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LAPLACE TRANSFORMATION FOR CARTAN
SUBMANIFOLDS

Niky Kamran*® Keti Tenenblat'®

1. Introduction

In this paper, we briefly describe some of the main geometrical and analytical
aspects of the higher-dimensional Laplace transformation for Cartan manifolds.
The results will be given without proof. For further details and complete proofs,
we refer the reader to [KT1] and [KT?2].

The classical two-dimensional Laplace transformation, not to be confused
with the Laplace transform in harmonic analysis, is a transformation of second-
order scalar hyperbolic partial differential equations in the plane which was
originally introduced as a method of closed form integration. To any such equa-
tion, one associates two Laplace invariants h and k. If one of these invariants is
zero, then the equation can be integrated by quadratures as a succession of two
parametrized first-order linear ordinary differential equations. If the Laplace in-
variants are non-zero, then there are well-defined Laplace transformations and
the principle of the method of Laplace is to iterate the transformations until one
possibly arrives at an equation with a vanishing invariant, which one integrates
by quadratures. One then transforms back to obtain a solution of the origi-
nal equation depending on two arbitrary functions on one variable and finitely
many of their derivatives. The classical treatises of Darboux [D], Goursat [G]
and Forsyth [F] contain extensive treatments of this method of integration. Re-

call [D] that the classical Laplace transformation is the analytic expression of
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a geométrically defined transformation of surfaces isometrically immersed in
R3, with a coordinate net which is conjugate for the second fundamental form.
One constructs the edge of regression of the tangent developable of the one-
parameter family of tangent planes along of one of the coordinate curves of the
surface. By varying this curve within its family, one obtains generically another
surface with a conjugate coordinate net. This surface will reduce to a curve if
and only if the corresponding Laplace invariant is identically zero.

There has recently been a resurgence of interest in the Laplace transforma-
tion, motivated for the greatest part by some interesting connections with the
theory of completely integrable systems. For example, it has been observed
that if the Laplace invariants of a transformed hyperbolic equation are zero,
then the Laplace invariants of the original equation give rise to solutions of the
A, Toda field equations depending on four arbitrary functions of one variable
[Va]. Likewise, the Darboux-Crum transformation [Cr], [DT], of Sturm-Liouville
operators appears naturally in this context [DOV].

The search for truly higher-dimensional examples of completely integrable
equations has only led to a few classes of examples, which have now been ex-
tensively studied (see for example [BT], [CT], [TT]). A conclusion that has
been drawn from these works is that complete integrability appears to be a rare
phenomenon in more than two independent variables. In view of this fact, the
problem of generalizing the Laplace transformation to more than two indepen-
dent variables is of considerable interest.

An effective guiding principle in the search for this generalization is to put
the problem in its proper geometric context. This principle proved to be very
successful the generalization of Backlund’s Theorem to higher dimensions [TT].

The higher-dimensional generalization of this transformation was first ob-
tained by Chern [C], who considered n-dimensional submanifolds of projective
space, all of whose second fundamental forms are simuléaneously diagonalized
by the coordinate net. Such manifolds are called Cartan manifolds by Chern,
since they were first considered by E. Cartan [Ca] in the context of projec-

tive differential geometry. By working out analytically the Euclidean version of
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Chern’s transformation, we [KT1] were able to obtain an n-dimensional general-
ization of the classical Laplace transformation which applies to overdetermined
systems of n(n — 1)/2 linear second-order partial differential equations , for a
scalar function of n independent variables. We showed that any such system ad-
mits n(n — 1)? higher-dimensional Laplace invariants and, generically, n(n — 1)
Laplace transformations. We then proved a reduction theorem to the effect
that the systems whose higher-dimensional Laplace invariants are all zero in
one direction can be integrated by quadratures in terms of the solutions of an
(n — 1)-dimensional system of the same type.

