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STRICT CALIBRATIONS, CONSTANT MEAN
CURVATURE AND TRIPLE JUNCTIONS

Frank Morgan

Abstract

Strict calibrations have comass strictly less than one off the calibrated
surface S and hence prove § uniquely area-minimizing. Ordinary and
strict calibrations, with the usual closure condition relaxed, can prove
constant-mean-curvature surfaces area-minimizing for fixed volume con-
straints. Strict calibrations are sufficiently adaptable to prove minimizing
properties of certain triple junctions of constant-mean-curvature surfaces.
Related questions about minimal surfaces crossing in R* remain open.

1. Introduction

1.1. Strict calibrations. Suppose a smooth submanifold S with boundary
in R" has a calibration, i.e., a closed differential form ¥ on R™ with comass
[l(z)||* < 1, with equality on tangent planes to S. Then § is area-minimizing:

given any other candidate S’ with the same boundary,
area S’ > 1/)=/1/J= area S.
s s

If 4 is a strict calibration, i.e., [[Y(2)|]]* < 1for z ¢ S, then S is uniquely
area-minimizing.

For example, the unit interval I on the z-axis in R? is calibrated (not strictly)
by dz and by dr. Note that the level curves {z = ¢} remain equidistant after

they leave I, as do the level curves {r = ¢}, as depicted in Figure 1.1.
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Figure 1.1.

The level curves {z = ¢} and {r= c} corresponding to the calibrations
dz and dr remain equidistant.
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Figure 1.2.

The level curves of a strict calibration fan out as they leave 1.

For a strict calibration, the level curves need to fan out as they leave I , as

in Figure 1.2. Such a calibration is provided by
€ 2 €.
1/)=d((1—§y )z) =] (1-—5_1/ dz — ezydy

(for z,y not too big). Note how the ‘(1 - §y2) factor makes ||¢||* < 1 off the

z-axis while the second term keeps 1 closed.

Strict calibrations are less rigid than calibrations with comass identically 1
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and are often easier to find and more adaptable. Gary Lawlor [L., Thm. 6.3.1.]
used strict calibrations to prove any regular and many singular minimal surfaces
locally minimizing.

For a general introduction with further references, see [M2].

1.2. Calibrating constant-mean-curvature surfaces. We say that a hy-
persurface S with boundary has a d-constant calibration 1 if di is constant and
|| (z)||* < 1, with equality on tangent plane to S. It follows that S minimizes
area for fixed algebraic volume: given any other hypersurface S’ such that §—.5’

encloses net signed volume 0,
area S'> [ ¢ =/¢v=‘ area S.
s s

In particular, S has constant mean curvature.

For example let S be the graph of a real-valued function on a smooth com-
pact domain D C R™ satisfying the constant-mean-curvature equation, so S
has constant mean curvature H. Then vertical translations of the covector dual
to S provide a d-constant calibration 3 with dyy = HdV and || (z)||* = 1. It
follows that S minimizes area in competition with hypersurfaces in D x R with
the same boundary, enclosing the same net signed volume above D. (See [M2,
remark at end of 6.1]).

A nicer, strict, local, d-constant calibration of a small arc of the unit circle
{r =1,]0] £ 6o} is given by

Y = (1 — (Ar)%)rdd — 3rArfdr,

where Ar =r — 1.
Similar arguments doubtless have been used many times. Since announcing

over results, we have come across such applications by Rossman [R, Lemma 2.5]

and Duzaar and Steffen [DS, Thm. 1].

1.3. Calibrating triple junctions. The paired calibrations of [LM] provide

a new proof that three hyperplanes in R"*! meeting at 120° angles minimize
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area. Theorem 2.1 uses strict d-constant calibrations to generalize the proof to
three small portions of constant-mean-curvature hypersurfaces meeting along
a surface C' at 120° angles, with mean curvatures summing to 0. Competitors
are assumed to have the same boundary, locally to partition space into regions
of the same volume, and to meet along a surface C’ which is C* close to C.
(This last hypothesis on C’ would follow from appropriate boundary regularity
results).

