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TOY TOPS, GYROSTATS AND GAUSS-BONNET

M.F.L.B. Almeida* J. Koiller® T.J. Stuchi®

Abstract

A Gyrostat consists of a main rigid body with one or more attached
rotors. We show that Poinsot’s description of rigid body motion can be
extended and we find the holonomy angle around the angular momen-
tum vector, in this generalized description, after traversing one periodic
solution of the corresponding reduced equation. In order to obtain this
result, we follow the steps of M.Levi’s study on rigid body motion (Arch.
Rat. Mech. Anal. 122, 213-229, 1993).

1. Introduction.

The aim of this note is to present an example where Geometry and Mechanics
come together. Gyrostats are mechanical devices, composed of more than one
body, yet having the rigid body property that its inertia components are time
independent constants ([20], [11]). Such systems consist of a main rigid body,
called the carrier, together with one, or more, rigid symmetric rotors (which
we may call flywheels), supported by rigid bearings on the carrier. See Figure
1. Gyrostats have important technological applications, e.g., as stabilizers for

artificial satelites [15], [8].

To warm up we consider a toy top (M.Levi [12] prefers a bicycle wheel, which is
just fine). Mark a meridian on the top (or a spoke on the wheel); with the top
initially at rest, make its tip describe a closed curve C on a surface S, in such a

way that the top axis of symmetry is always normal to S. Guess what happens:
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Figure 1: A gyrostat

the meridian does not come back to the original position! Surprisingly (or not), it
turns through an angle, precisely that given by Levi Civita’s parallel transport,
o kgds , where kg is the geodetic curvature. 1 Consider now an arbitrary space
curve C and let the top axis of symmetry follow the normal vector in the Frenet
frame: the holonomy is [, kds , where & is the curvature of C; moreover, if
the top axis follow the tangent vector to the curve, the meridian turns through
an angle which is equal to the total torsion [;7ds ([9]). Light traversing an
optical fiber, changes phase by this amount, as was experimentally verified with
an interferometer [5]. What happens if we start with two equal wheels, rotating
with the same angular velocity, one of which is left at the starting point go € C,
and the other traverses the curve? If curve C is traversed slowly with respect to
the angular motion then, to first order, the holonomy (here the phase difference
between marked spokes in the two wheels) is given by the above formulas.

Many such phase changes (generically called “Berry phases”) were recently
found both in classical and in quantum mechanical problems. B.Simon and
J.Hannay discovered that they are related to geometrical/topological invariants

in the quantum and classical cases, respectively. For a survey on the field, we

refer to the colletanea [19)].

In the M.Sc. thesis of MF, [6] holonomies for gyrostats were derived by two

1This fact was rediscovered several times; it seems first found out by J. Radon [14].
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different methods. One follows a paper by R. Montgomery, using symplectic
geometry; our generalization was submited elsewhere. Montgomery revisited

the old and honorable Euler’s problem of the motion of a free rigid body, and
found a Berry phase from the 18th century.

M.Levi presented another derivation for the holonomy of the rigid body, using
elementary differential geometry [12]. Mark Levi pushed the “bycicle wheel
idea” quite far. For instance, he obtained a “mechanical proof” of the Gauss-
Bonnet theorem on 2-dimensional surfaces [13]. This is a beautiful paper; which
we think should be mandatory reading on any elementary Differential Geom-
etry class. Levi found other applications, such us: computing areas using a
wheel; twisted beams, ropes, springs, ribbons, waveguides, optical fibers, etc.;

the writhing number of linked curves.

We present here a simple derivation for the gyrostat holonomy from the dif-

ferential geometric perspective. We dedicate this note to Prof. Manfredo do

Carmo. We hope he finds it amusing.

