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1. Introduction

It is a classical problem in Riemannian geometry to study the topology of man-
ifolds which admit a metric with nonnegative curvature. In the case that the
curvature operator is nonnegative, the results of several authors ([13], [17], [19],
[27]) lead to a topological classification of such manifolds. They are covered
by Riemannian products of manifolds of the following types: homeomorphic
to spheres, diffeomorphic to Euclidean spaces, biholomorphic to complex pro-
jective spaces or symmetric spaces of compact type. This classification can be
found in [16].

If the dimension of the manifold is three, the nonnegativity of the sectional
curvatures implies the nonnegativity of the curvature operator, because the
Weyl tensor is identically zero. If the dimension is four, the work of Walschap
[22] gives a thorough understanding of complete noncompact 4-manifolds with
nonnegative sectional curvatures. If M is compact, it follows from Theorem 3
in [6] that the universal cover M splits isometrically as M=% x R¥, where M is
compact. For k& = 1, the topological classification of compact 3-manifolds with
nonnegative Ricci curvature in [13], implies that M3 is homeomorphic to the
sphere S3. For k = 2, M? is homeomorphic to S?, by the classical Theorem of
Gauss-Bonnet. Hence, if the fundamental group (M) is infinite, M is covered
by either R* or by §** x R¥ for k.= 1,2. However, if M is compact the
manifold M has only been understood so far under additional assumptions,

and the Hopf conjecture remains unsolved: does S? x S? admit a positively
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curved Riemannian metric?

The aim of this article is to present and generalize some of the known re-
sults concerning compact nonnegatively curved 4-manifolds. It is organized as
follows. In Section 2, we review somie basic facts about 4-manifolds. In Section
3, we collect some known results on nonnegatively curved 4-manifolds satisfying
some geometric conditions which imply definiteness. We show that they still

hold, assuming the following weaker condition on the sectional curvatures:

(*)  K(Xi, X;)+ K(Xk, Xm) 20, whenever X;, X;, X, Xk

are orthonormal vectors of T, M.

Therefore, if the universal cover of such manifolds is compact, the description
of the topology of M will then follow from [9] and [11]. The results generalized
under the condition (*) are the ones in [22], [23] and [21].

In Section 4, we consider first compact 4-manifolds with positive sectional
curvature that are Einstein. In this cage, the result of several authors ([2], [8],
[12], [14], [24]) combined imply that either M is homeomorphic to one of S*,
RP*, CP? or the group of all isometries of M is finite. Einstein manifolds have
harmonic curvature and, in [5], Bourguignon proved a beautiful theorem for
4-manifolds, namely, a compact 4-manifold with harmonic curvature and non-
zero signature is Einstein. We present an outline of Bourguignon’s proof and
weakening the assumption of harmonic curvature, we study 4-manifolds with
harmonic traceless Ricci tensor. Changing slightly the arguments, we prove that
4-dimensional Riemannian manifolds whose sectional curvatures satisfy condi-
tion (*) and such that the traceless Ricci tensor is harmonic and has constant
norm are either Finstein or the first Pontrjagin form is zero. This implies the

following results.

Theorem. Let M be a compact nonnegatively curved Riemannian 4-manifold
such that traceless Ricci tensor is harmonic and has constant norm. Then one
of the following holds:

(a) M is Einstein
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(b) M is homeomorphic to S* or RP*
(c) ‘M is covered by S*=* x RF for k =1,2 or $2 x S2.
For the case of positive sectional curvature we obtain:

Corollary. Let M be a'compact positively curved Riemannian {-manifold such
that traceless Ricci tensor is harmonic and has constant norm. Then one of the

following holds:
(a) M is homeomorphic to S*, or RP*, or CP?

(b) The group G of all isometries of M is finite.

2. The Weintzenbock formula.

Let M be an oriented Riemannian manifold of dmension 4, and let A? denote
the bundle of exterior 2-forms and A? = A2 @ A? the eigenspace splitting for
the Hodge +-operator. The 2-forms in A2 are called self-dual and in A2, anti-
self-dual.