Even in the 2-dimensional case, it is not a simple matter to determine
whether an equation is integrable by the method of Laplace. This is because in
general, one cannot predict the number of iterations of the Laplace transforma-
tion required in order to obtain an equation with a vanishing Laplace invariant.
A considerable amount of attention has therefore been directed in the classical
2-dimensional theory to the question of periodicity. An equation is said to be
r-periodic if it is equivalent to its r-th Laplace iterate under a rescaling of the
dependent variable and a reparametrization of the independent variables sepa-
rately. Periodic equations thus cannot be integrated by applying the Laplace
transformation in their direction of periodicity, no matter how many times one
iterates the transformation. Darboux [D] proved that every 1l-periodic equa-
tion in the plane is equivalent under one of the above transformations to the

Klein-Gordon equation

25y = €2, e =1.

¥

In particular, if an equation is 1-periodic with respect to one of the transforms,
then it is also 1-periodic with respect to the other. In [KT2], we obtained
the generalization of Darboux’s normal form result for 1-periodic equations in
the plane to systems in n dimensions. In Section 2, we review the classical
Laplace transformation for second-order hyperbolic equations in the plane, to-
gether with its geometric interpretation. In Section 3, we recall from [KT1]

the Euclidean version of Chern’s higher-dimensional Laplace transformation of
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Cartan manifolds. In Sections 4 and 5, we review from [KT1] and [KT2] the
fundamentals of the higher-dimensional Laplace transformation and of the (z, j)-
higher-dimensional Laplace invariants m:;, m;';’;c,l <1t,5,k <n, 1,7k distinct,
for the systems considered. These are compatible overdetermined systems of

linear partial differential equations of the form
yre + GRyk + ok + oy =0, 1<k#L<n (1.1)

where the coefficients are smooth functions of the independent variables zy, - - -, Tn,
satisfying certain conditions of compatibility. In contrast with the 2-dimensional
case, the higher-dimensional Laplace invariants cannot be prescribed freely in
n > 3 dimensions. They are highly constrained by the compatibility conditions
for the overdetermined system (1.1). This fact is one of the main sources of
the complexity of the periodicity problem in higher dimensions. We recall the
reduction theorem for the systems whose higher-dimensional Laplace invariants
vanish in one direction (Theorem 4). In Section 6 we first define the notion
of periodicity in higher dimensions. We then give a minimal set of necessary
and sufficient conditions, in terms of the higher-dimensional Laplace invariants
and their derivatives, for a system (1.1) to be 1-periodic in a given direction.
These conditions are integrated in Theorem 5 to give a normal form for the
most general system (1.1) which is 1-periodic. Theorem 5 is the n-dimensional
generalization of Darboux’s theorem on the Klein-Gordon equation in two di-
mensions. In dimension three, we have the remarkable fact that a system which
is 1-periodic with respect to one of the transforms and transformable in all other

directions will also be 1-periodic in all other directions (Theorem 6).

2. The classical Laplace transformation and its geometri-
cal interpretation

Consider a second-order partial differential equation for a real valued function
2(u,v) given by
Zuu+azu+b2u+cz+l=0 (21)
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where a, b, c and [ are differentiable functions of u and v. The classical Laplace
method for solving this equation is given as follows. Consider the Laplace
invariant

h=a,+ab—c.
If h =0, then (2.1) reduces to

0
%(zu +az)+b(zy +az)+1=0.

s=/bdu, §=/adv,

z=¢F [—/es“’(/ e’l du — F(v))dv + G(U)] )

where F' and G are arbitrary differentiable functions. The functions F and G

Letting

we obtain

are determined by the initial conditions 2(uo,v) and z(u, vo).

Similarly, if the Laplace invariant
k=b,+ab-c

vanishes, we can also explicitly solve (2.1).
The classical transformation of Laplace is a transformation theory for dif-

ferential equations of the form (2.1). Assume h # 0 and define
21 =2,+az.

