€Y)i,
=1
P = D,(¢) - ij, ¢)hY and

=1

D, = 9z El E I-ahrt

s rt=1

r#t

We apply pr)V to each equation of the system (2.1)-(2.6) and we will make

the following substitutions

vJvt = 1 (2.7

'U;J. = oA, i4j (2.8)

vi, = —=Ju) Jv'h® (2.9)

h¥ =-%£—§%M%”—wa,i<j (2.10)

hY = h™h¥, i s distinct (2.11)

hd = —Jiahdi = Y Jiiduh®h?, i< (2.12)
s#1,5

After this, we obtain a system of polynomial equations on the variables

hst

2y £ =sor £ =tand s > t. Equating to zero the coefficients of indepen-

dent monomials we will obtain a linear system, of partial differential equations,

called the determining system, which defines the functions ¢, ¢* and ¢.
By fixing distinct indices ¢, j, s and by applying pr(V to equation (2.5) we
obtain
¢ — hiegi — Roigi = 0 (2.13)

Substituting ¢,(-;) into equation (2.13) and then the relations (2.10)-(2.12) we
get a polynomial equation of degree two on the variables ht, d=rord=1

and r > t.
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We suppose 7 < j. Equating to zero the coefficients of h’;', h3 with t < s and
h3’ b, with ¢ > s we obtain
Eia=0, Vit ,t#s. (2.14)
The coefficients of hZ' h2t with t < s and hZ’hi} with ¢ > s provide
=0, ¥t ,t#s. (2.15)

From equations (2.14) and (2.15) we conclude that ¢ depends only on z and v,
ie., & = €i(z,v).
Next, we consider the first order terms of equation (2.13).

We suppose i < j. the coefficients of h%' with ¢t < s and h% with ¢t > s provide
=0 Vi, t#s. (2.16)
Equating to zero the coefficients of h% with ¢ < s and k%’ with ¢ > s we obtain
G,=0 Y, t#s (2.17)

From the coefficient of h;‘l it follows that
;',,+lev§, =0 , i#s. (2.18)

If i > j we obtain the same equations (2.16)-(2.18). From equations (2.16) and
(2.17) it follows that ¢ depends only on z,v,h" and h¥, i.e.,

¢ = ¢ (z, v, b9, %), i#]. (2.19)
Substituting (2.8) and (2.9) into equation (2.18) and using the fact that ¢!

depends only on z and v we obtain

i = 0 Vs, s#i. (2.20)

Ts

~JuJuv®t, + viE=0,Vs, s#i (2.21)

From equation (2.21) we conclude that &' depends on Y J,,(v°)? which is equal
s=1

to 1. So & does not depend on v. Therefore, £ depends only on z;, i.e.,

& =E(m)
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We fix i # j and apply pr)V to equation (2.2). Then substituting the
relations (2.8)-(2.12) and using information (2.19) we get

Gt = =0 Vi, t#]. (2:2)
—JjjJuv' el + vigle =0,V 8, £#4,]. (2.23)
G+ (= JjJiv' sl + vighi — € v — PN — i = 0. (2.24)

We conclude from equation (2.23) that ¢* depends on ) _ Jos(v®)? which is equal
s#i
to 1 — Ji;(v)%. So, ¢' depends only on z and v, i.e.,

¢ = ¢'(z,v'). (2.25)

Taking the derivative of equation (2.24) with respect to A"/ and then twice with

respect to hi* we obtain
#.=0 and @l =0.
Therefore, ¢/ does not depend on h# and is linear on h', i.e.,
¢ = A'(z,v)h + BY(z,v), Vi,j, i #J.
Using the information above about ¢/, the equation (2.13) provides

BY = 0,Yij, i#]. ke
AY — A¥ A" =g  ijs distinct. (2.27)

Substituting ¢ and using (2.25) into equation (2.24) we get

¢, = 0,Vi,j,i#]. (2.28)
vigh — G —¢ —vIAT=0, Vi i) (2.29)

Fixing indices i < j and dpplying pr('V to equation (2.4) we obtain

¢+ 80+ 3 R + 3 @R + Kvig' + Kv'gh =0 (2.30)

s#ij s#i,j
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Substituting qS(':) 4\ and the relations (2.8)-(2.12) into the equation (2.30) we

(VIRR AT
obtain from the coefficient of h;’J that

_A€j+£ii+Aji_§ij=0 , 1< (2.31)

Maintaining ¢ < j and applying pr)V to equation (2.6) and using the

informations above we get from the coefficient of hJI" that
—AT 48+ AR =0, i< (2.32)

