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SOME RESULTS ON CONFORMALLY FLAT
SUBMANIFOLDS
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An immersed submanifold f: M™ — R"*? into Euclidean space, endowed
with the induced metric, is said to be conformally flat if each point has a neigh-
borhood conformal to R". Around 1919, nonflat conformally flat hypersurfaces
(p =1, n > 4) were completely described by E. Cartan ([Cay]) as being any
envelope of a 1-parameter family of spheres. In this case, the geometric para-
metric description (see [CDM],[AD;] or [Da]) is an immediate consequence
of the existence, at any point, of a principal curvature of multiplicity at least
n—1.

For higher but still low codimension, namely, p < n — 3, from the work
of Moore ([Mo]) we know that at each point z there is an umbilical subspace
U(z) C ToM such that dim(z) > n —p. This means that there is n € T};,)M
unitary and A € R, A > 0, so that the second fundamental form satisfies

ay(Z,X) = X2,X)n, ¥Z € U(z), VX € T, M. 1)

It is a well known fact that, on any open subset where the indez of conformal
nullity v$(z) := dim(z) is constant, the umbilical distribution ¥/ is integrable
its leaves being extrinsic spheres in M™ and part of round spheres in R™*”.
Recall that an extrinsic sphere ¥ of a Riemannian manifold M™ is an umbil-
ical submanifold with parallel mean curvature vector such that the sectional
curvature of M™ is constant along planes tangent to X.

On the other hand, we know ([AD;], [Da]) that a simply connected Rie-
mannian manifold M™,n > 3, is conformally flat if and only if it can be realized

as a hypersurface of the light cone V**! of the standard flat Lorentzian space
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L™*2. Recall that
vtl={Xe L"”:(X,X) =0,X # 0}.

Hence, in order to obtain an example of a conformally flat submanifold M™ of
R™7, it suffices to produce a Riemannian manifold N**! which admits isomet-
ric immersions F: N**! — R™? and G: N**! — L™? and then take M™ as
the intersection G(N™+') n V™!,

Our first main result is that, in fact, the above procedure for p < n —
3 generates all simply connected examples. In particular, Moore’s spheri-
cal foliation is nothing else but the intersection with V™*! of the (at least
(n — p + 1)-dimensional) relative nullity foliation common to F' and G.

We say that an isometric immersion F: N**! — N"*? eztends an isometric
immersion f: M™ — N™P if there exists an isometric embedding of M™ into
N™1 such that Fly = f.

Theorem 1. Let f: M» — R™?. n > 5, p < n —3, be a simply connected
conformally flat submanifold without flat points. If f has constant indez of
conformal nullity v§ = £, then there ezist an eztension F: N™*' — R™? of
f and an isometric immersion G: N**' — L™? so0 that M® = G(N"t')n
V™1, Moreover, F and G carry a common (£ + 1)-dimensional relative nullity

foliation.

The maps F and G in the above are produced by “replacing” the extrinsic

spheres by the affine subspaces of one dimension higher which contain them.

The rest of the paper is devoted to the classification of all local conformally
flat submanifolds in codimension p = 2. In fact, this goal is achieved by two
different means. Our first approach consists in putting together the above
result with a description of all Riemannian manifolds N™ which can be realized,
simultaneously, as hypersurfaces in R™*! and L™*!,

This last result is of independent interest and has other consequences. For

example, it reveals a completely unexpected strong relation with the classical
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Sbrana—Cartan theory ([Sb], [Ca,]) of isometrically deformable Euclidean hy-
persurfaces. It turns out that in order to admit an isometric immersion into
L™*!, a nonflat hypersurface N™ of R™*! is either in one of three (out of five)
classes of deformable Sbrana~Cartan hypersurfaces or has a simila.rl structure as
the elements of a fourth class. As a consequence, we will see that in codimen-
sion 2 any ‘generic’ conformally flat submanifold either has as many isometric
deformations as a certain surface in R® or in the sphere S®, admits precisely a
1-parameter family of deformations or is isometrically rigid.

Our classification of Riemannian manifolds which can be realized as a hy-
persurface in Euclidean and Lorentzian spaces simultaneously, makes use of a
special class of spherical and hyperbolic surfaces which we describe next.