Then one can easily see that (2.1) is transformed into a differential equation of

the same form for z;. Similarly, if k # 0 we consider
Z_1 = 2, + bz

which also transforms (2.1) into an equation of the same type for z_;. Those
two functions z, and z_; are said to be the £; and £_, Laplace transforms of
z. Moreover, one can invert those transformations. In fact, it is not difficult to
see that when h # 0 and k # 0,

z=[Loy(z1) +1]/h and z=[Li(z-1) +)/k.
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The basic idea for this method is to apply a sequence of Laplace transforma-
tions to a given equation (2.1) until eventually it is transformed into one which
has a vanishing Laplace invariant. This’equation is integrated and then using
the inverse transformation one obtains a solution for the given initial differential
equation.

There is a geometrical construction for surfaces [D], which corresponds to
the Laplace method described above.

Consider a parametrized surface X (u,v) in R® or R* such that the coordi-
nate curves form a conjugate net. The mixed second order derivative of X is
then given by

Xu =TLX, + T4, X,
where Ti;,7 = 1,2, are the Christoffel symbols of the surface X. Hence, the
vector valued function X satisfies an equation of the form (2.1). The surfaces
we consider will be generic, in the'sense that we shall assume Xy, Xy, Xu., and
X,» to be linearly independent in the ambient space.

Suppose that '}, # 0 and consider the ruled surface defined by
Y (¢,u,v0) = X (u,vo) + tXy(u,vo).

The tangent plane to this surface at ¢ = 0 is generated by the vectors X, (u, vo)
and X,(u,vo). Letting u vary, we obtain a one-parameter family of tangent

planes given by
Tl(pv u) =<p- X(U,'DO), N,‘(‘U,Uo) >=0 PE RSOTR47

where the N;, i = 1 or i = 1,2 ( according to whether the surface is immersed
in R® or R*) are linearly independent normal vector fields to the surface X
spanning the normal space of X. The characteristic line of the surface Y is the

intersection of the planes
T,‘(p, u) =0,

Ts',u(pv u) =0.
It follows that the direction of the characteristic line is given by X,(u,v). In

fact, for each u, the line

p(t) = X(u, v0) + X, (u,vo)
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is contained in the tangent plane and also in the neighboring planes. This
follows from the identity < X,, N;, >= 0, which is a consequence of the fact
that the surface X is parametrized by conjugate curves.

The edge of regression of the surface Y is determined by the intersection of

the planes
Ti(p,u) =0,
ﬂy"(}” ’U) = 07
ﬂ,uu(p) u) = 0’

It follows that for each u, there exists a unique point p(¢o) on the line p(¢) such

that Y'(¢o,u,vo) is on the edge of regression. In fact,
Ti,uu(p(t)au) = _(1 = tF}z) < th Ni,u > .

Since we are assuming the surface is generic, we conclude that t = —1/T},. As

u and v vary, we obtain in general, a map X, (u,v) given by
X1 =X - X,/Ti,

whose differential satisfies
X1\ _ (h/T1, 0 ) <XU )
(Xl,v) T ( * -1 Xuv (22)

h = —P}Z,u + Fizr‘fz

where

Since X, and X,, are assumed to be linearly independent, it follows from (10)
that X;(u,v) will be a parametrized surface if and only if A is not zero. More-
over, the coordinate curves will also form a conjugate net on X;. We will say
that X; = £4(X) is the £,-Laplace transform of the surface X. From (2.2) we
see that X; reduces to a curve if and only if A = 0. Similarly, one can do the same
construction by interchanging u and v obtaining what is called the £_,-Laplace
transform of the surface, X_; = £_;(X). The two Laplace transformations £,
and £_, are inverses of each other. If A # 0, then £_;(£;(X)) = X. Similarly,
when k # 0 we have £,(L_-,(X)) = X.
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Examples:

a) Consider the surface (see Fig.1 a) given by

uv =1 uv(,22 _ 9 2
e*’(uv ),e (uv? — 2uv + ),cosv)