The Riemann curvature tensor defines a symmetric operator R : A2 — A2

given by
el] Z Rulkekl

where {e;} is a local orthonormal basis of 1-forms, e;; denotes the 2-form e; A ¢;

and Ryjix = (R(ei, €;), e, ex). The operator R can be decomposed as
R=R{+RI+R;+RC

with respect to the decomposition A? = A2 @ A%. This decomposition gives the
irreducible components of R ( see [22]). They are traceR} = traceRZ = 2,
where S is the scalar curvature, the two components R and R of the traceless
Ricci tensor, and the two components of the Weyl tensor W+ = R — £ and
W~ = RZ — <. Note that the metric is Einstein if and only if R+ = 72‘ =0.
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Let F : A>(T;M) — A*(T;M) be the Weitzenbick operator given by
(F(e,-j), ekl) = Ric(e,-, ek)61,+Ric(ej, 81)5;1;— Ric(e,-, e,)éj,,—Ric(ej, ek)ts;[—?R;jlk

where Ric denotes the Ricci curvature. This operator satisfies the well known
Weitzenbock formula , e.g., Aw = —divVw+ F(w). Moreover, F is a symmetric

operator.
Proposition 2.1. A} and A% are F-invariant, i.e., *F' = Fx.

Proof. Since F is symmetric, let w denote an eigenvector of F' with corre-

sponding eigenvalue r. Then we have
Fw*)+ F(w™) =rwt +rw”

where w* denotes the projection onto A%, respectively. Therefore it is enough
to show that (F(w*),w™) = 0. In fact, since there is an orthonormal basis
{Xl,Xg,Xa, X4} of TIM such that

£ V2
2

w

llw*]| (Xi2 £ Xa4),

substituting the above in the definition of F', we obtain the desired conclusion.

Now, since both A and F commute with the Hodge x-operator, the Weitzenbock

formula can be written as
Aw* = —divVw* + F(w¥).
If M is compact, integrating by parts we obtain
(Awt,w) = (Vwk,wt) + /M(F(w*),wi)dv (2.2)
where ( , ) is the inner product on A%(M) given by

(4,9)= [ (6.91dV
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dV is the volume form of M and (,) is the naturally induced inner product on
the space of 2-forms A%(T,M).

Let H?(M;R) denote the 2" de Rham cohomology group of M. If M is
compact, it follows from the Hodge’s Theorem that H?(M;R) is isomorphic to
the space of harmonic 2-forms denoted by H, and because *A = Ax, we obtain
the decomposition H = H* @& H~. We will denote by b = dimH*. Therefore

the second Betti number b, = b + b;. From (2.2) we get immediately:

Proposition 2.3. Let M be a compact oriented 4-manifold. Then we have
(i) if F£ >0, then a 2-form w* is harmonic if and only if is parallel
(ii) if F£ > 0 and there is a point p € M such that F*(p) > 0 then bf = 0.

Recall that a compact, oriented, smooth 4-manifold is called positive (re-
spectively, negative) definite if b = 0 ( respectively b7 = 0). We call such a
manifold definite manifold.

The seminal work of Donaldson, [9], and Freedman, [11], give the following

topological classification for definite, smooth, 4-manifolds.

Theorem 2.4. ( Donaldson-Freedman ) Let M be a definite, smooth, simply

connected, compact 4-manifold. Then M is homeomorphic to one of

i) S%, if the the second Betti number b, = 0

ii) the connected sum CP?*}...§CP?, (b, times), if b, > 0.

In order to study nonnegatively curved compact 4-manifolds for which the
universal covering M is compact, we search then for conditions that imply that
M is definite. In view of Proposition (2.3), we look for hypotheses that will
imply that the operators F* > 0. For that, since xF' = Fx, we find for each
point of M a normal form for F' ( as in [25] for R). Since this normal form will

be used in the rest of the article, we repeat the arguments used in [25].

Proposition 2.5. Let M be an oriented four-manifold. Then for each x € M

there exists a positively oriented orthonormal basis {ey, ez, €3,e4} of ToM such
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that relative to the corresponding basis {e;2, €a4, €13, €42, €14, €23}, F takes the

A 0.0
0 A, O
0 0 As

A.=(77i ,ui)
' Bi M

Proof. Let {a;,az, a3} and {B1,B,,3s} be the orthonormal bases of eigen-

form

where

vectors of F't and F~ respectively, and r; and s;,7 = 1,2,3, be the corre-
sponding eigenvalues. Let us define the planes P; = %f‘ and Pt = -“'\;-—zﬁ'
Therefore {P,, P, Ps, P\, P+, P} is an orthonormal basis of A*(T;M) and
F(P) = ;P + p; P* and F(P#*) = n; P + i P; where n; = 5t and p; = 535,
In addition, since xP; = P we have that P, A P, = 0 = P* A P* which im-
plies that P, and P! are decomposable. We also have P; A P, = 0 and hence
P,N P, # {0}. Let e, € P, N P, be a unit vector and e, and ez such that
{e1,€e2} and {ey, e3} are oriented bases for P; and P, respectively. Choose e, to
complete a positively oriented orthonormal basis of T, M. Then P, = e; A ey,
P, = e; A es and e; A eq4 is either +P; or :tPaJ'. The matrix of F relative to

{e12, €34, €13, €42, €14, €23} is of the above type.