Associated to a coordinate system (u, v) for a surface h: V2 — S™(1), m > 2,
we denote by I'", I'?, the connection functions of the Riemannian connection V’
of V2 determined by

Vi 0, = T8, + I?9,,

where 0,,0, stand for the coordinate vector fields. Notice that A is just a
coordinate system for S™(1) when m = 2. System (u,v) is called conjugate

whenever the second fundamental form of h verifies

ap(0y,0,) = 0. (2)

Equation (2), in terms of the coordinate functions A = (h',...,A™*) in Eu-
clidean space, takes the form

Hessyi(0y, 8,) + (04, 0,0k =0, 1 <j<m+1. (3)

Given a spherical surface with conjugate coordinates {h, (u,v)}, we call as-

sociated function any negative solution 7 of the system of equations

{ 1o =20%1(1 - 1)

7, =2 (1 = 7). @

System (4) has the integrability condition

(T2 = 2I'T2)r <! 4 212 &0,
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We then say that {h,(u,v)} a surface of first type when its metric verifies
Ik =T2 =2, (5)

If not of first type, we call it of second type when

Il — oIy
T =Tz _orire ©)

is a (necessarily unique) associated function.

Remark 2. In their classification of isometrically deformable Euclidean hy-
persurfaces without flat points, Sbrana ([Sb]) and Cartan ([Ca;]) considered
two classes of spherical surfaces (called by Sbrana of first and second species)
which carry either real or complex conjugate coordinates. While surfaces of first
type are nothing else but surfaces of first species for real conjugate coordinates,
surfaces of second type are not of second species but of a similar kind. Namely,

T given by (6) is still a solution of (4) but it is a positive one.

The notion of spherical surfaces of first or second type extends to surfaces
k: V? — H™(—1) c L™ in hyperbolic space. In this case, equation (3) takes
the form

Hessy; (0u, 0y) — (04, 8,0k =0, 1 <j<m+1.

Now, consider a hypersurface F: N™ — R™*! with constant index of rela-
tive nullity vp = £, 0 < £ < m—1. In this situation, we may locally parametrize
F by means of the Gauss parametrization which we briefly describe next for later
use and refer to [DG] for further details.

Let V™~¢ be the quotient space of relative nullity leaves in an open subset
U C N™ with projection 7: U — V™%, The Gauss map ¢: U — S™(1) induces
an isometric (with the induced metric) immersion h: V™=¢ — S™(1) so that
hom = £ Let N denote the normal bundle of h in S™(1) C R™*! and let v be
the “support function” defined by v o = (F,€). The Gauss parametrization
U: N = R™! is given by

¥(9) = y(z)h(z) + grad y(z) + 9, z = =(9),
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where we fiberwise identify the affine relative nullity bundle over a cross section
with the vector bundle A by parallel transport in Euclidean space.
Our first approach to the classification of conformally flat submanifolds in

codimension 2 concludes with the following result.

Theorem 3. Let N™, m > 2, be a Riemannian manifold without flat points
and let F:N™ = R™! gnd G: N™ — L™ be isometric immersions. Then,

F is locally given by the Gauss parametrization U: N' — R™!
U(F) = yh + grady + 9,

in terms of a surface of first or second type {h,(u,v)} and a solution v of the

differential equation

Hess,(0y, 0,) + (04, 0,)y = 0. (7)

Conversely, any parametrized hypersurface in R™*! as above can be locally iso-

metrically immersed in L™*'. A similar description holds for G.

Remarks 4. 1) The intersection of G(N™*+!) with a foliation of L™*? by
light cones provides a local foliation of N™*! by m-dimensional conformally
flat submanifolds of R™*2. See also Theorem 1.10 of [AD;].

2) Satisfying the assumptions of the above result we have the following special

examples:

i) N™ = N2 x R™"?, where N? admits isometric immersions F’: N2 — R3

and G': N? = L® with F = F' x Id and G = G’ x Id;

i) N™ = CN? x R™3, where CN? 2 N? x R, is a cone over a surface N?
which admits isometric immersions F”: N> - §%(1) ¢ R* and G": N? —
S}(1) c L* into Lorentzian unit sphere, where F = CF’ x Id and G =
CG' x 1d.

We introduce next two new definitions in order to deal with the rigidity of
conformally flat submanifolds in codimension 2. We call a conformally flat sub-

manifold f: M™ — R™*?, n > 5, generic when its umbilical direction nE TflM
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(recall (1)) possesses everywhere a nonzero principal curvature A of multiplic-
ity n — 2. We say that a generic f is surface-like if its isometric extension

F: N™1 3 R™? is as either one of the examples in Remark 4.2.

Using the theory of deformable Euclidean hypersurfaces of Sbrana and Car-

tan, we conclude from Theorem 3 the following.