X(u,v) = ( - =

It is easy to see that u,v are conjugate coordinates for the surface, [}, = u
and I'?, = 0. Moreover, we get the invariant h = 1 By applying the Laplace

transformation £; to X, we obtain the surface (see Fig. 1 b) given by

L) ’

e*(uv —2) e*'(u?v? —4uv +6) ucosv+sinv
A= uv? u

uv3

In Fig. 1, we can also see some of the straight lines of the line congruence

between the surfaces X and X;.

b) Let X(u,v) be a surface of rotation
X(u,v) = (f(u) cos v, f(u) sinv, g(u)),

generated by a regular plane curve (f(u), g(u)), where f(u) > 0. Assume f’ # 0,
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then its Laplace transform
L_1(X) reduces to a subset of the
rotation axis. In fact, [}, =0and
I'Z, = f'/f. Hence,

’
)(_1 = (O’O’g_f_'f_‘(Z .

We observe that both invariants

h and k vanish for a surface of
rotation. In Fig. 2, we can see
the Laplace transform (vertical
segment) of the upper-half torus
and the line congruence which
takes points of the torus into its

Laplace transform.

Fig. 2

3. The geometry of Cartan manifolds

In [C], Chern considered a class of manifolds in projective space, which he
called Cartan manifolds, since they had been previously considered by Cartan
in a different context [Ca]. Chern showed that there exists a transformation that
generalizes for these manifolds the classical Laplace transformation for surfaces

admitting a conjugate net. In this section, we give the Euclidean version of this

transformation.

Definition: A Riemannian n-dimensional manifold M™ isometrically immersed
in R?" is said to be a Cartan manifold if there exist local coordinates (z; ... z,)
such that the net of coordinate curves is conjugate and the osculating space is

2n-dimensional.
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It follows from this definition that when a Cartan manifold is parametrized
by such coordinates the second fundamental forms are simultaneously diago-
nalized. In this case, we say that the manifold is parametrized by conjugate
coordinates.

We will use the following range of indices
1<4,5,k, 1 <n,

and we will denote as usual by I‘fj the Christoffel symbols for a given parametriza-
tion X : U ¢ R® = R®™. Moreover, X; and Xj; will denote the derivative of
X with respect to z; and the second derivative of X with respect to z; and zx

respectively.

Lemma: If X : U C R® = R? is a Cartan manifold parametrized by conjugate
coordinates, then for each i, with i # j the vector field X;; lies in the space
spanned by X; and Xj, i. e.

Xy =TLXi+T4X;,  i#4

Moreover, the Christoffel symbols satisfy

ars;
a.‘l:]

It should be pointed out that the equations above do not provide the full

+TEDE —=T4Th <LilE. =0 L& distine.
ikt Kkl it ik it lk

set of integrability conditions for the immersion X to define a Cartan manifold.
However, the remaining conditions (see [KT1] and [Ca]) will not be used in our
analysis, as they are mainly needed to determine the degree of generality of the
immersion.

In what follows, we will associate to each n-dimensional Cartan manifold X,
in general a family of n(n — 1) manifolds which will also be Cartan manifolds.
This will be achieved by considering the edge of regression of ruled manifolds
constructed from X.

Consider a Cartan manifold X parametrized by conjugate coordinates. For

each (n — 1)-dimensional submanifold of X, given by fixing z; = zJ, consider



LAPLACE TRANSFORMATION FOR CARTAN SUBMANIFOLDS 127

the ruled manifold defined by
Y(t,:.zl, ..,:1:?, wy Bn) = Xz, ..,x?, o Tn) + tX;(21, ..,:c?, ]

