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0. Introduction

Conformal geometry considers scale-invariant properties of Riemannian man-
ifolds. See [14] for a modern introduction to conformal structures via second
order frames. Complex structures are related to oriented conformal structures
in such a way that, in real dimension two, both structures are equivalent.

Any 3-dimensional manifold has a contact structure ([13, 15]), that is, a
non-integrable distribution characterized by 6 A df # 0 at every point, where
is a 1-form annihilating the distribution. Contact structures first appeared in
Mechanics, but they also appeared intermingled with complex structures in [16].
Poincaré examined the boundary of domains in C? in an attempt to understand
uniformization in the case of two complex variables. The structure on the
boundary is nowadays abstracted in the concept of a CR-structure (Cauchy-
Riemann structure).

It turns out that we may view the CR-structure as a conformal structure
on the contact distribution. Webster defined the concept of pseudo-Hermitian
structure in [19] and noted that it relates to CR-structures in the same way as
Riemannian structures relate to conformal ones. In [12], the general case of a
metric structure on a contact distribution is treated and in [10] the conformal
geometry of this structure is analysed based on the treatment of the CR case
(13, 4, 6)).

A metric defined on a distribution is also called a sub-Riemannian structure.
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In dimension 3 a contact sub-Riemannian structure is equivalent to a pseudo-
Hermitian structure, and its conformal geometry is equivalent to a CR structure.
In this paper we make explicit the relation between sub-Riemannian, pseudo-
Hermitian and CR structures in the case of dimension 3. We analyse Cartan’s
CR invariant by expressing it in terms of sub-Riemannian data and compute it

for all homogeneous sub-Riemannian manifolds classified in [9]. See Table 1.

1. Basic structures

Let D be a contact distribution defined on a 3-dimensional smooth manifold
M, that is, there is a 1-form 6 on M such that kerd® = D and 6 A df # 0. We

will consider the following structures:

Definition 1.1.

a. (M,D,J) is a CR-structure if J is a smoothly varying linear endomor-

phism on D which satisfies J? = —1.

b. (M,D,g) is a sub-Riemannian structure if g is a smoothly varying positive

definite symmetric bilinear form on D.

c. (M,D,[g]) is a conformal sub-Riemannian structure if [g] is a conformal

class of sub-Riemannian metrics.

2. Sub-Riemannian and pseudo-Hermitian structures

Let (M,D,g) be a sub-Riemannian structure. The adapted coframe bundle
is the bundle of positively oriented orthonormal adapted coframes 6, 6, 62

satisfying d0 = 201 A 6. If 0, 0, 0%’ is another adapted coframe, then

0 =0
9" = a;'-aj where (a§)650(2)

Theorem 2.1. ([11, 19]) There ezists a unique connection form w and torsion
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forms T, T2 such that

dé' = ’Aw+OAT?
d0? = —0*Aw+0AT?

with T A0+ 72A60%=0.

" The curvature form is

and we write then
Q=KO'ANO?+W,0* A0 +W,02N6 (1)

It will be important to collect the Bianchi identities in the following. First
observe that we may choose 6 and 6% such that 7! = 740! and 72 = —7,02.

This defines a parallelism on the manifold in the case 75 # 0. We have

~Wi—102 = 27w
Wo—101 = 271w,
Ko — Wia —Wiwy + Wy — Wow, = 0
—wiz +wa — (W) — (w2)? + 2wy = K
—wio +wor —wi1To —wowy = W,

W,

—Wwso + Woz — Wow1 — W2 Ty

Here we used the convention & = 010" + @362 + a8 for a 1-form  on M and,
in particular, df = 10 + f,0% + fo8 for a function f defined on M.

We draw some consequences from the Bianchi identities. If 70 = 0 then
W1 = W3 = 0. On the other hand, in the case that 79 # 0 and K, 7o, W;, W,

are constant, we have the relations
1
w) = —W1/21'0, Wy = W2/2T0 and Wy = E(K + le + W22) (2)

There are two possible cases: Wy = —W; and Wy = W,. If Wy # 0, then

wp = To and wp = —7p in each case, respectively.