Theorem 2.1 is new for R® and above. For arcs of circles in R?, the result
follows from the theorem of Foisy, Alfaro, Brock, Hodges, and Zimba [F, Thm.
2.9] that the standard double bubble in R? globally provides the least-perimeter
way to enclose and separate two regions of prescribed areas, without any ad-
ditional assumption about the set of points C’ where arcs meet. Their result
does, however, depend on existence and regularity theory. In R® and above,
it remains an open question whether the standard double bubble provides the
least-area way to enclose and separate two regions of prescribed volumes, de-
spite notable recent progress by Michael Hutchings [H]. Our results establish
local minimizing properties. Our methods readily generalize to more compli-
cated singularities, as when six surfaces and four curves meet at a point, as in
a triple bubble in R3.

Our calibrations require an extra term to guarantee that perturbing C' will
not save area. Strict calibrations provide the flexibility to add such a term.

An alternative method to similar (probably weaker) results might be to com-
pute that the second variation of area, for fixed volume constraints, is positive.
We understand that such variational formulas will appear in the Ph.D. thesis
of Claire Chan under Brian White at Stanford.

We conjecture in 2.4 that soap bubble clusters are locally minimizing without

any smoothness or topological restrictions on the comparison surfaces.

1.4. Free boundary problems. There cannot be a calibration proof that the
polar cap is the least-area surface with free boundary to enclose given volume

in the extended cone over the Arctic circle. A calibrated surface is minimizing
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in competition with surfaces of fractional multiplicity, and a cap with twice the
radius, multiplicity 1/8, and the same enclosed “volume” (8 times as big with
multiplicity 1/8), has half the “area” (4 times as big with multiplicity 1/8). On
the other hand, K. Brakke has observed that the “divergence theorem proof”
[Be, 12.11.4] of the isoperimetric inequality immediately generalizes to the polar
cap. Indeed, the argument proves that a cap of a hypersphere in R" inside any
convex cone with vertex at its center uniquely provides the least-area surface
enclosing given volume. It further generalizes to show that for a general norm
®, a cap of the “Wulff shape” is ®-minimizing (see [M4, 10.6]). (The perspective
of Zia, Avron, and Taylor [ZAT)] is that a cap of a Wulff shape is itself a Wulff
shape; cf. [BrM, Intro.]).

1.5. Calibrating a pair of intersecting surfaces in RY. We seek in vain
to settle an old question [Br, Problem 1.8] by certifying by calibration a first
example of a singularity in an area-minimizing surface in R* which is not com-
plex analytic. It is known that an area-minimizing surface in R* is a classical
branched immersed minimal surface [C], complex analytic to first order at any
singularity [M3, Cor. 4].

Perhaps any two minimal surfaces crossing orthogonally at 0 are locally
area-minimizing. Section 3 describes an unsuccessful attempt to prove such an

example with strict calibrations.

1.6. IX EGD, Vitéria. We announced some of these results at the IX Escola
de Geometria Diferencial in Vitoria, July, 1994. We would like to thank the
gracious Brasileiros, especially Florencio, Luzia, Luiz Pedro, and Valmecir, for
their kind hospitality.

This work was partially supported by National Science Foundation grants.

2. Calibrating Triple Junctions

The following theorem uses paired, strict, d-constant calibrations to prove min-

imizing properties of the kind of triple junctions of surfaces which occur in soap
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bubble clusters.

2.1. Theorem. Consider three constant-mean-curvature hypersurfaces M;
in R™ of mean curvature H; € R meeting real analytically along an (n — 2)-
dimensional surface C as in Figure 2.1. Suppose the M; meet at 120° angles
and SH; = 0. Then in a small ball B centered at a point p € C, the surfaces

M; uniquely minimize total area among triples of rectifiable currents
(1) meeting along a variable surface C' which is C* close to C,
(2) with the same boundary in the sphere 0B,

(3) dividing B into three regions of fized volumes.

Figure 2.1.

Three hypersurfaces M;, meeting along a surface C, divide B into
regions R; bounded by M;;, — M; + B;.
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Proof. Let p denote distance from p; let r denote distance from C. We now
write M; for the restriction of M; to B, with OM; = C; — C. Let ds denote the
area element along C' and more generally its pullback to B via nearest point
projection onto C. Let M; denote the analytic continuation of M; in B. Let h;
denote distance from M;. Let z; denote displacement above the tangent plane
to M; at p. Let 1; denote the unit (n — 1)-form dual to M;, extended to B by
translation normal to T,M;; then di; = H;dV, where H; is the constant mean
curvature of M; (cf. 1.2). Since d(; + (—=1)"H;zi(Vz|dV)) = 0, there is a
smooth (n — 2)-form ¥; with d¥; = ¢; + (—=1)"H;2i(Vz]dV) and ¥;(p) = 0.
For small € > 0, let

i = (1 - h?)'(l), + d(h?) AY; — (—1)"H.-h?z,~(Vz,-JdV) +eds A d(h?)