It follows from the above Proposition that the self-dual 2-forms

V2 2
o) = —(612 + 634), Qg = T(ew = 624), az = 7(614 s 623)

2

are the eigenvectors of F't, with corresponding eigenvalues r; = n; + p;, and the

anti-self-dual 2-forms

B = \/75(612 —eu), P2= \/75(813 +eu), fz= \/72_(514 — €23)

are the eigenvectors of F'~, with corresponding eigenvalues s; = 7; — p;

Proposition 2.6. Let {e1,e2,e€3,e4} be the orthonormal basis of Proposition
2.5. Then the 2-forms {c;} are the eigenvectors of R} and the 2-forms {f;}
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are the eigenvectors of RZ. Moreover, if the corresponding eigenvalues are

denoted by ); and ; respectively, we have
r1=2(A24X3), r2=2(M+2A3), r3=2(1+X\;)

51 =2(p2+¢3), s2=2(¢1 +¢3), $3=2(p1 + p2).

Proof. We will show that (R(e), ;) = 0 and (R(8:),0;) = 0 for ¢ # j. For
simplicity, we will show that (R(a;),a2) = 0 and the other ones are proved in

a similar manner. Since (F(a;),az) = 0, we have
(F(e12), e13) — (F(e12), €24) + (F(e34), €13) + (F(e34), €24) = 0.
From the definition of F' we get that
0 = Ric(ez, e3) — 2R1231 + Ric(er, e4) + 2Ry242 — Ric(er, e4) — 2Ra43;
—Ric(ez, €3) + 2R3142 = —2R1231 + 2R1242 — 2R3431 + 2 Ra4a2
= —4(R(a1), az).

Now, the eigenvalues A and ¢ are given by

A= %(Ku + K34) — R34 1= %(Kl2 + Ka4) + Rizs
A2 = 3(K1s + K24) + Rizos P2 = %(Km + K24) — Ruzza (2.7)
Az = 3(K1s + K23) — Riazs 3 = 3(K1a + Kz3) + Ryaos

where K;; denotes the curvature of the plane {e;, e;}. On the other hand, from

the definition of F' we have
[P , ; ;
r = (F(a),a1) = E(ch(el) + Ric(ez) + Ric(es) + Ric(eq) — 2K,

—2K34 + 4Ry234) = K13 + Koq + K14 + Koz +2Ry234.

Using the first Bianchi identity, we conclude

r1 = K3 + Ka4 + 2Ry334 + K14 + Koz — 2Ry423 = 2(A2 + X3).
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Similarly we obtain

$1 = K13 + K24 + K14+ K3 — 2R1234 = 2(ip2 + 3)

ry = K12 + K34 + K14+ Koz — 2Ri324 = 2(M1 + A3)

sy = K1z + Kas + K14+ Ka3 + 2Ri1324 = 2(ip1 + 3) (2.8)
r3 = K13 + Kas + Ki3 + Kaq + 2R1423 = 2(A\1 + A2)

s3 = Ky2 + Kas + K13 + K24 — 2R1423 = 2(ip1 + ¢2)-

From the equations above, we conclude that r; + 2X; = s; + 2¢; = %, where

S is the scalar curvature. Therefore, we can state:

Proposition 2.9 The Weitzenbick operator is given in terms of the scalar

curvature by

S S S S
= Rt == — + - E P =
F—2 2’R+—3 2w F—2 2'R_—3 2w

We finish this section showing a condition that implies F% > 0.

Lemma 2.10. Let ||W%||? denote the norm of the components of the Weyl

tensor. Let us suppose that the scalar curvature S > 0. Therefore
i) if |WE||? < 5 then F£ > 0.
ii) if at some point p € M, we have ||W%||*(p) < %, then F£(p) > 0.

Proof. Let W7 be the eigenvalues of W#. Using that traceW* = 0 we obtain
that (W)? < 2||W#||%. Then, (Wj*)? < 8% for i = 1,2,3. This together with

— 367
Proposition 2.9 concludes the Lemma.