Adding the equations (2.31) and (2.32) we obtain

AT = A% i (2.33)
and
=B (2.34)

From equation (2.34) and using the fact that ¢' depends only on z; we conclude
that

E=ar;+0a; , V 1<i<n (2.35)

where a and «; are real constants.
Interchanging s with ¢ on equation (2.27) and considering the equations
(2.33) and (2.35) we get

AY — A9 _ A =q | i, distinct. (2.36)
From the equations (2.27) and (2.36) we obtain
A" =—a Vs, s#i. (2.37)
Hence, it follows that
¢ =—ah" | i#j. (2.38)
Substituting the equations (2.35) and (2.37) into equation (2.29), it reduces to

§=vigh , i#] (2:39)
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Since ¢/ depends only on z; and v’ taking the derivatives of equation (2.37)

with respect to these variables, we obtain
# =cv’ , ¢ constant. (2.40)
Applying pr(MV to equation (2.1), we find ¢ = 0 and so
#=0, V 1<i<n. (2.41)

Substituting the equations (2.38) and (2.41) into equation (2.30) we get a = 0
if K #0.

Therefore, the infinitesimal generators of the symmetry group is given by

0 ;i 0
sz(azi+ai)8_m_a;h]m’

=1

where a =0 if K #0.

3. Invariant Solutions

Now we compute solutions of the Intrinsic Generalized Equation which are in-
variant under an (n — 1)-dimensional translation subgroup of the symmetry
group. In all this section, we consider, p = 1 and ¢ = n — 1. Moreover, also
consider without loss of generality only the cases K = —1,0,1. We observe that

similar solutions for p = n were given in [15].

Let
Vi =

n a .
._ < 1 < n ]
2biga 1SS -1, €R,

1
be n — 1 linearly independent vector fields of the Lie algebra of the symmetry

group.
We suppose that these vector fields are invariant by the following function

{=Za,~z,~, o, e R\{0}Ve<i<m<n, £=1lor2.
1=f
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In this case, solutions of the form v(£), A¥(¢) will be invariant under the trans-

lation subgroup associated by {V;}7Z{.

Moreover, we are only interested in solutions, v(¢) = (v!(£),...,v"(£)) such
that vi(£) # 0, V'1 < i < n, on an open subset § C R”. In this case, the
equations (2.3) and (2.6) are consequence of the remaining equations. So, the
system (2.1)-(2.6) is reduced to

()~ D) =1 | 1)
i>2
v, = vk, i#j (9:2)
h;]. n hii'*‘ ;'h’ih’j=—Kvivj? i3] (3.3)
s#1,]
RY = R™R¥ i js distinct. (3.4)

The main result of this section is the theorem below.

Theorem 3.

a) If n > 4 and K = —1 the system (3.1) - (3.4) has solutions of the form
v(€) ifand only if L <m < £+ 1.

b) Ifn > 4 and K = 0 then the system (3.1) - (3.4) has nanconstant solutions
of the form v(€) if and only if £ <m < £+ 2.

¢) Ifn>4 and K =1 then the system (3.1) - (3.4) has no solutions of the
formv(&)V £<m <n.

d) If n =2 or 3 then the system (8.1) - (3.4) has solutions of the form v(£)
for any K.

Theorem 3 will be proved by first establishing the cases for which the sys-

tem (3.1)-(3.4) has no solution. After this, we determine the solutions that exist.

Initially, we observe that there exist constant solutions v of the system (3.1)-

(3.4) if and only if K = 0. If v is a nonconstant solution, then there are two
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distinct indices j such that v’ is nonconstant. In this case, without loss of
generality, we can suppose that v! and v? are nonconstant or v? and v® are
nonconstant.

The proposition below establishes those cases for which there are no solu-

tions.

Proposition 4.

a) Ifn >4, m > £+2 and K # 0 then the system (3.1)-(3.4) has no solution
of the form v(§).

b) Ifn >€+3, m>£+3 and K = 0 then the system (3.1)-(3.4) has no

nonconstant solution of the form v(§).

¢) Ifn > 4 and K =1 then the system (3.1)-(3.4) has no solution of the
form v(§), V€ <m < n.