64 E. FALBEL C. GORODSKI J. M. VELOSO

We will show how the sub-Riemannian structure is related to the pseudo-
Hermitian structure defined by Webster in [19]. In fact, in dimension 3, the
structures are the same. A pseudo-Hermitian structure is defined fixing a dis-
tribution D, a complex operator J in D and fixing a form § = @ with kernel D.

The equations of Webster’s connection are obtained by defining

0! = 0 +i62
! = rldird
0] = —iw

With this notation, we easily see that we have
do = i0' A0
do' = 0'AOI+OAT
with conditions
gl +6l = 0
A = 0
Here 6! = 0}.
The curvature of this connection is
Ql =dol = ROA O + WO ' AG— W' AO. (3)

Comparing the pseudo-Hermitian curvature (3) with the sub-Riemannian

one (1), we obtain

1 7
R = 3K (4)
. .
W = —§W2—%Wl (5)

3. Sub-conformal and CR-structures

In this section we describe the bundles which are associated to the CR-structure
and to the sub-conformal structure. Note that in dimension 3 both structures

coincide. See [6] for details on the CR-case and [10] for the sub-conformal case.
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Let (M, D, [g]) be a sub-conformal structure. We let E’ be the line-bundle of
all sub-Riemannian metrics in the conformal class [g]. Given a sub-Riemannian
metric, that is, a section of this bundle, there exists a canonical contact form 6
such that

do =20 N6% + h,0° A0

where @° is an orthonormal coframe on D. We could also consider the line
bundle E of all contact forms associated to the sub-Riemannian metrics in this
sense. It is clear then that there exists a fiber bundle isomorphism between those
two bundles. To explicit this isomorphism, consider a trivialization of E’, that
is, a choice of a sub-Riemannian metric g and the corresponding trivialization
of E, that is, the contact form §. Then the bundle map is defined as Ag — 8.
We will identify E with E’ in the following considerations.

We will construct a bundle Y of 1-forms over the bundle E. We begin by
defining the tautological form w. Given a point e in E, consider a coframe 8*

as above. At e we consider the pull-back of 8% and all forms defined by
w' = VXai07 +v'w  where (a}) € SO(2);
finally we define the form ¢ by imposing the equation
dw =2w' Aw? +wA ¢.
Observe that for each choice of w', ¢ is then any form in the family
o= —d/\—'\ +2(v'w? — v2w?) + sw

The bundle of all forms w, w', ¢ is denoted by Y. This is a G-structure

with G the group of matrices of the form

1. 0 0
v ul 0
s —2v’°u_’1F 1

where (u}) € SO(2).
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In the case of CR-structures we also form the line bundle E of contact forms
and denote by w = w the tautological form. Y will be the G-structure of all

coframes satisfying the equation
dw=iw' Aw' +wA ¢

where w! = w! +iw?, ¢ = ¢.
In dimension 3, a sub-conformal structure is equivalent to a CR-structure.

In complex notation write the group G as the group of matrices of the form

1 0 0 0
v w 0 0
ol 0 a 0

s duv! —imw! 1

where u € U(1).

1

We use now the convention o! = @' and a; = a! for a! a complex valued

1-form.

Theorem 3.1. ([3, 4, 6]) On Y there ezists a unique parallelism given by the
forms w, W', ¢ ,¢}, &', ¢ such that the following equations are satisfied

dw WAl +wA e

do' = W'AP+wAP

dp = iwp AP +igiAw +wAY
dpl = iw A @' —2igy Aw! —%¢Aw

d¢' = ¢>/\¢l+¢l/\¢}—%¢/\wl+QwI/\w

with the condition ¢ — ¢} — ¢% =0.