3. On the topology of nonnegatively curved 4-manifolds.

In [17], Micallef and Moore introduced the concept of curvature on totally
isotropic two-planes for manifolds of dimension > 4. We will call it, for brevity,
isotropic curvature. This curvature plays a similar role in the study of the sec-

ond variation of area of minimal surfaces that the sectional curvature does in
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the study of geodesics. We say that M has nonnegative isotropic curvature if

for all sets of orthonormal vectors e€;, €;, €m, € in Tz M we have
Kik + Kim + Kji + Kjm £ 2Rijjm > 0.

Notice that for 4-manifolds, the nonnegativity of the isotropic curvature is equiv-
alent to the nonnegativity of the Weitzenbock operator F. The special feature
of nonnegative sectional curvature in dimension four is that for each point in
M either F* or F~ is nonnegative. Actually, this is true even under the weaker

condition

(*) K(Xi,X;)+ K(Xk,Xm) > 0, whenever X;, X, Xm, Xk

are orthonormal vectors of T, M

as we will show in the next Lemma. Note that (x) implies S > 0.

Lemma 3.1. Let M be an oriented 4-manifold satisfying the condition (x). If
W2 > % then ||[W-|]? < ‘g—:. Moreover, if the first inequality is strict, so is
the second.

Proof. It follows from traceR} = traceR= = £ that if R > 0 then ||WH||? <
52—4 and if RZ > 0 then ||[W-||? < %. Therefore, if ||W||? > %, then R} has
one nonpositive eigenvalue. We show now that the condition (*) implies that
RZ- > 0 which finishes the lemma. For that, suppose that after reordering the
basis {e;} we have A; < Ay < As. If A; <0, then (2.7) implies that Ry234 > 0
and hence ¢; > 0. In order to show that ¢, > 0 and ¢3 > 0, we consider

the planes P = 5*‘%21 and Pt = 5‘\7_-221 The proof of Proposition 2.5 shows
that there is an orthonormal basis {fi, f2, fa, fa} of the tangent space such that

fiz= g'\%él and fi; = 2‘5-221 Hence,

K(fi,f2)+ K(fs, fa) =M +9220

and if A; < 0 then ¢; > 0. In a similar manner we show that ¢3 > 0. This
proof also shows that if A; < 0 then if ¢; > 0 for : = 1,2,3.
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Theorem 3.2. Let M be a compact oriented 4-manifold with sectional curva-
tures satisfying (*). Let us suppose that ||[W||? < % or |[WH|2 > % for all
points of M. Therefore

i) if for some point in M, ||W||? # g—z , then M is definite.

i) if [|[WH|)2 = :% for all points and the fundamental group my(M) is finite,
then one of following holds:

a) M is homemorphic to the sphere S*

b) M is a Riemannian product of two compact surfaces and one of them

is is homemorphic to the sphere S?

c) M is a Kdhler manifold biholomorphic to oP2,

Proof. If ||[W*|]* < g—: and for some point p € M, we have ||[W*||*(p) < %,
then by (2.3) and (2.10) we conclude that M is negative definite. If ||W*||? > ‘;—:
and for some point the inequality is strict, we obtain that M is positive definite,
using Lemma 3.1.

Now consider the case that ||W*|?> = “;—:, for all points of M. In this case,
(3.1) and (2.10) together imply that the operator F' is nonnegative and hence
the isotropic curvature is nonnegative. If: M is a Riemannian product, then
Theorem 3.1 in [18] gives case (b). If M is locally irreducible and b;(M) > 0, we
conclude from Theorem 2.1 in [18] that M is a simply connected Kéhler manifold
and hence biholomorphic to CP? by Theorem 1 in [20]. This also shows that
if bo(M) = 0 then we cannot have by(M) > 0, since this would imply that M
is biholomorphic to CP? and therefore cannot cover M. Then by(M) = 0 and
by Freedman’s solution of the Poincare conjecture, M is homemorphic to S*.

Since we are supposing that M is oriented, M itself is homeomorphic to S*.

Corollary 3.3. Let M be a compact oriented 4-manifold with sectional curva-

tures satisfying (*). Let us suppose that ||W~[|* < |[|[W]|[2.

a) If at some point we have that ||W~||* < ||W*||?, then M is definite.
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b) If||W~||? = ||[W*||? for all points of M and the fundamental group m(M)
is finite, then M is either homeomorphic to S* or is locally Riemannian

product of two surfaces.