Proof. The equations (3.2) provides

o
= if £<i<m. (3.5)

hij = a;
v
R =g Vi Tism orf 1<i<. (3.6)

If n >3, m > €41 and 1, j, s are three distinct indices with £ < i,s < m, then
from equations (3.5) and (3.4) we obtain

) ot o
v €—v~’v" ’

From equation (3.7) we conclude that
vg = pji,v'v’, where pji, €R. (3.8)

We suppose that v is a nonconstant solution of the system (3.1)-(3.4). We will

consider separately the cases £ =1 or £ = 2.
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Case A. (=1. If m > 4 it follows from equation (3.8) that there are constants

A; #0,1 < j <m, and a nonconstant function ¢(¢) such that
v =Xe(), 1<j<m,
Substituting equation (3.9) into equation (3.7) we obtain
2
()~ (%)
vl \¢

From this last equation it follows that

_a
P = T
where a, and ¢ are real constants.
Hence,
v:'=§’\i“,, 1<j<m
c
and
B;a’

vj: +7Ja m<j§n,

f+c

where 3; and «; are real constants.

(3.9)

(3.10)

(3.11)

(3.12)

Substituting the equations (3.11) and (3.12) into equation (3.1) we obtain a

contradiction.

If m =3 and vg =0V j >4, then equation (3.3), for indices 1 <7 < n and

J 24, reduces to Kv'vi =0, ; # j. Hence, if K # 0 no solutions exist.

Now, we suppose that m = 3 and there is an index J 2 4 such that vg £ 0.
In this case, it follows from equation (3.8) that there are o and 8 € R\ {0} such

that

v?=Fv' and v3 = avl.

Then equation (3.7) provides
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Therefore,
vl:f-l-Ld’ A and deR\{0} with A#£0,
oo By
E+d
vs:fj—/\d and vj=—écii.—/\;+qj,j24, ¢; and ¢; € R.

Equation (3.1) leads again to a contradiction.
To conclude the proof of Proposition 4, in the case [ = 1 , we observe that
Campos [5] showed that the system (3.1)-(3.4) has no solution for n > 4, m = |

and K = 1. Hence, the case m = 2 remains to be proved.

Equation (3.3) with i = 1 and j > 3 provides

v? v} .
Pj12 (a?v—i + a%v—‘;) = —¢’ (3.13)

Considering indices 7,7 > 3, i # 7 in equation (3.3), and making use of equation
(3.13), we get
2V Y ’ 20,2\2 | 2/ 1\2
(135 + a1 ) = (a2 + az(ot?)
which is a contradiction.

Case B. £ = 2. We suppose that vE1 #0. If n > 4 and m > 4, it follows from
equation (3.8) that there are constants ¢; #0, 2 < j <m, such that

vj=cjv2,2§jSm.

Substituting this last equation into equation (3.7) we obtain
b
v¥i=—
{+p
where b and p are real constants.

Therefore,

vjzé_b:j, 2<j<m and
P

gb”
{+p

v = +ri,m<j<n orj=1,
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where ¢; and r; are real constants. Substituting these relations into the system

(3.1)-(3.4) we obtain a contradiction.

Now we suppose that v; = 0. If n > 4, m > 4 and K # 0, then equation
(3.3), with the indices i = 1 and j > 2, leads to the following contradiction
Kv'v? =0.

If K =0, the system (3.1)-(3.4) reduces to the following
Z(vj)2 = A? , A? = (vl)Z ~1
i>2
v{._.:v‘h‘j , 3,722 and 1#7
hi +hE + 3 bR =0, i#j, 1,722
s#iyg
h;:j, = h*hI* | i,J,s distinct, ,7,5 > 2

(3.14)

Tenenblat and Winternitz showed in [15] that system (3.14) has no solution if
n>5and m > 5.

To complete the proof of Proposition 4, in the case | = 2, the cases K =1
and 2 < m < 3 remain to be proved. The equation (3.3) with: =1, 7 > 4

provides
pinap12a(@3(v°)? + a3 (v?)?) = —v'v?, 5 24 (3.15)

Now we get 1 =2, j =1 or j > 4 in equation (3.3). Making use of equation
(3.4), we get

vd v? !
- (azv—§+a§v—§) =i, j=lorj24 (3.16)

Substituting equation (3.16) into equation (3.15) we obtain a contradiction.

The case m = 2 is proved in Campos [5].

Now, we will determine those solutions of the form v(¢) for the system (3.1)-

(3.4) that exist. In order to simplify the statements we will indicate henceforth
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by
EzZa;zi, a; ER\{0}VI<i<m<n e

i=1
and by
n=>Y Bz, fie R\{0}V2<i<m<n.