The tangent space to this manifold at ¢ = 0 is generated by the vectors
Xk(ml,..,‘:t?,..zn), 1 < k < n. This gives rise to a n — 1-parameter family

of tangent spaces described by the system of equations
ﬂ(p,xl,..,z?,..,a:,.) =<p-X,N>=0 peR™ 1<Ii<n,

where N; are normal vector fields to the manifold X and the right hand side is
evaluated at (z1,..,2,..,2,). The characteristic line of the manifold Y is the
intersection of the spaces

Tilp B8l o 2n) =0, 1Z1<n,

T35, Buyony @y oy @) =0, Vool 4.
It follows that the direction of the characteristic line is given by X;. In fact, at

each point (z1,..,2,..,2,), the line
p(t) =X + th

is contained in the tangent space and also in the neighboring spaces. This
results from the identity < X;, Nix >=0 Vk # j,VI implied by the fact that
X is'a Cartan manifold.
Now for each i # j, we define the edge of regression of the manifold Y in

the direction ¢ to be the intersection of the spaces

T eyt iigtny =0 'YL 1xi<w,

Tlp, By g3, 50 8a) =10, Vik, k#3j, »

T (D Bty s By veyn) =0, itforfized i # j.

This intersection is a unique point on the characteristic line p(t). In fact, since
Tl.’ﬂ'(p(t)a Z1, ..,.’IJ?, "’xn) = _(1 T t[‘::j) <Xy Nig> VI#jk#j,
we conclude that ¢ = —1/T};. As z? varies, we obtain

Y(ziyove y2a) = X=X/ i # 7.

179
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The map Y will be called the (i, j)-Laplace Transform of X, where (4,7) is an
ordered pair.
Our next result shows that a Laplace Transform of a Cartan manifold is

generically also a Cartan manifold.

Theorem 1: Let X(zy,...,z,) be a Cartan manifold in R*™ parametrized by
conjugate coordinates. Consider an ordered pair (1,7),1 # j such that F::j # 0.
Then the map

Vs X e

i <
B

defines generically a Cartan manifold.

Explicit examples of Cartan manifolds and their Laplace transforms can be
found in [KT1]. It follows from the definition there are at most n(n —1) Laplace
transforms for a given Cartan manifold. Moreover, it is particularly simple
to characterize the Cartan manifolds X for which the (3, j)-Laplace transform
degenerates to a curve.

In order to state our next result, we need to introduce some notation. We
consider an n-dimensional Cartan manifold in R*® parametrized by conjugate
coordinates. For each ordered pair (3,j),% ;é j for which Ffj is nonzero, we

define the functions:

where I ::J-_‘ denotes the derivative of F::j with respect to z;.

Corollary: The (i,j)-Laplace Transform of a Cartan manifold X reduces to

a curve if and only if
Mij=Mu=0 Vkk#i,k#3].

As it occurs with the 2-dimensional case, generically the Laplace transfor-
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mation is invertible.

Proposition: If M;; # 0, the inverse of the (i,j)-Laplace transform exists
and it is given by the (j,i)-Laplace transform.

4. The Higher-Dimensional Laplace Invariants

The higher-dimensional method of Laplace applies to linear systems of second-

order partial differential equations, of the form

Yre+agyr+agyet ey =0, 1<k#L<n (4.1)
where y is a scalar function of the independent variables z;,---,z, and the
coefficients @ and ¢ are smooth functions of z;,--,z, which are symmetric in

the pair of lower indices. One could also study systems with a non-homogeneous
term hie added to the left-hand side of (4.1) (see [KT1]), but this will not be
done here.

We first recall from [KT1] the definition of the higher-dimensional Laplace
invariants of (4.1). We will see that the system (4.1) is determined in an essen-
tially unique way by its Laplace invariants, just as in the classical 2-dimensional
case. However, we shall see that in contrast with the planar case, the higher-
dimensional invariants cannot be prescribed arbitrarily. They must satisfy dif-
ferential constraints which are necessarily satisfied for overdetermined systems
(4.1) for n > 3.