Proof. Suppose first that ||W*|]* > % for some point p € M. Then Lemmas
3.1 and 2.10 imply that F~ > 0 at p. For the points that ||[W*||? < %, the
hypothesis implies that |[|W~]|? < % and therefore we have that F'~ is nonnega-
tive and positive on neighborhood of p. Now from Proposition 2.3, we conclude
that b; = 0. If ||[W||® < %, the hypothesis in (a) implies again b; = 0. Now,
we suppose that ||[W~||> = ||WT]||? for all points of M. Therefore Lemma 3.1
gives that ||W~||2 = ||[WH||? < ‘% and M has nonnegative isotropic curvature.
Moreover, recall that the first Pontrjagin form on an oriented 4-manifold is
given by p; = (||[W~||* = ||WT]||?)dV, where dV is the volume form of M. Then
from Theorem 3.2, the only possibilities for M are S* or localiy product of two

surfaces, since p; = 0 implies that the signature of M is zero and hence excludes

the other possibilities.

We show now that some of the known results for nonnegatively curved 4-
manifolds can be generalized. It is well known that normal homogeneous spaces
have nonnegative sectional curvatures . Simply connected homogeneous spaces
of dimension four are classified. They are diffeomorphic to one of 54, CP?, §? x
5%, S3xR, S?xR? or R* (see [3] pg.46). On a Riemannian homogeneous space,
the scalar curvature, ||W*|| and ||W~|| are constant. Supposing the constancy
of the norm of only one component of the Weyl tensor and nonnegative curvature

we obtain:

Theorem 3.4. Let M be a simply connected 4-manifold with nonnegative sec-

tional curvature.

i) If M is complete and noncompact, then M is diffeomorphic to one of
p
S3 xR, §? x R? or RY.

it) If M is compact and the scalar curvature S and ||W~|| are constant on
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M, then M is homeomorphic to one of S*, CP*{.. fCP? or S? x 5.

Proof. The first assertion follows from [26]. For compact manifolds, if || W*||* >
i i . - 2

% for some point p in M, it follows from Lemma 3.1 that ||W~||* < %; at

p. Now the hypotheses imply ||W~||? < % for all points of M and therefore

F- > 0. By Proposition 2.3 we conclude that b; = 0 and M is positive definite.

In this case we have that M is either homeomorphic to §* or to CP?j...CP?.

If ||[WH|2 < % for all points of M, the result follows from Theorem 3.2.

In [22], Seaman gave another proof for the result of Frankel, [10], namely,
a compact positively curved Kdhler manifold is biholomorphic to CPZ. Seaman
used the Weitzenbdck operator and the existence of a parallel 2-form. Notice
that on a Kahler manifold ( with the natural orientation ) ||[W*||* = ‘;—:. For

the case that the sectional curvatures satisfy condition (*), we obtain:

Theorem 3.5. Let M be a compact §-manifold with sectional curvatures sat-
isfying (*). If M admits a parallel 2-form, then either M is flat or is a Kdhler
manifold biholomorphic to CP? or M splits isometrically as £, x £, where T,

is homemorphic to the sphere S?.

Proof. Let us suppose without losing generality that M is oriented. Since it
has a parallel 2-form, M is Kahler. Therefore ||W*||? = % and the the proof
of Theorem 3.2 shows that in this case M has nonnegative isotropic curvature.
Since by # 0, if M is locally irreducible, then M is biholomorphic to CP?, and
if M splits isometrically, the only possibilities are R* or E; x I3, where Z; is

is homemorphic to the sphere S?, by Theorem 3.1 of [18].

In [23], Seaman replaced the assumption of the existence of a parallel 2-form
by the existence of a harmonic 2-form of constant length and studied this case

for positive sectional curvature. We generalize his result for the case that the
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sectional curvatures satisfy a strict inequality in (%), i.e.,

(»)  K(Xi, X;)+ K(Xx,Xm) >0, whenever X;, Xj,Xm, Xk

are orthonormal vectors of T, M.

Theorem 3.6. Let M be a compact {-manifold with sectional curvatures sat-
isfying (*x). If M admits a harmonic 2-form with constant length, then M is
definite.