1=2

Proposition 5. Ifn >4, m = 3 and K = 0, then the nonconstant solutions

of the system (8.1)-(3.4), of the form v(£), are given by

o - Her-3
(v3)? a=b <(vl)2 kv b C)

a—>
V! = X; v j>4

where a,b,\; € R\{0}, c € R, )\ = ZA?, a # b and a,b satisfy the
=4
equation !

(a —b)(ba? + ac?) + abal = 0.

We obtaim real solutions of equations (3.17) in terms of elementary functions
for special values of the constants involved in those equations. For instance, for

c=a(l+ A?) and b(a — b) > 0 we have

vl =€y /%(1 + A% sec [\/a(a —b)(1+ M) (¢ - 50)]
v? = V1 + A2 tg [m(f - 50)]

o \/_;b(l—m [Vata =B+ 2 - &)

vj=)‘j7j247

where §o € R and ¢; = +1, i = 1,2, 3.

Proposition 6. Forn >4, m = 4 and K = 0 the nonconstant solutions for
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the system (3.1)-(8.4), of the form v(n), are given by

(P = b+ a0 (S - o)
b

@F = (-0

b+a (aX?+ bc
492 _ (22
i = (S )

v = a;,j=1 or 4<j<n,
where a,b,a; € R\{0}, c € R, a} =D af > 1, ¥ =al =Y a?-1,a # —b
7=5 j=5
and a, b satisfy the equation

(a+b)(ba? + ac?) — aba? = 0.

Proposition 7. The nonconstant solutions of the system (3.1)-(3.4), of the

form v(£), with n = m = 3 are given by
@) = ba=b) (@7 -7) (077 - 2=5)
o - Hor-)

ey = 2 (wy-229),

a

where a,b € R\{0}, c € R, a # b and a,b satisfy the equation
(a—b)(ba? +aa})+abal + K =0

Moreover, we have additional solutions.

For K = —1;

S
Il

A A cosh (o%f — §0>

<
I

2 +Asenh (if — {0)
[e%}
v3 o= ),

where A € R\{0}, & € R and A = V1 + A2.
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For K =1;

vlo= A

v? A cos (if - §0>
(&3]

v®3 = £Asen (—/\—f—&)) :
ay

where A € (1,00), & € R and A = £V A2 — 1.

Proposition 8. Ifn > 3, m = 2 and K = —1, then the solutions of system
(8.1)-(8.4) of the form v(€) are given by

0 = (- Y - (") —e)
O = T - Med) —o)

) b%(a? + o
Wi = 2y - ),

where N?a2 —1#0, M=) b and b; € R\{0}.
=3

J_
_1+/\zaf—c
- N(af+ad) ]

2
Ifn>4, ¢c=1, A= = and c¢; € R.

Ifn=3, <« A=c¢ and c€R.

a? + a2
Proposition 9. For K = —1, n > 3 and m = 3 the solutions of the sysiem
(8.1)-(3.4), of the form v(n), are given by:
(i) If of # of;
1
32 _ 2 3)2 3y2
@ = g (6= 0t =DEY) () +)
1
22—t (o (xal 3y2
@) = 5= (6- - 1EY’)
. B (3 — a?) ; .
[AY 20— 1 3 2 3)\2 — >4
(v') el 1 (v+ @)%, i=1o0ri>4,

when \a2 —1#0 where A=p7—)Y f7 and F;i € R\{0},1=1 or
>4
i>4.
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Ai-1+c
Ifn=3, Cl=m, Y= and ¢ € R.
@3
Ifn>4, c=1 and 'yzag_a%.-

Moreover, we also have the solutions for Aa? —1 =0,

v¥=a

v = Asenh (in - 170> , n € R.
Qa3

v' = Biaz A cosh (177—770>, 1=1lori>4.
Qa3

Ifn=3, a € R\{0}, ﬂ1=iai and A=+V1+a?.
3

2
Ifn>4, B € R\{0}, i=1 or i>4, a®=—2_ and

Q; — Q3
A=1V1+a?.

(ii) If a2 = a2 the system (3.1)-(3.4) has no solution for n > 4.

When n = 3 and o2 = o? the solutions are given by any three functions
v!,v? and v? satisfying
(v1)* = (") = (v*)* =1

vy = +—vh3.
Qs

The proof of Propositions 5-9 follows from a straightforward computation.

More details can be found in [9)].

We conclude by observing that results analogous to Theorem 3 and Proposi-
tion 4 of this section and to Theorem 2 of [15] can be obtained for the Intrinsic

Generalized Equation for p# 1 or p # n.
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