2. Euler’s free rigid body.

In Mechanics one learns that a free rigid body, as far as its dynamics is con-
cerned, can be replaced by an “inertia ellipsoid”. Fix a frame é(t), 1 =1,2,3
on the moving body. Any configuration can be represented by an orthogo-
nal matrix R, whose columns are €;,i = 1,2,3. At any given time the rigid
body is instantaneously rotating with angular velocity &. The total energy is
given by T' = (&, ), where m is the total angular momentum vector. Gen-
eral considerations (Noether’s theorem) imply that the latter is a conserved
vector. From the viewpoint of an observer living in the body, however, 7
seems to describe a closed curve M(t) in a sphere, since, as a matter of fact,

m = R(t)M(t). Similarly, one defines the angular velocity seen from the body
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as {3, where &(t) = R(t)((t) 2

Consider the dual ellipsoid
i = {M i ( A-IM,M) =E}

living in the dual of the Lie Algebra. The intersection of gy with the spheres
||M|| = J are closed curves (except four separatrices) representing the solutions
M (t). Going back to the inertia ellipsoid, we get closed curves (except the
separatrices) §(¢). Euler derived a set of ODEs for M,

dM - L :

LA =i

o MxA (1)
whose solutions, together with those for the pendulum, are standard examples

of elliptic functions. See Fig. 2.

Figure 2: Phase portrait of Euler’s reduced system

As the name says, the inertia ellipsoid is inert, it does not move. Actually, the
rigid body motion is given by
R(t)E.

2Writing entities in body coordinates by capital letters is an idea due to Arnold, who
immeduately souped it up to arbitrary Lie groups.




o

TOY TOPS, GYROSTATS AND GAUSS-BONNET

How to recover the complete solutions R(t) from the reduced solutions Q(t)?
A look on the expressions for { in terms of the Eulet angles parametrizing
S0(3) shows that it amounts to solve a linear set of ODEs with periodic co-
efficients. This can be done using complicated special functions ([10]). As we
will not discuss here, it is equivalent to explicitly solve a problem of lifting a
closed curve in the base 52, to the total space SO(3), using a connection with

group S ([17]). At any rate, there is a very nice geometric way to visualize this.

Poinsot noticed that, via R(t), the inertia ellipsoid rolls, without slipping, on
a fixed plane perpendicular to the angular momentum vector ([3), [7]). The
polhode is the curve on the inertia ellipsoid that develops, via R(t), over the
herpolhode, the corresponding plane curve. The holonomy is depicted in Fig. 3
as the angle Ap. 3

Figure 3: polhode and herpolhode

Theorem 1 (Montgomery’s holonomy formula).

2ET
B 225 % )
J
3Poinsot’s theorem is one of the mathematical gems of classical mechanics treasure chest.
This amazing fact is a consequence of just the equation (&, ) = 2E = const., as one realizes
after some thought.
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E is the energy of the trajectory, J the modulus of the angular momentum
vector, T' is the period of the polhode, and T is the (signed) solid angle, swept
by the polhode on the inertia ellipsoid.

Thus, an important information about the full motion (the herpolhode angular
shift) can be given in terms of the reduced Euler system (the polhode), in a very

geometric way, circumnventing the use of complicated special functions ([10]).

M.Levi’s derivation starts with the trivial observation that A is the integral
of the herpolhode curvature kr, (as a planar curve). Next, he relates it to the
polhode geodetic curvature kr,. That is the crux of his paper. There are two
more ingredients, first the fact that geodetic curvature is invariant under Gauss’
normal mapping, and then that there is a mechanical meaning for this mapping,

namely:

Proposition 1 (Mechanical interpretation of Gauss’ mapping).
Gauss mapping takes the polhode, living inside £, over the curve M(t) in the
sphere of | M|| = J.

Proof. The gradient of (I}, Q) is 21§} = 2.
2.1. Relating curvatures. This is the main observation of M.Levi: since the
polhode (T';) rolls without sliping over the herpolhode (T;), their arc lengths

are identical. We denote by ds/dt their time dependence as Poinsot’s motion

takes place.

Lemma 1 . The geodetic curvature kr, of the polhode and the planar curvature

kr, of the herpolhode at the contact point are related by
kr,ds/dt = kr.ds/dt 4+ w;
where w3 is the vertical component of the angular velocity vector.

