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ESCHENBURG SPACES AND BUNDLES OVER € P?

L. M. Chaves® A. Rigas*

Abstract

In 1982, J.-H. Eschenburg produced an infinite family of compact
7-dimensional positively curved manifolds that admit no homogeneous
structure. We show here that an infinite subfamily of these manifolds
fiber over @' P? with lens spaces as fibers.

1. Introduction.

Ever since O’Neill’s paper [O] showing that Riemannian submersions increase
sectional curvature and certainly after Cheeger and Gromoll’s [C-G] work on
open manifolds with non negative sectional curvature, it became very interesting
to know which manifolds with positive or non negative curvature fiber over
simpler ones with the same property. At the same time one would like to know
which bundles over manifolds with positive curvature admit metrics with a
similar property [S-W], [D-R], [Ri], [R2], [Y; problem 6]. Though recent revival
of interest produced some results [S-W], [C-D-R], [Wal], the answers to these
questions are not known. Theorems to be proved to this effect in the future,
may have to be conceived through examples that are, somehow, in short supply.
In this note we show that some of the most interesting examples of compact
manifolds with positive sectional curvature [A-W], [K-S], [E4], [E;] fiber over
cCP2.

These examples should be contrasted with the scarsity of principal bundles

with positive curvature [We], [D-R], [C4].
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The results of this paper are part of the first author’s doctoral thesis [C3]
under the direction of the second, defended in January 1992.
We want' to thank Prof. J.-H. Eschenburg for bringing to our attention in

late September 1994 his paper [E3] containing similar results.

Definition 1. The Wallach spaces My, are the quotient of SU(3) by

1-parameter subgroup

0
T,,,,={ 0 20 2z 8, k¢ in z}.
0 0 2z (+9

They constitute a 7-dimensional family of positively curved homogeneous
spaces with infinitely many distinct topological types [A-W] and very interesting
properties of their diffeomorphism classes [K-S].

Proposition [E;). The spaces My, fiber over @ P2.
Proof. Consider the canonical bundle
U@2)----SU3)— CP?,

observe that Ty, C U(2) and that the associate bundle

U2/ ———=8U(@3) x (U2/ ) CP?
@/, O 00/ ) =
has total space My, and fibers lens spaces for k + £ # 0. ]

Eschenburg [E;] constructed another family of 7-dimensional spaces that
contains M;, together with some topologically more complex spaces. His idea
is to act on SU(3) freely by S! as follows:

Let S = Thyp, C SU(3) x SU(3), k,£,p,q in Z,as

0 0 22 0 0
Tk-l'P»v = {( 0 zl 0 ’ 0 27 0 ) y 2 in Sl}.
0 0 z(k+9 0 0 3P+
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SU(3)xSU(3) acts on itself by (A, B)C = ACB~! and T} 4 acts as a subgroup
of SU(3) x SU(3). This action is not free in general.

Proposition [E;]. Tk ey, acts freely on SU(3) if and only if the following siz
pairs of integers are relatively prime.

(E) {(i) (k—pt—q), (i) (k—p,L+p+q), (iii)(k+p+q,{—p)
(iv) (k—gq,2=p), (v) (k=q,l+p+q), (v)(k+p+4q,—q).

Under these conditions the Eschenburg spaces Myygypq = SU(3)/ are
k,p,q
defined and are not, in general, homogeneous spaces, which makes the study of

their topology considerably more complicated than that of the Wallach spaces.
Their “metric prozimity” to the Wallach spaces, in a sense defined in [E],
implies that an infinite number of Eschenburg spaces admit Riemannian metrics
of positive sectional curvature. Following up the analogy a little further, it is
natural to ask whether they fiber over @' P?, just as the Wallach spaces do and

in the afirmative case, what are the fibers?

a c 0
The subgroup U(2) of SU(3) consisting of all C = | b d 0 is
0 0 ad—be

invariant under Eschenburg’s action, which is free if and only if (k — q,£ — p)
and (k — p,£ — q) are relatively prime pairs of integers. Assuming they are we

have the principal bundle

Titipg —— ——U(2) = Nitp = U(2) / T

P.q
In order to investigate the quotients we proceed to examine the intersection
of the orbit O(A) of an arbitrary element A in U(2) with the subgroup SU(2)
of U(2). To this effect observe that any A in U(2) can be written in the form
A= ( - _'ay? ) , w=det(A) in S' and zZ+4yy=1.

wy
The orbit O(A) becomes then

wrw* P —gzFe
wyw®? T

) with z in S!
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or
wzktt—pr—a,—t+a _yzk—q
wzk+l—p—qyz-k+q T2l

and its intersection with SU(2), that consists of matrices of the form

( ; _g ), occurs when
wzk*P=9 =1, i.e., for z a (k4 £ — p — q)-root of det(A)~!. We must note that
k+ £ —p— g =0 cannot occur by i) and iv) of Eschenburg’s condition (E). As
k+£—p—q+# 0 there are k+ £ — p— g roots (we have assumed, without loss of
generality that p+q > k+£). This says that each S*-orbit of the subgroup U(2)
intersects SU(2) at precisely the same number of points implying that Nk ¢y,
is diffeomorphic té SU(2)/ , 1.e., a generalized lens space ([D-N-F], p.
Zprq-k-t

60).

It is not however true, in general, that any S'-orbit of A in SU(3) is con-
tained in a U(2)-orbit of the same A. Immitating the case of the Wallach

examples, we have the diagram:

Thppq - U@2) — Nigpg
Thdlp+wos SUEY. 5 Misgis
m |
T Pp?

and we check that the fibers of 7; are not, in general, included in the fibers of
my. To that efect, since the fibers are the orbits, we have the U(2)-orbit of A in
SU(3), Ou@)A = {AB, B in U(2)}, and the S*, or Tk, orbit of A,
Osi(A) = {(*A(z""), =z in S},
where (z¥¢) A(z77) denotes Eschenburg’s action, and Og1(A) C Oy(3)(A) if and
only if for every z in S! the element
A"Y(2M)A(z7) isin U(2) C SU(3).