Proof. Let w denote the harmonic 2-form of constant length. Then we can

find an orthonormal basis {X;, Xz, X3, X4} of To M such that

i _V2

=5 llw® || (Xiz £ Xaa).

w
Substituting in the definition of F' we obtain
llw™ |I2(F(wt),wt) + Wt M Fw™),w”) = 2|t |Pllw7IPC - (3.7)

where K = K(X1,Xa) + K(X2,X4) + K(X1,X4) + K(X3,X3) and therefore
K > 0, since the sectional curvatures satisfy (**). On the other hand, the

Weitzenbock formula implies that
(A(w),0) = A(IIP) + V6l + (F),0)
and since w is a harmonic 2-form of constant length, we have
(F(w)yw) = (Fw),w*) + (Fw™),w7) < 0. (3.8)

Suppose that for some point in M we have ||w*|| = [lw~||. In this case,
if ||w*|| # 0, substituting in (3.7) and using the fact that £ > 0, we would
get ||w*|[*(F(w),w) > 0, which contraditcs (3.8). Also, if |lw*|| = 0, since
w has constant length, we would have w = 0. Therefore we can assume
that |lw*|| > |lw™|| everywhere. For the points that |lw~|| = 0, (3.8) im-
plies that (F(w*t),wt) < 0. If |lw7|| # 0 at some point, we conclude that
(F(w*),w*) < 0, otherwise substituting the inequality |lw*|| > ||w™[| in (3.7),
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we would obtain ||w*||>(F(w),w) > 0, which contradicts again (3.8). There-
fore, (F(w*),w*) < 0 for all points of M which implies i)y Lemma 2.9 that
[|[WH]?> > % for all points of M. Moreover, if w* is not parallel, there exists
an open set for which (F(w*),w*) < 0 which in turn gives ||W*||?> > %. Now
from Proposition 2.3, Lemmas 2.10 and 3.1, we conclude that in this case M
is definite. If wt is parallel, then we are in the previous theorem. Now, the

only case that satisfies the condition (**) is a Kahler manifold biholomorphic
to CP? and therefore M is definite.

Before we finish this section, we would like to point out that in S% x S?
the first Pontrjagin class is zero. Therefore, Corollary 3.3 answers the Hopf
conjecture under the stronger assumption of first Pontrjagin form zero, instead
of first Pontrjagin class. In addition, if in Theorems 3.5 and 3.6, we assume
positive sectional curvature, M is either biholomorphic to CP? or homeomor-
phic to CP?}...§CP?. Therefore, if there exists a metric of positive curvature

on 5% x §2, such a metric does not admit a harmonic 2-form of constant length.

4. Harmonicity of the traceless Ricci tensor.

Let Hom(TM,TM) — M be the bundle of the homomorphims of the tangent
bundle TM. We denote the space of 2-forms with values in Hom(T M, T M) by
Q?(Hom(TM,TM)). Notice that the curvature tensor R is in Q*(Hom(TM,TM)
A Riemannian manifold is said to have harmonic curvature if the Laplacian of
the curvature tensor R satisfies AR = 0. Recall that for 4-manifolds, we have
the decomposition A*> = A2 @ A2, and with. respect to this decomposition R

can be written as

R=R}{+R;+Rt+R..
It is well known that R is harmonic if and only if each of the components is
harmonic. Let Z = R + Rt. Z is called the traceless Ricci tensor of M. In

this section we want to consider compact nonnegatively curved 4-manifolds for

which AZ = 0.
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We start with Einstein 4-manifolds with positive sectional curvature. Notice
that if M is an Einstein 4-manifold then Z is identically zero. Compact Einstein
4-manifolds are not yet completely understood. The results of Derdzinski in [2]

combined with those of Berard-Bergery in [2] prove:

Theorem 4.1. ( Berard-Bergery, Derdzinski ) Let M be a compact 4-dimensional
Einstein manifold and G the group of all isometries of M. If the dimension of
G is at least 4, or G = T3 or G = SO(3) and the principal orbits are S? or the
real projective space RP?, then M is either locally symmetric or M itself or a
double cover is isometric, up to a scaling factor, to CPzﬁEI_ﬁ endowed with the

Page metric.

The reader is referred to [2] or to [4] for a clear exposition of the Page metric.
Therefore the remaining cases are: G = SU(2), G = SO(3) with 3-dimensional
principal orbits, G = T?, G = S! or the group G is finite. The study of
these cases turned out to be a difficult problem. However, for positive sectional
curvature, the results of several authors lead to a topological classification of
most of them and the exceptional cases are only those whose group of isometries
is finite.

