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MEASURE-VALUED SOLUTIONS FOR
MULTIPHASE FLOW IN POROUS MEDIA:
EXISTENCE AND WEAK ASYMPTOTIC
STEADINESS OF WATERFLOODING

Hermano Frid*®

Abstract

We stablish the existence of physically admissible measure-valued so-
lutions for the initial boundary value problem modeling the flow of water,
gas and oil in a one-dimensional reservoir submitted to the constant injec-
tion of pure water. We get the existence by two distinct ways: vanishing
viscosity method and finite difference schemes. We also prove the weak
convergence of the time averages of these m-v solutions to Dirac mea-
sures concentrated at the state representing pure water, for a.e. space
variable. In particular, we get that the time averages of the expected
values of the saturations of water and gas converge to the state which
represents pure water, at a rate which depends only on the shape of
the flux functions. The equations modeling this flow form a system of
conservation laws which can admit umbilic points, curves where genuine
nonlinearity fails, and also elliptic regions. We also present some useful
general results about the weak convergence of probability measures to
Dirac measures.

1. Introduction

Here we consider an initial-boundary value problem for a system which models
the flow of water, gas and oil in a one-dimensional reservoir viewed as a porous
medium. Let us denote by u; the saturation of water, that is, the fraction of

the pore volume filled with water, u,, the saturation of gas, i.e., that fraction
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filled with gas, and u3 the saturation of oil, defined analogously. Assuming that

each pore is completely filled by the three immiscible fluids, we have
U1+U2+U3=1, OSUtSI, i=17253'

When the effects of gravity, capillarity, and those of thermodynamical nature
are neglected, and we take the porosity and the total velocity as constants
and equal to one, a model for three-phase flow, extending the Buckley-Leverett
model for. two-phase flow [1], is provided by a 2 X 2 system of conservation laws

of the form (see e.g. [9])

0
il t gt =0, (1.1)
where u(z,t) = (ui(z,t), us(z, 1)), and f = (f1, f2) is given by
- Ai(u) i B
= Ar(w) + Az(u) + As(u)’ =1,2 (1.1-9)

where A;(u) is the so called mobility of the i-th phase, i.e., the phase whose
saturation is u;, i = 1,2,3. The mobilities A; are defined as the quotient of
the corresponding permeability functions k;(u), by the viscosity of the phase,
which is a constant that we denote by p;, that is, Ai(u) = k_.u(‘g)

Two-phase experiments provide the form of the permeability functions when
one of the phases is absent. By these experiments it is known that the functions
ki(s) = ki(se;), s € [0,1], where {e;,e;} is the canonical basis of R?, are
increasing, convex, satisfying k;(0) = 0, for ¢ = 1,2, the same occurring with
the functions ks((1 — s)e;),s € [0,1], 7= 1,2, and k3(s,1—5)=0,s €[0,1]. In
reservoir simulation, the form of the permeability functions for the remaining
values of the saturations is normally guessed in such a way that must coincide
with the two-phase experimental issues on the boundary lines u; = 0,7 =1, 2, 3.
In simple models it is assumed k;(u) = ki (u1), and kz(u) = k2(uz), that is, the
permeability functions depend only on the saturation of the respective phase.
As an example we have the Stone’s model [12] where k;(u) = uy?, kz(u) = u,?,
and ks(u) = (1 — u3 — uz)(1 — w1)(1 — u2). In [6], Isaacson, Marchesin, Plohr
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and Temple present the study of the Riemann problem for the system (1.1)
taking the same k; and k; but ks(u) = (1 — u; — u3)%. Even in this last simple
model, where the resulting system is hyperbolic, we have the appearance of four

umbilic points in the region of physical interest, A, given by
A={ueR0<u+u<1,0<u<1,i=1,2},

three of them are the vertices of this triangle, and one is in its interior. There
is also a number of curves where genuine nonlinearity fails.

The basic properties about the flux map f we will need for the study devel-
oped here are the following , which are trivially presented by those in models

of three-phase flow in porous media, by what was said above:
(i) fisa C? map A — A;
(ii) fi(u) =0,ifu;=0,i=1,2, and fi(u) + fo(u) = 1, if u; 4 up = 1;
(iii) Setting e = (1,0) and, for &, > 0,
Ae,g0) = AN (e + [—€o,€0] X [—€o,€0)

we assume that, for some &g, f is a homeomorphism of A(e,&p) onto its
image.
We will call a C? map f satisfying (i), (ii), (iii) above, a A-flux, and denote
by F(A) the set of A-fluxes.