We also have one more equation:
dp=—-9pAdp+2P' Ay +pAw (6)

It is not difficult to see that p = 2Q18" + 2Q,0'. See Cheng ([5]).
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The Cartan connection on Y is the su(2,1) valued form

-3¢t + ) w! 2w
T = —2¢1 %(Q(ﬁ} = ¢) 220}1 B
% 9 36+
and the curvature form for this connection is
0 0 0
D=| —iQu'Aw 0 0
—ipAw 1Quw'Aw 0
(see ([6]))-
In the case dim M = 2n+1 > 5, let (M, D, [g]) be a nondegenerate conformal
sub-Riemannian structure. We let F, as before, be the line-bundle of all sub-

Riemannian metrics in the conformal class [g]. Given a sub-Riemannian metric,

there exists a canonical contact form 6 such that
d0 = hi;0' N6 + hi0' N O

where ' is a dual basis of an orthonormal basis of D, and det(h;;) = 1.

Over the bundle E we construct a bundle Y of forms analogously to the
3-dimensional case. The construction is very similar to the construction of the
corresponding bundle in the case of CR-structures ([6]). The main difference
from that case is that the bundle Y is not a G-structure.

Consider the tautological form w. Given a point e = Ag in E, where g is a
section of E, consider a coframe 6 as above. On e we consider the pull-back 6

and all forms defined by
W= \/Xai-Oj +v'w where (a}) € O(2n);
finally we define the form ¢ by imposing the equation
dov=wAo¢+ h;jwiij

Although the bundle Y is not a G-structure, we were able to find a par-
allelism for Y introducing as a main tool (ady) acting on g/(2n), where H =

(hi;) is the varying antisymetric form. The parallelism is determined through
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smoothly varying algebraic conditions. Whoever is familiar with Chern’s treat-
ment of the CR case should imagine the formidable details necessary to imple-

ment these ideas. The following theorem is proved in [10].

Theorem 3.2. ([10]) There exists a unique parallelism of Y given by the forms
w, W', @, w;'-, &', 1 satisfying the equations
dw=h;jw{ij+wA¢ ‘

) 1 e s s
dw' = —§¢/\w‘—w}/\w’ - ANw
d¢ = 2hii¢' Aw! + bijw Aw! +w A Y
dw; + w,‘; A w;‘ + hkjwi A ¢k - hk,-wj A ¢k - %bkjwk. AW + %bk;w" AW

——hk_,-¢>" AwF + b Ak + h,-jw'c AgF = ;kmwk Aw™ + (Vj"kw" + VijqSk) Aw

;o1 : ; .1 v

df = SONE = & Awi + 59 A =
5( e — Viwk Aw? + WhdF Aw? + Pjw’ Aw+ R Aw + Ulp Aw

dp + P A —2hi;¢' A ¢ + (2hi; Ri + 4bj)¢F Aw? 4 2h;UY Aw! = p Aw + Qw0 AW

with conditions

W,

jor=
(b;) € g
(Siim) € (9)*

Vi =0

P =0

1

1

where g = ker(ady) N so(2n), (¢') = im (ady) N sim(2n), for H = (h;j), p is

a 1-form, and the conditions

hij = —hj
b.‘j = —bj,'
_;:km. 55 _S;'ikm i _S_;:mk

Som + Skimj + S = 0
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Vi = -vi
j‘.k = —W.‘i
(sim(2n) denotes the vector space of 2n X 2n real symmetric matrices).
The parallelism defined by Chern for the CR-structure in [6] corresponds to
the case in the above Theorem where H = J and (w;) € g. In that case the

bundle Y is a G-structure and in fact Chern finds a Cartan connection.

4. Cartan’s invariant

Cartan’s invariant is @ and it is defined on Y. A change in coframes
0 = X\
oY Vaub' +v'0

transforms Cartan’s invariant

Q=Q ) (7)

Definition 4.1. We say a CR-structure is umbilic at p € M if Q(p) = 0.
Otherwise, we say the structure is non-umbilic at p.