We shall consider Cauchy data given by

y(xd, e,z ,22) = fi(ze), 1<£€<n. (4.2)
Any smooth solution of (4.1) must of course satisfy
Yikei = Ykjts (4.3)

for k,j and [ distinct. Combined with (4.2), these conditions imply that the

coefficients a and c in (4.1) must satisfy the following set of compatibility con-
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ditions, for k, 7 and £ distinct,
agy,; J aeJ,k =0,
cej = afy; — agaf; + %azk + aj;aky, (4.4)
Cak,j — Ceik + ahicen + (af; — af)er; — afer; = 0.
We observe that the first equation of (4.4) is also a consequence of the second
one.
The general form of the system (4.1) is preserved under the admissible trans-
formations
y= Mzt Tn)T, (4.5)
z; = fi(Ti), 1<Li1<nm, (4.6)

where ) is smooth and non-vanishing and the f;’s are smooth and have non-
vanishing derivatives.
Following [KT1], we define the higher-dimensional Laplace invariants of (4.1)
to be the n(n — 1)? functions given by
mh = i+l = (4.7)
my, = aﬁj —al, k#1,].
for all ordered pairs (¢,7), 1 <1 # j < n. It is readily checked, using (4.7),

that under an admissible transformation, we have
M = fifimi, M = fimi. (4.8)

In particular, the functions m 7 and mkk are invariant under pure rescalings
(4.5).
In the 2-dimensional case, the compatibility conditions (4.4) are vacuous,

the mkk ’s are not defined and the m;}’s correspond to the classical Laplace

ij
invariants h and k of the equation. If the equation is given by

2zy + a(z,Y) 2 + b(z,y)2y + c(z,y)z = 0, (4.9)
then we have indeed

mia=h=a,+ab—c, mii=k=0b,+ab—c, (4.10)
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It is shown in Darboux [D] that given any two functions h and k of z,y, there
exists a linear p.d.e. (4.9) such that h and k are its Laplace invariants. Any

such p.d.e. is of course defined up to a rescaling
z=Mz,y)z, Mz,y) #0. (4.11)

The p.d.e. is uniquely determined if we choose A such that upon the rescaling
(4.5), we have ab— c identically zero, a identically zero on a characteristic curve
z = zo and b identically zero on a characteristic curve y = yo. In this case the

p.d.e. is given by

" (/I:hdx) - (/y:kdy) - (L:hdm/y:kdy)z =10.

In order to to state the generalization of the result of Darboux we first determine
the necessary conditions which must be satisfied by the higher dimensional

Laplace invariants.

Lemma: The higher dimensional Laplace invariants of a compatible system
(4.1) satisfy the following relations:
ij kj _ 0
My, +myi =0,
ij jk,_ij ki _ 0
Mgk — MG My — My; = U,
ij i, ik ik, 30 _
m,-j,k + mkkm;k + m.‘”m,] = 0, (4.12)
ij ij (4
Mgy — My — Mg, =0,
b4 ij, ki &G ki _
Mix,; + Mgmy + mgm?3: =0,

for 1<14,5,k, £ <n, 1,53k, distinct. We then have

Theorem 2: Given any collection of n(n — 1), n > 3 smooth functions of
L1y yTn,

m, mé, 1<i,5,k<n, i,j5k, distinct,
satisfying, the constraints (4.12) there exists a linear system (4.1) whose higher-

dimensional Laplace invariants are the given functions mi} and my,. Any such
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system is defined up to a rescaling (4.5). A representative-is given by
vij+Ay;— m§§3y =0,
Yk + (mi’k + A) yk —mify =0, (4.13)
Y.k + miy + mpye =0,
yee + migye + miGys =0,

where (i,3) is a fized (ordered) pair, 1 < i,5,k,£ < n are distinct and A is a

function which satisfies the following:
A= —mﬂf;-

e Ji _ i
A;= my; — My,

5. The Higher-Dimensional Laplace Transformation

Consider a system of p.d.e.s (1.1) for y and let (i,5), 1 < i,j < n, denote an
ordered pair. We say that the system is (i, j)-transformable if
0 o T i 0.
ki,
Observe that the property of (i, j)-transformability is invariant under the ad-
missible transformations (4.5) and (4.6). If the system is (3, j)-transformable,

then we define, following [KT1],
§=yi+ay,
to be the (i, j)-Laplace transform of y, which we denote by