Then
dp; = H;dV — h?H;dV — 2hidh; A p; + 2hidh; A (: + (—1)"H,-z,'(V2,~JdV))
—(=1)"H;(2h;)zidh; A (Vz;]|dV) + H;h:dV
= H;dV.

Since d(h?) is small and orthogonal to y; along M; and |¥;| = O(p),

|2 |> + |component orthogonal to ;|2

(1= h? + O(h})O(p) + O(h?)e)* + (O(h:)O(p) + € O(h:))?
1—2h7 +(O(p) +€)O(h}) < 1

|component parallel to v;

|<P.'

IAN A

for B and € small, with equality only on ;.
Since by hypothesis £¥H; = 0, therefore £dyp; = 0. Let ® be a smooth
(n — 2)-form with ®(p) = 0 and d® = Ze;.

We claim that for a surface C’ which is C! close to C,

/c > [ o
Let R be a nice C?! surface bounded by C — C’. Then
/C‘I’ - Jo®=[rZe
JrE (i — k3 +d(R}) A T, — (=1)"H;h?2i(V2;|dV) + eds A d(h?))
JrO(r?) + €T ds A 2yidy;,
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where in the 2-plane normal to C at g, the coordinates z;,y; give orthogonal
coordinates with the y;-axis orthogonal to T, M;. Indeed, on C, £¢; = 0, changes
in ¥;(R) are O(r?), h; = O(r), |R|dhi| = O(r),| + hi — yi| = O(r), and
| + dh; — dy;] = O(r). As a homogeneous quadratic expression invariant under
120° rotations, Xy? must be some multiple of r%; by symmetry, Ly? = %E(m? +

i) = gr"'-

Therefore,
o = >
/(I) /’(I)—/O(T)+3C'rdsd7' 0

for r small.
We are ready to apply the “paired calibration” argument of [LM, 1.1, 2.1].
The M; divide B into regions R; with

OR; = Mi41 — M; + B;.

Consider competing hypersurfaces M meeting along some C’. Since on M;, h; =
0 and ¢; = ¢; = dA,

3T area M; = 3% [, i = & figl(0i — pin1) — (vic1 — i) + Z Jar, 4@
= Jr(dpi — dpis1) + Z [p,(pi —ir1)) + Z f, @ =3 [c @
— L Jp(Hi = Hip1) + = [p,(pi = pir1) + X Jo, @ =3 [c @
— L Jr(Hi = Hint) + /g, (#i —pir1) + £ o, @ =3 Jcr @,
because vol R} = vol R; and [ ® > [ ®. Hence

3 area M; < —% [p(dpi — dei1) + ZJp,(0i —ir1) + X Jo, @ -3 /o @
= Jul(ei = ¢i1) = (pic1 = @i)] + Z fpry 42
3):fM:<p.~ < 3% area M.

IA

Therefore the M; minimize area. Suppose equality holds in the last inequality.

Since |p;| < |, with equality only on M;, the asserted uniqueness follows.

2.2. Triple junctions of minimal surfaces. For the case of minimal hy-

persurfaces (H; = 0), the proof of Theorem 2.1 simplifies and does not require
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any hypothesis of fixed volumes. Three minimal hypersurfaces in R™ meet-
ing real analytically along an (n — 2)-dimensional surface at 120 degree angles
are uniquely locally area-minimizing (assuming the singular surface remains C*

close).

2.3. Other types of singularities. The proof of Theorem 2.1 can be gen-
eralized to other types of singularities, such as the other soap bubble cluster
singularity, where four singular curves meet at a point (or in fact to any number

of singular curves meeting at a point).

The following conjecture implies that all equilibrium soap bubble clusters
in R? are locally area-minirnizing, without any unnecessary restrictions on the

comparison surfaces.