To obtain an invariant defined on the base manifold M, we first observe
that, if the point is umbilical, then the invariant Q = 0 is well defined on the
base manifold at p. If the point is not umbilical, we shall find a parallelism on
M at p by imposing Q'(p) = 1. This condition fixes a unique coframe 6 , ' at

p. Invariants A, B and C are thus obtained on M from the equation

do' = AO* A0+ BOAG' +COA G (8)

Remark 4.1.

a. If a CR-structure is umbilical on a neighbourhood of a point, then the

CR-structure is locally CR-equivalent to S° near that point.

b. If two nowhere umbilical CR-structures have the same constant invariants

A, B and C, then they are locally CR-equivalent.
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5. Cartan’s invariant via sub-Riemannian invariants

It is now our goal to write Cartan’s invariant in terms of the sub-Riemannian
data. Following Webster [19] and a correction in [1], we embbed the sub-

Riemannian structure into the sub-conformal structure by fixing a section
1 i,'1
6 = 01+ ZRO

P = 7-1+2R0‘+E9 (9)
v = GO+i(E0' — EOY)

whereE:%‘+¥

Recall the last equation from Theorem 3.1
a8 = A G~ $ NG+ 2P AWt = Qul Aw (10)
and substitute relations (9) into (10) to get
Q = 706}, — T8}, — %Rro + E0}; (11)

To simplify the exposition we will suppose from now on that K, 7, W,
W, are constants. If 0 = 0 then @ = 0. Otherwise, substituting the sub-
Riemannian data (4), (5) and (2) into (11), we have
Y
670

RAG L
Q= 1{4—1-01\ + —(Wi + W)}

As we observed before, to obtain the parallelism in the non-umbilical case

we set @' =1 in (7) so that
Al = §7' K+ L(W2 + W3)
4% T 1T

Now there are two cases to consider, whether the right hand side of the
equation above is positive or negative. We have respectively u = 1 and u = 3
and find C = {7 from (8). Similarly, A = m(W2+iW1) and B = _#\I(K*—
2W32). 1t is better to work with the following expression as Cartan’s invariant

ul 3K J4 1 W
U 02 N 4 T0 3 T(:)3 !
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type G A B To K Wy W, C
1| H® (ggg) ((1)[1)) ] 0 0 0 0
= [ s o [ v |
el NG s o = [
wasiin|(3 3 O)|(G 3 )| e | o | o [
‘(Sad)suﬁl)’(?(’,g)(é ;)q_“ ggd 0 o |3k
@) sv (% 5 9) (3 g) il = | o | o [gig
(Tab)| T4(b) (g ! ‘0”) (é ‘1’) g [ a(d - 1) [a3/263E [ —a¥r2pa| 3 _ 22
8ab)| =_() (g s g) (é ‘l’) s -a(d +82)|a¥r20 2| g3r22 |3 _ 2

Table 1: 3-dimensional sub-homogeneous spaces: all of them are Lie groups G;
{X1,X2,Y = [X1,X5]} is a basis of the Lie algebra of G, {X1, X2} is a basis
of the distribution and A is the matrix of ady restricted to the distribution; B
is the matrix of the inner product on the distribution; 7, K, W; and W, are
sub-Riemannian invariants; a, b and d are positive parameters; we may assume
a > d for types (4) and (6); each one of types (1), (2), (3), (7b) and (8b) gives
rise to a unique homogeneous conformal sub-Riemannian manifold (or, what is
the same, homogeneous CR-manifold), but each one of types (4), (5) and (6)
gives rise to a one-parameter family of homogeneous conformal sub-Riemannian
manifolds indexed by s = (d/a)!/2, and s € (0, 1] for types (4) and (6) and s > 0
for type (5); C is Cartan’s CR invariant.

since it allows to detect some umbilical cases with non-vanishing torsion. We
next compute the value of this invariant for the examples of homogeneous sub-
Riemannian manifolds classified in [9]. The final results are summarized in
Table 1.
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