Remark: This formula holds for any convex body rolling without slipping. Try

to prove it! In our case, w3 = 2% (since 2E = (m,w) and m = j)
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2.2. Nailing the proof. The holonomy angle Ay is given by

T
Agoz/o ke, (s)ds

where T is the time interval which a point in the inertia ellipsoid takes to touch

again the horizontal plane. Thus

T T
Mg = /0 ke, (s)ds + /0 wads

o ET
= L kpc(s)ds+27

Clearly the geodetic curvature of a surface curve I' is invariant under Gauss

/F krds = / kods

where k, is the geodetic curvature of the image curve c. In our case, I' = I, is

mapping:

the polhode, and ¢ = M(t) is Euler’s solution curve in the momentum sphere.

Using Gauss-Bonnet, we get

/C k.ds = 2m— /R KdS
= 2r—=7

where
K =1/J% is the gaussian curvature of the sphere.
R is the spherical region inside ¢ = M(z).

T is the corresponding solid angle.

Putting everything together, Montgomery’s formula is proven:

Ap = 2E—JT— =T (mod2r)

3. Holonomy for gyrostats.

3.1. Extending Montgomery’s formula. For a gyrostat with n flywheels,
the configuration space is S0(3)x S' x...x §*. We denote the additional degrees
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of freedom 01, ..., 0,. Here, in addition to left (or spatial) SO(3) invariance,
there is also right (or material) S* X ... x S! symmetry. In this case Noether’s
theorem implies the existence of n additional conserved scalar momenta Iy,...,
I, besides the conserved vector . The reduced equations of motion also give
rise to trajectories on the sphere || M|| = J. They are given by

dM o

— =M xVuHM,I) , —=ViH(M,I). 3)

The reduced Hamiltonian H(M,I) is given by a quadratic function of 3 +
n variables My, Ma, M3, I, ..., I,. In the first set of equations, the conserved
momenta Iy, ...., I, are thought as parameters. We have shortened the notations,
0 = (0,,...,0,) and I = (I, ..., 1I,) for the flywheels coordinates and momenta.
Once a closed trajectory C : M= M(t) is found, say with period T', the phases

associated to the flywheels can be found by quadratures:

Ab; = /0 "V H(M (1), dt. (4)

Here is the subject of our note:

Theorem 2 . The geometric phase A¢ (around ) of the main body is given

by:
ap=2EL _x_ 15 Lne;. (5)
J J i3

Remark: The holonomies Af; around the flywheels must be calculated case

by case, using (4), as the example below shows.

3.2. An example. In this section we exhibit the phase portrait of the reduced
equations, for a special configuration of the gyrostat with one rotor (Fig.4).
For simplicity, we place the flywheel on the Z axis of the inertia ellipsoid of
the main body, assuming that the X,Y, Z axis are the principal axis of inertia
of the carrier. The Hamiltonian consists of kinetic energy only and thus is a

quadratic form in the Lie algebra s0(3) x R, given by
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Loz 1 5
E = E(IQ,Q) + 5/\30
i |
+3(0+ Md*)(Q? 4 02)
1 .
+ 5/\393 + X300
where A is the double eigenvalue of the flywheel inertia matrix , Az its third
eigenvalue; M is the flywheel mass, 0 its angular velocity and d is the distance
beetween the centers of mass of the carrier and flywheel.
Denoting by I, I, e I5 the eigenvalues of I,,;, the inertia matrix of the main

body,
E= %(0, Qla QZa 03)]9(0" ‘Ql’ Qz’ QB)t

where [, the inertia operator of the gyrostat, is given by:

A3 0 0 A3
T = ( 0 A4+Md? 41, 0 0 )
i 0 0 A+ Md2+ 1, 0

Az 0 0 M+ 13

Using the coordinates w, = (9,Q1,QZ,Q3) and my = (I, My, My, M3), respec-
tively for g (Lie algebra of S* x SO(3)) and its dual g", it follows that m, = I,w,
(I, is the Legendre transformation). Consider the pairing g x g", given by 2
h = (mgy,w,). The energy of the gyrostat is again expressed in terms of the
momenta as h = (m,, I;'m,).