Obviously this occurs for all A in U(2) and for some others outside U(2). This
condition would be valid for all A if and only if p = 3s,k = £ = 2s and ¢ = —6s

for some s in Z, which violates conditions (E).
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There is, therefore, no direct analogy with the fibering of the Wallach spaces
over @'P%. In some cases there is, however, an indirect one and we proceed to
exhibit the calculations for a characteristic case.

To do this we replace the 4-dimensional subgroup U(2) by one of its finite
coverings H, a subgroup of U(3) x U(3) that acts freely on SU(3) (see also §42
of [Eg)).

220 0 z 0 0
Let C, =10 22 0| ,D,=[0 22 0 | and define
00 =z

0 0 1
H={(C.,D.E), z in §', E in SU(2)}.

Observe that H is closed under multiplication:
(C2y DE)(Cyy Dy F) = (Crwy D21, G)
where G = ¢(@)(E)F and ¢ is the following action of S* on SU(2):

o3 )-(5)

This turns H into a subgroup of U(3) x U(3), that is a semi-direct product of
S! and SU(2).

Consider now the obvious action of H on SU(3)
®:HxSU(3)— SU(@3)

by
®((C:, D;E),A) = C,AE"Ds

where E* is the adjoint matrix of E.
Proposition. ® is free.

Proof. Suppose C,AE*D; = A and consider the equality of the last columns

of these two matrices. O

Lemma. The quotient of the free action ® is diffeomorphic to @' P?.
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a 2q
Proof. Observe first that the quotient of S® by the action =z ( b ) = ( zb )

c zZc
a
of S! is diffeomorphic to @€ P? and denote the quotient class by | b |. Define
c

the map ¥ : SU(3)/H—) @ P? by ¢([A]) = [ 43 ], i.e., the equivalence class of
the conjugate of the third column and observe it is well defined since
( zay3 )
(®(h)A)s = | zags |, forany h=(C;,D.E) in H.
2a33

It is obvious that 1 is smooth and surjective. The differential di) can be a
readily checked to be non singular at all points of SU(3)/H, which implies that
% is a covering map and therefore a diffeomorphism since @'P? is simply con-
nected. =]

We would like now to translate the subgroups Tk epq of SU(3) x SU(3)
so that they are included in H, preserving the freeness of the action, without
modifying the orbit space. One could use the center of U(3) for the translation
or move the group H itself.

Translating T ¢,p,, by the center of U(3) that consits of all wl,w in S and

requiring the result to be in H we obtain the conditions:
wzF =22 w2l =22, we ) = \° and wz=P+) = )

for some X in S!. Consequently, k = £ = 2(p + q). There are infinitely many
integral solutions of these conditions that satisfy (E) as well. One can take, for
example, ¢ = p + 1, for any integer p, parametrizing so an infinite family of
Eschenburg spaces.

There are, of course, other solutions outside this family. The choice of
k=€=2, p=4 and q= -3, for example, is acceptable. .

We will work out this particular example for the sake of clarity.

The Eschenburg space M3 34,3 defined as SU(3) / is diffeomorphic

2,2,4,-3
to the quotient of SU(3) by the translated T3 24,—3 which is now a subgroup of
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H, since the left and right central elements will cancel each other in each orbit.

Consider the associated bundle

H/~ ... SU(3)x (H/~ ) ~ @P?
T24,-3 H T32,4,-3

and observe that the total space is Mz 24 3. The map

01 SUE) x (H/T224_3) = SU(S)/T224_3

defined by @©{A, [hy, h}]} = [h7'AR}] is a well defined diffeomorphism.

We see that the fiber H / . is a generalized lens space as follows:
2,2,4,-3

The orbit of (C,, D, E) of H by the action of Ty.4,3 intersects (1, SU(2)) C H

at the points where w satisfies the equations at

22 wb
22 wb =] and
1 1

=|pf T for some y, .
1

The second equality can be written as

2w’ wbz —w*a 0 y =6 0
(zw?)? wa Wz 0|=|8 7O
2w? 0 01 0 01

and it contains the first one that resumes to zw® = 1 and w’z = y, w?a = S.
As y and f3 are defined by the respective equations, for w one of the three third
roots of Z, there are exactly three intersection points of the orbit in question
and the sphere SU(2).

The quotient is therefore a generalized lens space as expected. Observe that
T1(N2,2,4,-3) = Z3 as follows from the number of full turns the circle T ;4 _3

twists arount a generator of mU(2), i.e., 242 — (4 — 3) = 3.
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The same reasoning applies to each element of the infinite family defined
above. It is interesting to notice that for this same family of Eschenburg spaces
Astey, Micha and Pastor [A-M-P] have been able to obtain examples of non-
diffeomorphic homeomorphic spaces, using technics developped by Kreck and
Stolz [K-S].

It would be also interesting to classify all My, that fiber over € P? with

a generalized lens space as a fiber. As a final observation, we recall

Proposition [E;]. Eschenburg’s siz dimensional positively curved non-

homogeneous manifold Mg, is an S*-bundle over @ P2.

Proof. Consider the 2-dimensional subgroup U of H, defined by

: 4 ZW
U={ 7 , 2w , z,win Sl}.
1 Z

The associated bundle to H ...SU(3) — @' P? with fiber H/U = S? has
total space Mp. 0
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