2.4. Conjecture. Consider an almost everywhere smooth compact hypersur-
face S in R". Suppose that at every point of S the measure-theoretic tangent
cone is strictly area-minimizing among separators of regions. Suppose the mean
curvatures sum to 0 around any closed path in R™ which intersects only regular
pieces of S (in particular, regular pieces have constant mean curvature). Then

S is locally area-minimizing among separators of regions of prescribed volumes.

Note that local competing surfaces must maintain the identity and volume

of the regions of space, as well as their own boundary.

Some similar results for minimal surfaces with isolated singularities were
proved by Hardt and Simon [HS, Thm. 4.4] for one notion of “strictly mini-
mizing” [HS, §3] and by G. Lawlor [L, Thm. 6.3.1] for a related one [L, 6.1.1].
A forthcoming paper of Lawlor and Morgan treats the case of three minimal
surfaces meeting at 120° angles along a curve, without any restrictions on the

comparison surfaces.
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3. Calibrating a pair of intersecting surfaces in R*

Can a 2-dimensional area-minimizing surface in R™ have a non-complez-analytic

singularity?

The simplest example of a (complex-analytic) singularity is the sum (i.e. union)
P, + P, of the zy and zw planes. One simple candidate for a non-complex-
analytic singularity replaces P; by a non-complex-analytic minimal surface S;
tangent to P; at 0, perhaps lying in R® C R*, given by z = u(z,y),w = 0.

P, + P, is calibrated by the Kahler form dzdy + dzdw, which has comass
exactly 1 at all points. Attempts to perturb it to calibrate some S, + P,, as
by replacing dzdy by the standard z, w-invariant calibration ¢, of Sy, typically
yield forms of comass greater that 1 (see §3.1).

There is, however, a nice strict, calibration ¥, + 2 of P, + Py; with
1
b= d (5r(1 =3 = rird)dn,)

P2=d (lrg(l ri— rlrz)daz)
[[1 + ol|* < 1 —rir]

for ryr; small. Each ; alone calibrates P;. Without the r?rZ term in the
definitions of the 1);, the comass of 1; + 2 would be identically 1. Even with
the r2rZ term, the leeway is too small to admit perturbations of P; and %, (as
in [L, §6], for example). Indeed, dzdy + 1, has comass exceeding 1, and any %]
along S, where it must have length 1, will sometimes be less favorably tilted
with respect to 1, than dzdy and hence yield ||} + ¥2||* > 1. Therefore first
modify 1, to a ¥, which is orthogonal to Sy = {z = u(z,y), w = 0}, such as

Yy =4d ((1 —ri)(z— u)) dw,

which near O has length |¢3] < 1 — r?. The best corresponding perturbation of
11 I have been able to find is

¥ = (1= (2= w?)) ¢1 + 2Xa(z — u)pz + 2Ay(z — u)es,
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where the p;(z,y) are independent of z,w; ¢, is the unit dual to S1 as before,

and
uzdrdy + dydz uydzdy — dzdz

Y2 = ) P3 = )
,/1+u3+uz ,/1+u§+u§

are orthogonal to ¢;, with common normalizing denominators for convenience.
¥} is not closed, but dy; is favorably signed if A > 1/2. [l + 4] < 1if

A < 1/4. Unfortunately those two conditions on ) are contradictory.

3.1. Attempts to perturb the Kihler form to calibrate S; + P,. The
Kéhler form dzdy + dzdw calibrates the orthogonal axis planes P, + P;. One
calibration ¢ of a minimal surface S; ¢ R3 C R4 tangent to P, at O comes
from vertically translating the unit dual covector. For S1 + P, one candidate
calibration is ¢ 4 dzdw, but is has comass greater that 1. A second candidate

is ¢ + . Unfortunately,
d(p +¢) =0+ dpt #0.

Indeed, the following proposition holds.

3.2. Proposition. Let ¢ be a smooth unit 2-covector field on R* such that
d(e + @) =0. Then ¢ + @t is constant and hence orthogonally equivalent to
the Kdhler form.

Proof. Using coordinates z; on R?,
e+ ¢t = f(dzidz, + dz3dzs) +g(dzydzs — dzodz,)
+h(dzydz,4 + dzodzs).