§=Liq)(y)-
The transformation L) is a higher-dimensional generalization of the classical
Laplace transformation for linear scalar second-order p.d.e.s in the plane [D].
It is based on the geometric transformation which we reviewed in Section 3.
We now recall from [KT1] that if (4.1) is (i, j)-transformable, then just as in
the two-dimensional case, § will satisfy a system of differential equations of the

same type as (4.1):

Theorem 3: Consider a system (4.1) for y, whose coefficients satisfy the
compatibility conditions (4.4). If the system is (i,j)-transformable, then § =
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L ;)(y) satisfies a system of the same type, whose coefficients satisfy the com-
patibility conditions (4.4)

The transformation laws, under the (3, j)-transform, for the coefficients and
the higher-dimensional Laplace invariants of any (z,j)-transformable system
(4.1) are explicitly given in [KT1] and [KT2].

We also recall from [KT1] that the (¢,;) transform can be generically in-
verted. Indeed, consider a system (4.1) for y and let § = L j)(y). If mf; # 0,
then the inverse of the (¢, j) transform exists and is given by

y= [L(j.i)(g)] [mi.

In section 2, we recalled [D] that in the planar case (n = 2), the vanishing
of one of the Laplace invariants h = ml% or k = m2! implies that the p.d.e.
(4.9) factors into two parametrized first-order o.d.e.s in z and y respectively,
so that it can be integrated by quadratures in terms of two arbitrary functions
of one variable. ‘The principle of the classical method of integration of Laplace
for (4.9) is to iterate the transforms L(;,3) or L(2,1) until one possibly obtains a
transformed p.d.e. with one of its Laplace invariants equal to zero. One then
transforms back using the inversion formula to obtain solutions of the original
equation.

The generalization to higher dimensions of the reduction to parametrized
o.d.e.s which occurs for (4.9), when either h or k is identically zero, was obtained
in [KT1]. We now briefly recall the main content of this result. A system of
p.d.e.s (4.1), whose coefficients a and c satisfy (4.4), is said to be (3, 7)-reducible,
for an ordered pair (z,7), 1 <4, <n,if

A = (ml) + 3 (mid)" = 0.
k#i,j
The conditions of (i,j) reducibility is invariant under the admissible trans-
formations (4.5), (4.6). In the case n = 2, any p.d.e. (2.1) is either (3,7 )-
transformable or (3, j)-reducible for some open subset of R2. This is no longer

true in the overdetermined case n > 3, where a system (4.1) could be neither
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(2, 7)-transformable nor (¢, 7) reducible.

In [KT1], we considered systems with an additional non-homogeneous term

hie in (4.1), i.e.
Yre+ abyr +ayetey=hwe=0, 1<k#£<n (5.1)
where the coefficients satisfy (4.4) and hy, satisfy
hew; — hej + abshen + (al; — ab)hi; — abyhe; = 0. (5.2)

For such systems, we proved the following reduction theorem which generalizes

the classical result for p.d.e.s in the plane:

Theorem 4: Consider a system (5.1) for y whose coefficients a, ¢ and h satisfy
(4.4) and (5.2). If the system is (1, j)-reducible, then the general solution of the
system is given by

y=Q+e'G(g)),

where
Q= —e_"/e""[ [/ e'hijdz; — F(:cj)} dz;,
I= /a{jdz;, J= /a::jdxj,
where F is an arbitrary function of z;, G(z1,--+,Zj,+++,zn) does not depend

on z; and where the antiderivative I is such that I} = a;:k for k # i,k #£ 3.
Then G satisfies a linear system in n—1 independent variables xy,---,2;, -+, Ty,

of the form
Gre+95Gr+98Ge+buG+rie=0, k#{£ distinct from j.