In fact, if G = S!, then M has a nontrivial Killing vector field, and a theorem
of Hsiang and Kleiner in [14], imply that M is homeomorhic to S* or RP* or
CP% If G = T? or G = SU(2), we conclude that M is diffeomorphic to S*
or RP* or CP?, by the results in [12]. If G = SO(3) and the principal orbits
are 3-dimensional, a theorem in [24] implies again that M is diffeomorphic to
5S4 or RP* or CP?. Moreover, the Page metric on CPZﬁEI—’_f does not have
positive sectional curvature, since it has a non-trivial Killing vector field, and
therefore, by the theorem of Hsiang and Kleiner, it would be homeomorphic to
S$4 or RP* or CP2. Now, from these results and the classification of locally

symmetric spaces, we obtain:

Theorem 4.2. Let M be a compact, positively curved Einstein 4-manifold.
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Then M is either homeomorphic to S* or RP* or CP? or the group of all

isometries of M is finite.

Now we suppose that AZ = 0. This condition implies that, if Z = 0
on an open set of M, then Z is zero everywhere, since it satisfies an elliptic
system ( according to [1] ), and then M is Einstein manifold. Therefore we
will study the case that Z # 0 on a dense set of M. For that we consider
naturally induced metrics on Hom(TM,TM) and Q*(Hom(TM,TM)). For
the Riemannian vector bundle Hom(TM,TM) — M with connection V, the
Weitzenbock formula states (see [15] pg. 95 ) :

(AR)(V,W) = (V*VR)(V.W) + p(R)(V, W)
where
p(R)(V,W) = R(Ric(V'),W) + R(V, Ric(W)) + (RR)(V, W) + (RR)(V, W)

and if {¢;}, ¢ =1,...,4 is an orthonormal basis of T M,

RZC(V) = ; R(V, ek), €k
(’RR)(Va W) = kz—:l R(eka R(Vv W)v ek)

4
(’RR)(V’ W) = Z 2[R(ek’ V)v R(ek’ W)]
k=1
A straightforward computation yields the following result:

Proposition 4.3. Let {a1,02,03,01,02,03} ( defined as in section & ) be
an orthonormal basis diagonalizing the symmetric operator F. Then the basis
{a1, 3, a3} diagonalizes the symmetric operator p(R}) and their corresponding

eigenvalues are

pPi = %/\,’ = 2/\? = 4/\j/\k-
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Similarly, the basis {B1,8.,03} diagonalizes the symmetric operator p(RZ) and

their corresponding eigenvalues are
oi = g%' — 2} — 4Xp.
Moreover, p(Rt) : A2 — A2 is given by
p(RY) () = (g —2X) R (ci) — 2V2[R*(e;), RY (o))
and p(R3) : A2 — A2 is given by
P(B(B) = (5 — 200 B3 (8) ~ 2VEIRT(5:), RE (B0

If AZ = 0, then ARt = 0 and AR} = 0. Substituting this in the

Weitzenbock formula, and using Propositons 2.9 and 4.3, we get that
V*VRY = R*F* — 4(RY)!

V*VR; = R;F~ — 4(R)"

where (RT)" as a matrix, is the matrix of cofactors of Rt with respect to the
basis {e;, 8;}. Since the transpose of R} is R, transposing the second equation

and comparing to the first, we get that R F+ = F~R*, which is equivalent to
RIW* =W~-R? (4.4)

by Proposition 2.9. This equation (4.4) was obtained by [5] ( theorem 5.1) and
[18] ( equation 4.1b), where they considered harmonic curvature. We point out

here, that the hamonicity of the traceless Ricci tensor is enough to imply (4.4).

Lemma 4.5. Suppose that the components of the Weyl tensor satisfy RtW+ =
W-Rt. If Rt(p) # 0 then at this point, either W+ and W~ have the same

spectra or the Ricci operator has ezactly two eigenvalues of multiplicity 2.

Proof. Let {;,:} be as in section 2. Let R;; = (R(e),B;) and W* denote
the eigenvalues of W#. Let us suppose then that Ry; # 0. If Ry, is the only non
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null entry in the matrix R, we claim that the basis {e1, e, €3, €4} of Proposition
2.6 diagonalizes the Ricci operator. In fact, from the definition of F and the
fact that (F(a;),3;) = 0, we get that

2(R(e1), B2) = Ric(ez, e3) — Ric(ey, eq)

2(R(az), 1) = Ric(ez, e3) + Ric(eq, e4)

which gives that Ric(ez, e3) = Ric(e1, €s) = 0, since we are supposing (R(az), B1)
(R(a1),B2) = 0. Similarly, we show that Ric(e;,e;) = 0 for ¢ # j. From the
assumption that R; = 0 for ¢ = 1,2 we obtain that Ric(e;,e;) = Ric(es,e2)
and Ric(es, e3) = Ric(es, €4).