The condition d(¢ + ¢*) = 0 means that
(1) fs—g2+h =0,
(2) fa—g1—ha=0,
(3) fi+9s—ha=0,

(4) fa+gs+hy=0.
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Appropriately differentiating and adding the four equations yields that Af =
Ag = Ah = 0. Since ¢ is a unit covector, |p + ¢*| = v/2 and

0

1
SA(f* + ¢ +h?) = fAf + gAg+ hAh + |VfI* +|Vg* + |VR[*
VI +1Vgl* + |VA[".

Therefore ¢ + ¢ is constant.

3.3. Comass of a sum (cf. [M1]). In the preceding study, the following
formulas for the comass of a sum are useful. Let 1) = 1; + ¥, be the sum of two
simple 2-covectors in R*. We may assume they are in normal form:
Py = |¢1|d$1d1‘2
Y2 = |1h2|(cos b1dzy + sin 01dz3) A (cos Ozdz2 + sin zdzy)
with0< 0, <7/2, 0, <0, <m—0,.
[M1, Cor. 4.4] gives a formula for the comass of any 2-covector in R*. If

0, = 7 /2, the formula implies

(1) 201B1I* = /W + [92P + 2allalsin 61 + [[a + [9al? — 21l lalsin 05
Alternatively if || = || =1,

0, —0 /]
(2) Il = cos =52 + cos 140

If 0, = 7/2 and |¢1]| = |¢2| = 1, both (1) and (2) become
(3) ll¥ll* = V2 cos .

References

[Be] M. Berger, Geometry II, Springer-Verlag, NY, 1972.

[Br] J. E. Brothers, ed. Some open problems in geometric measure theory...,
Proc. Symp. Pure Math. 44 (1986), 441-464.

[BrM] John Brothers and Frank Morgan, The isoperimetric theorem for gen-
eral integrands, Mich. Math. J. 41 (1994), 419-431.

[C] Sheldon Chang, Two dimensional area minimizing integral currents are

classical minimal surfaces, J. AMS 1 (1988), 699-778.



STRICT CALIBRATIONS, CONSTANT MEAN CURVATURE 151

[DS] Frank Duzaar and Klaus Steffen, Comparison principles for hypersurfaces

of prescribed mean curvature, preprint (1993).

[F] Joel Foisy, Manuel Alfaro, Jeffrey Brock, Nickelous Hodges, and Jason
Zimba, The standard double soap bubble in R? uniquely minimizes perime-
ter, Pacific J. Math. 159 (1993), 47-59. Featured in the 1994 AMS What’s

Happening in the Mathematical Sciences.

[HS] Robert Hardt and Leon Simon, Area minimizing hypersurfaces with iso-
lated singularities, J. Reine Angew. Math. 362 (1985), 102-129.

[H] Michael Hutchings, The structure of area-minimizing double bubbles, J.
Geom. Anal. (1996).

[L] Gary Lawlor, A sufficient criterion for a cone to be area-minimizing, Mem.

AMS 91, No. 446, (1991).

[LM] Gary Lawlor and Frank Morgan, Paired calibrations applied to soap films,
immiscible fluids, and surfaces or networks minimizing other norms, Pa-

cific J. of Math. 165 (1994), 55-83.

[M1] Frank Morgan, The exterior algebra A*R™ and area minimization, Lin.
Alg. and its Appl. 66 (1985), 1-28.

[M2] Frank Morgan, Geometric Measure Theory: a Beginner’s Guide, Aca-
demic Press, 2nd Edition, 1995.

[M3] Frank Morgan, Riemannian Geometry: a Beginner’s Guide, A. K. Peters,
Wellesley, 1993.

[M4] Frank Morgan, On the singular structure of two-dimensional area mini-

mizing surfaces in R", Math. Ann. 261 (1982), 101-110.

[R] Wayne Rossman, Foliations by constant mean curvature surfaces of R® and
H? with singularities, Ph.D. thesis, University of Massachusetts, Amherst,
May, 1993.



152 F. MORGAN

[ZAT] Zia, Avron, and Taylor, The summertop construction: crystals in a
corner, J. Stat. Physics 50 (1988), 727-736.

Department of Mathematics
Williams College

Williamstown, Massachusetts 01267
USA

Email: Frank.Morgan@williams.edu