Here we will be interested in the initial-boundary value problem given by

system (1.1), where we assume f to be a A-flux, and the conditions
u(z,0) = ug(z), 0<z<lL, (1.2)

u(0,t) =e (1,0, t>o0. (1.3)

The boundary condition (1.3) represents, in models of three-phase flow in porous
media, the constant injection of pure water into the reservoir.

As we mentioned above, even simple examples of A-fluxes, as that appearing

in the system whose Riemann problem is studied in [6],can give rise to such a
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number of degeneracies that would become attempting to get a weak solution to
the initial-boundary value problem (1.1), (1.2), (1.3), a challenge which seems
far from being achievable with the technics which have been developed so far.
Here, we deal with the weaker concept of measure-valued solution which were

introduced by DiPerna in [3], in the context of Cauchy problems.

Definition 1.1. Let P(R?) denote the set of the probability Borel measures
on R?. A measure-valued solution to (1.1), (1.2), (1.3) is a measurable map
v:[0, L] x [0,00) — P(R?), denoted by vy, satisfying
Suppy: C A, for a.e. (z,t) € (0, L) x (0, 00), (1.4)
and such that for all ¢ € C3([0,L) x [0,00)) (i.e., € C*((0,L) x (0,00)) and
Suppé is a compact subset of [0, L) x [0,00)) we have
oo L
Jo ], Alsear )+ (s f(w) g} dod
+ I3 uo(z)¢(z,0) dz + [5° eg(0, 1) dt = (0,0).

An important consequence of the above definition is given by the following

(1.5)

proposition, which is a key result for the study of the asymptotic behavior of
the m-v solutions of (1.1), (1.2), (1.3) as it will be seen further on.

Proposition 1.2. Let v, be a measure-valued solution to (1.1), (1.2), (1.8).
Given any T > 0, for each { € C3((0,T)) and a.e. z € (0,L) we have

T
| (G ) = )¢ (1) ] < CxVar(c), (16)

‘where C > 0 is a constant independent of T and z. In particular, we have

e 1 %
lim A (e, T) dt = e, (1.7)

T—o0

for a.e. z € (0,L), with a rate of convergence O(T1). -

Proof. Fix zo € (0,L) and let § € C}((~1,1)), § > 0, satisfying [, §(s)ds = 1.
Set dx(s) = h~*6(h~1s). In (1.5), choose ¢(z,t) = ((t)x%(z), where

@) =1 —/0 On(s — zo) ds,
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with h < min{zo, L — zo}. Then, if z4 is a Lebesgue point of the measurable
function (see [10])

[ eastnc a,
we get that (cf. [7])

J 8 it 228 [Tt

So, making h — 0 in (1.5) for é(z,t) = x%(z)¢(t), we obtain

/0 T{(V,o,,,f(u» —e}¢(t)dt = /O I° /0 T(V,,t, u)¢'(t) dtdz. (1.8)

Now, taking modulus on both sides of (1.8), using (1.4) and making obvious
estimates, we get (1.6).. More yet, we can choose a sequence T, — 0o and
then find a null set so that, for z not belonging to this set, (1.6) holds for all
¢ € C3((0,00)). To obtain (1.7), we observe that (1.6) holds, by passing to
limit, for {(¢) = Xz (t), for any T > 0, for a.e. ¢ € [0, L]. With this choice for
¢, where we have Var(¢) = 2, we divide (1.6) by T and let T — oo to get (1.7)
with the asserted rate of convergence.

(m]

The main results of this work can be summarized in the following statement.

Theorem 1.3. (Existence and Weak Asymptotic Steadiness) There ezists q
globally defined measure-valued solution to (1.1), (1.2), (1.8). Let 1, be such q
m-v solution to (1.1), (1.2), (1.8) and set

(Au;") = %/{)T(Vz,tv'>dt'

Then, for a.e. z € [0,L], y# = 6o, as T — 00, where & is the Dirac measure

concentrated at e. Further, the limits for a.e. z € [0, L]

,I!i_{rolo(/";“aud =1, 71{?;(/‘;‘;”2) =0,

are attained at a rate of convergence for which one can obtain estimates using

only properties of the fluz functions fy, f, and the fact that the limit for a.e.
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z € [0, L]
im0t =

is realized at a rate 0(T!).

The above theorem will be proved along the following three sections. In
section 2, we prove the existence of m-v solutions to (1.1), (1.2), (1.3) using
the vanishing viscosity method. In section 3, we prove the existence of these
solutions using finite difference schemes. In section 4, we prove the results about

the asymptotic behavior of these solutions.

2. Existence: Vanishing Viscosity Method.

We consider the approximation of system (1.1) given by the vanishing viscos-
ity method, that is, we introduce an artificial viscosity term and consider the

resulting parabolic system

0 ij 0*
Eu + a—x'f(u) = ewu. (2.1)

The purpose of this section is the proof of the following theorem.