Inverting I, we get:

L R T R
I = 0 rrimE 0 0
g 0 0 m 0
—% 0 0 ﬁ
Hence
1 M? M? My—-1)? |2
- _( 1 - + 2 + ( 3 ) + _) (6)
25 + X+ Md L+ X+ Md2 I3 A3

] — -1
Moreover, since w, = I-'m,, we get

M,

%5 L+ )+ Md?
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M,

Il A yry vre (@)

1 M

%= Lt

1 1 1

0=(=—+ —)—-—
(13 + /\3)1 I M, (8)
Trajectories are intersections of a fixed momentum sphere IIM || = J with the

energy ellipsoids with varying energies E. Note that the centers of the ellipsoids

belong to the Z axis. Fig.4 below depicts the possible phase portraits as a func-

tion of the parameter I. The reader should be able to dedect the critical values.

For details, see [6]

Figure 4: Bifurcations of phase portrait of a special gyrostat
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3.3. Geometric phase of a gyroststat. We fix the values of the scalar mo-
menta /; and angular momentum vector 1 for the rigid 1)oay with n flywheels.
In contradistinction with the usual Poinsot description, in this case an invariable
plane does not exist. Nonetheless, after a period T, the plane perpendicular to
m and touching the inertia elipsoid attains the same height. Thus, although we
can still speak about herpolhodes, these are not planar curves.

To fix ideas we add just one flywheel. The generalized inertia elipsoid in the

example above is given in terms of the angular velocities by

12
aQ? + BOE + 402 = 2h — = (9)
3
where
a=L+A+Md =1L+ 4+ Md =1 (10)

A short calculation gives
(@, m) = constant + Q3(t)1 (11)

showing that the polhodes are planar curves only when I = 0.

Going over the proof of Lemma 1, one realizes that the oscillations of the planer
g P ) p )
perpendicular to f(passing through the lowest point of the inertia ellipsoid) do
not hamper the proof. The new expression for ws is given by w; = 2"%10‘. This

follows from 2k = (Z,0,0, J).(é,wl,wz,w3) =10+ (m,w) = 16 + (M, Q) where
h = (my,w,) and m, = (1,0,0,J). Thus

2h — I

kr, = kp, + (12)

The rest of the derivation is straightforward. It is easy to extent it for n fly-

wheels; these do not need to be attached to principal axis of the carrier.

4. Directions for further work.

i) J.E. Marsden, R. Montgomery & T. Ratiu [17] present a general “reconstruc-

tion formula” for the complete solutions of Hamiltonian systems with group
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symmetry, once the reduced system is known. Let J : M — ¢* the momentum
mappingand p € g* satisfying the conditions of Marsden-Weinstein reduction
procedure ([3]). Any connection on the principal bundle G, — J~'(u) —
J~'(1)/Gy can be used; lifting a periodic reduced solution in the base space
yields a “geometric phase” (associated to the connection). Conversely, know-
ing the complete solutions of specific Hamiltonian systems may give us ways to
explicitly lift special curves in the base. Another approach for reconstruction
is being developed by the Calgary geometric mechanics group [4], and the rigid

body is again the basic example.

ii) Consider Kirchhoff’s problem of the motion of a solid body through in-
compressible, inviscid, irrotational fluid. Here one has geodetic motions of a
left-invariant metric on the group of rigid motions of three-dimensional space.
The problem has sixdegrees of freedom; it is nonintegrable except at excep-
tional cases. See [2] and references therein. It would be instructive to compute
the relevant holonomies for the integrable cases, and see what happens in the
nearly integrable situations. A novel feature here is the possibility of transla-
tional holonomy, i.e, how much the rigid body translates after one period of a

periodic orbit of the reduced problem.

iii) In this note, the motion occurs simply by inertia in the configuration space
of carrier plus flywheels. However, there are interesting associated control prob-
lems, where one considers “protocolled ” flywheel motions, and one desires
to prescribe the carrier holonomy. Finding the optimal flywheel trajectory to
achieve the reorientation is an interesting variational problem. A similar study

could be made also for Kirchhoff’s “submarine”.
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