Theorem 5. Any local isometric deformation of a generic conformally flat
submanifold f: M™ — R™? n > 5, is the restriction to M™ of an isometric
deformation of its isometric extension F: N**' — R™2. Moreover, if nowhere
surface-like, f admits, precisely, a 1-parameter family of isometric deforma-
tions when F is generated by a surface of first type and is isometrically rigid
otherwise. In the surface-like situation, all deformations of f are determined

by isometric deformations of the surface in the first factor of F.

Making use of our previous results, we are now able to describe all nonflat
codimension 2 conformally flat submanifolds in a parametric form. This second
approach turns out to be much more involved than Cartan’s description because,
aside from hypersurfaces, the existence alone of a spherical foliation is far from
being sufficient to conclude conformal flatness.

From now on, by f: M™ — R"™? being a composition we mean that there
exist U C R"*! open and isometric immersions f: M™ — U and H: U — R™*?
such that f = Ho f.

Proposition 6. Any conformally flat submanifold f: M® — R™?, n > 5,
without flat points is locally along an open dense subset either generic or a

composition.

Notice that compositions, as in the above result, can easily be described
parametrically by putting together Cartan’s parametrization of conformally flat
hypersurfaces with the Gauss parametrization. We now consider the generic

case.
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Theorem 7. Let h: V2 — S™1(1) C R™? be a surface of first or second type
with conjugate coordinates (u,v). For a given associated function T, let ©* be

the adjoint to the tensor ©: TV — TV defined by
00, = 50., 06, =00,
where § = /—=7. Moreover, let p be a solution of the differential equation
pus + 0%, + T pu + (81 80) = 0, ®)

and let B: V2 — R™? be a solution, unique up to translations, of the completel
v

integrable system of first order

L4 _Pu
Bu = Oph, 7

ﬁu = '_%hv + 0th-

Then, on the open subset of regular points, the map p: Ni — R™*?, defined on
the unit normal bundle Ny of h in the sphere and given by

p(w) = B— O gradp +1/p? — [|©*gradp||* w (9)

is a parametrization of a generic n-dimensional conformally flat submanifold of
R"™?2. Conversely, forn > 5, any generic conformally flat submanifold f: M™ —

R™? can be locally parametrized this way.

It is an interesting fact that the above description can also be obtained
independently of our previous results. This (not straightforward) computation
makes use of the fact that the second fundamental form along the orthogonal
complement of the umbilical direction has rank 2.

Our parametrization and an observation due to Cartan ([Ca,]) now enable
us to explicitly construct a large family of what seems to be the first known

generic examples.

Examples 8. Take a spherical surface h: V2 — S™*!(1) € R™? of first type

satisfying the additional condition

'+ F=0, F=(d,d) (10)
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As already observed by Cartan, in this situation h can be integrated as

(on(u)oa(v)
on ()2 + [|ez(v)]?

h(u,v) =
(u,v) 7

where q; : I; — E; are regular curves, with E; @ E; = R,
Assume, in addition, that the a;’s are spherical curves, i.e., ||aj|| = ¢j, ¢; €
R, with ¢+ ¢ = 1. Then, F =T!' =T? =0, 7 = —k? is constant and
p(t,) = p (1) + pa(v).
We conclude that

1
p(w) = z (kzpal -1+ k‘z)/p’laldu ,—paz — (14 k?) /pfzazdv>

+ ¢+ /0% — ||9* w,

Ial klal
¢=(P11 P2 2>’

klleal*”  lea)l?

parametrizes a 1-parameter family of generic conformally flat submanifolds.

where

The above set of examples contains very simple ones obtained by taking

p = 1. These examples are even simpler if the ;’s are taken to be circles.

Finally, in order to complete our classification, we now describe parametri-
cally all flat Euclidean submanifolds in codimension 2 which cannot be obtained
as compositions. Arguments here will be quite sketchy in regard of their simi-
larity with the ones in [CD)].

We call h: V2 = S™1(1) a surface of type C when there exists a conjugate

coordinate system (u,v) such that
=0 and oax(d,,0,) #0.
We can state our last result.

Theorem 9. Let h: V2 — S™(1) be a surface of type C, and let vy be any
solution of equation

Hessy(0u, ) + (04, 0u)y = 0.
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Let § € TtV and § € C>(V) be given by

ah(aua au) 6= Hessfy(ava au) + (amav)'y

”ah(a‘"?av)”’ ”ah(av,au)”

=

Then, on the open subset of regqular points, the map ¢: N5 — R™?, defined on
Ns = {B € T}*V:(5,8) = 0} and given by

©(B) = vh + grady + 06 + B,

is a parametrization of an n—-dimensional flat submanifold of R™?* which is
nowhere a composition. Conversely, any such submanifold can be locally parametrized

this way along an open dense subset.
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