where
gl,k = afk = s glklc = afk —~dy
bie = ek + Jpdy — Juk — alpJy — afJ i
and

rie = € (hik + Qi + Q1 + afiQ k + e Q).
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The proof of Theorem 4 is given in Theorem 2 of [KT1], where the reader
can also find applications to explicit examples. It is a non-trivial result that if
one applies Theorem 4 to a homogeneous reducible system in its normal form
as in (4.13), then the reduced system that one obtains is also homogeneous. We

refer the reader to [KT2] for details.

6. Periodic Systems

Suppose that we are given a system S of the form (4.1) whose coefficients a
and c satisfy (4.4). If the system is (¢, j)-reducible for some ordered pair (3, j),
then we may apply Theorem 4 to reduce the number of independent variables
from n to n — 1. If the system S is not (z,j)-reducible for any ordered pair
(2,7) and it is (k, £)-tranformable for some direction (k, ), then the application
of the (k,£) transformation to S will lead to a new system which could again
be considered for reducibility. We will thus say that S is reducible after r steps
if there exists a path of ordered pairs (I,J) = ((¢1,1), -, (3, Jr), (¢,7)) such
that the composition § = L, ;)00 L, 51)(S) exists and is (i, j)-reducible.
Given that there are a priori n(n — 1) directions in which to transform at each
stage, it is important to have certain criteria by which one can eliminate certain
pairs (i, jr) in the sequence (I, J). One such criterion is provided by the notion
of periodicity. Given a system S which is (¢, j)-transformable for some pair
(2,7), we say that S is I-periodic in L; ) if S and L; ;)(S) are equivalent under
an admissible transformation (4.5), (4.6). Thus, one should never transform a
system in a direction in which it is 1-periodic when constructing a path which

is to lead to an (7, j)-reducible system.

In the case n = 2, we only have two transforms L(; 2) and L(3,1), any p.d.e.
(4.9) which is 1-periodic in the (1,2) direction will also be periodic in the (2,1)
direction, and a p.d.e. which is 1-periodic is not reducible after any number
of steps. Darboux [D] proved the remarkable fact that every 1-periodic p.d.e.

(4.9) is equivalent under an admissible transformation (4.5), (4.6) to the Klein-
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Gordon equation

Zy =€z , €=1

We state a theorem which gives the n-dimensional generalization of Darboux’s

result.

Theorem 5: An (i,j)-transformable system (4.1) is 1-periodic in L; ;) if and
only if it is equivalent under an admissible transformation to a system of the

form
Yij — €€y =0

Yui +EiEkY s+ alyi Heeraly=0, 1<k#i,j<n
yki + EjERY e+ aly; Hejerakiy =0, 1<k#i,j<n
yre+afyr t+abyet+oey=0, 1<k, £<n,

where 1,7,kl are distinct

e < - i _ P
Aji = 0, ay= 0, aj;;= 0, aj;;= 0,

It can be verified that in dimension three, every system which is 1-periodic
with respect to one of the higher-dimensional Laplace transforms and trans-
formable in all other directions is also 1-periodic in all other directions. More

precisely, we have the following result

Theorem 6: A compatible system of type (4.1) and n = 3 is 1-periodic with
respect to one of its higher dimensional Laplace transforms if and only if, af-
ter a relabelling of independent variables, it is equivalent under an admissible

transformation to a system of the form

Y12 — €162y =0
Ys1 +€1€3y3+ f Yy +eeagy =0, (6.1)
Ys2+E2€ayst+gyz+eeafy=0,

where'e? =1, 1 <i <3, f and g are differentiable functions of z3 only. If
f # g, then , the system (6.1) is 1-periodic with respect to all higher-dimensional

Laplace transforms.
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