Now, we suppose that there are other non null entries in RY. First, notice
that Ry; # 0 implies by (4.4) that Wit = Wy, If Ri; # 0, for i,j € {2,3},
then by (4.4) we have again that Wit = W for all 1 = 1,2,3. If R;; = 0, for
i,j € {2,3}, we suppose Ry; # 0 and R;; # 0, for i = 2,3. In this case (4.4)
implies Wt = 0 = W~. Therefore, if W # 0 we can suppose that B3 = 0. If
Ri; # 0 and R;; # 0, we would have again that W+ = 0 = W~. Then either
Ryz # 0 and Ry # 0 or Ry; = 0. The first case gives Wit = W = W =
W, implying then W3* = W;. The second case implies that W* = 0 and
rank Rt = 1. Therefore the basis {c;} can be chosen so that a;, a3 € KerR¥.

In this case, we have again that the only nonnull entry is Ry;.

The above Lemma was used by Bourguignon in [5] to prove that a compact
4-manifold with harmonic curvature and non-zero signature is Einstein . Recall

that for an oriented compact 4-manifold, the signature is given by
1
=— WH||? = ||W||*dV
r= o [ IWHE =Wl

Moreover, the harmonicity of the curvature tensor implies that the Ricci tensor
is Codazzi. Therefore, on a neighborhood U where the Ricci tensor has two
eigenvalues of multiplicity 2, U is a Riemannian product of two surfaces by
Lemma 2 of [7] and the de Rham’s theorem. Then, in the case of harmonic cur-

vature, Z # 0 on an open and dense set implies spectrum W+ = spectrum W~,
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which in turn implies 7 = 0. Supposing the harmonicity of the traceless Ricci
tensor only, we no longer have that the Ricci tensor is Codazzi. Then, we will

assume the condition () of section 3 and prove:

Proposition 4.6. Let M be a 4-manifold whose sectional curvatures satisfy
the condition (). Suppose that the tracelees Ricci tensor is harmonic and has

constant norm. Then either M is Einstein or ||W*|| = ||[W~||.

Proof. If Z = 0 on an open set then Z is identically zero by [1] and M is
Einstein. Then, let us suppose that Z # 0 on a dense set of M. It follows from
the proof of Lemma 4.5 that now we have to consider only the case that the
matrix R} has only one non-null entry on a neighborhood U. Suppose that
Ry, is the only non-null entry. This implies that Wit = Wy~ which gives (with
the notation of section 2) A\; = ¢;. Then we have in (2.7) that Ay = ¢ =
3(Kiz2 + Ka4). But the condition (*) implies that 0 < 3(Ky2 4 Ka4) < % and
substituting in Proposition 4.3 we get
S
(olBE), ) = (5 ~ 20y 2 0.
Now, from the Weitzenbock formula we obtain that

(A(B?), RE) = SA(IREIP) + IV REIP + (o(RE), BY).

If Z has constant norm, so does R}, since R? is the transpose of R;. Therefore
we conclude that VRt = 0. This implies that all entries R;; are constant on U

and by continuity,.constant on M. In addition, we have the local equation
(VxRY)(a1) = X(Ru1)By + RuVxp — RY(Vxa)) =0

that implies that Vx8; = 0, since Ry, is constant and R} (Vxa;) = 0 because
Vxa, is orthogonal to a;. Similarly, we obtain that Vxo; = 0. The exis-
tence of these local paralell sections in A2 and A2 implies that \; = ¢ = §
and Ay = ¢; = A3 = 3 = 0. Thus spectrum W+ = spectrum W~ and

W] = [IW=]I.
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From this proposition, Corollary 3.3 (b) and the description of the univer-
sal cover of compact manifolds with nonnegative sectional curvature we get

immediatelly the following results stated in the Introduction.

Theorem 4.7. Let M be a compact 4-manifold with nonnegative sectional cur-
vatures. Suppose that the tracelees Ricci tensor is harmonic and has constant
norm. Then either its universal cover M is homeomorphic to one of S*, S?x S?,
Sk x R** for k = 2,3 or M is Einstein.

Combining the above theorem with Theorem 4.2 we obtain the Corolary:

Corollary 4.8. Let M be a compact 4-manifold with positive sectional cur-
vatures. Suppose that the tracelees Ricci tensor is harmonic and has constant
norm. Then either M is homeomorphic to one of S*, RP*, CP? or the group
G of all isometries of M is finite.
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