Theorem 2.1. There exists a subsequence of solutions of (2.1) in (0,L) x
(0,00), satisfying suitable initial-boundary conditions, which generates, as € —

0, a measure-valued solution to (1.1), (1.2), (1.3).

Before proving theorem 2.1 we want to state a preliminary result about the
solutions of initial-boundary value problems for parabolic systems like (2.1).

So, let us set the following initial and boundary conditions for system (2.1)
u(z,0) = uo(z), z € (0,L), ) (2.2)

u(0,t) = u(L,t) =e, (2.3)

where ug(z), e, are the same as in (1.1), (1.2), (1.3).
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We will now state a simple but useful lemma on invariant regions for non-
linear parabolic systems, which is in fact an easy corollary of the general result
in [2] (see also [11]).

We consider, for the moment, an initial (or initial-boundary) value problem
for a general system like (2.1) with f € C*(R"), (z,t) € (a,b) x (0,00), where
we can eventually have ¢ = —oo, b = 0o, and we assume that there are given
appropriate boundary conditions.

Now, let B C R" be given by

B=()5.
with
Bi={u€eR" : Gi(u) <0}, (2.4)

for certain smooth functions G;: R* - R,i=1,...,N.

We assume that u(z,?) is a smooth solution of (2.1) in (a,b) x (0,T), satis-
fying certain initial (or initial-boundary) conditions, and we also suppose as in
[2] that u(z,t) satisfies:

for each fixed ¢, there exists a compact interval I C (a,b)

such that if z ¢ I then u(z,t) € int(B). 28]

Condition (2.5) apparently does not allow boundary data taking values on
the boundary of B. In this case, the usual procedure is to perturb slightly the
boundary conditions in order to satisfy condition (2.5), get the invariance for
the new problem and then obtain the invariance for the original problem by a

limit process.

Lemma 2.2. Assume that the functions G; satisfy the quasiconvezity condition

ETV2Gi(£) >0,  for every € such that (VG;,€) =0,

. (2.6)
indB;NdB,i=1,...,N,

and let the map f in (2.1) satisfy

Tiw)(f(0B:)) C Tu(0B:), (

o
=]
N
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for each u € dB; N OB, 1 = 1,...,N (where we look at both affine spaces as
translated to the origin). Then B is invariant for the solution of the nonlinear

parabolic system (2.1); that is, if the initial and boundary conditions are in B,
then u(z,t) € B for all (z,t) € (a,b) x (0,T).

Proof. In order to apply Chueh-Conley-Smoller theorem on invariant regions

[2] we need only to prove the following:
VG; is a left-eigenvector of Vf on dB; N 8B, for eachi =1,...,N. (2.8)

Now, if £ € Tu(8B;), with u € 8B; N 8B, then VI - ¢ € Tyw)(f(0B;)). By
hypothesis (2.7) we have that, since VG;(u) is normal to T,(9B;), then it is
also normal to Ty(u)(f(8B:)), if u € B;N 9B, i=1,...,N. So, we have,

(VE(u)T - VGi(u), §) = (VGi(u), VE(u)¢) =0,
for all ¢ € Ty(0B;),u € 0B;N9dB,i=1,...,N. Then,
Vi(u)"VGi(u) || VGi(u),
that is, there exists a certain y; € R, y; = p;(u), such that
Vi(u)"VGi(u) = 1V Gi(u),

and, so, we have (2.8) and the lemma is proved.
O

Proof of the theorem 2.1. We will prove that, for each € > 0, there exists a
solution u®(z,t) of problem (2.1), (2.2), (2.3) defined for all (z, t) € [0, L] [0, c0)
and taking values in A. Then, Tartar’s theorem on the existence of Young
measures (see [13]) will give us the existence of a measurable map v : [0, L] x
[0,00) — P(R?), which we denote by 14, such that Suppi;; C A and for all
h € C(R?) we have

w*-limh(u®(z,1)) = (44, h(1)), (2.9)
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a.e. (z,t) € (0,L) x (0, 00).

Then, after proving the existence of u®(z,t) as above, we prove that the
associated Young measure 1, satisfies (1.5) of definition 1.1, and this will con-

clude the proof of the theorem 2.1.

We begin by recalling the solution of the elementary initial-boundary value

problem for the heat equation:

2

%v = E%v, (2.10)
v(z,0) = vo(z), (2.11)
v(0,t) = v(L,t) = 0. (2.12)

Its solution can be represented in the form

o(@0) = [ Gla,y voly) dy, (2.13)

with

Z —(:: y—2sL)? [4et __ —(z+y-2aL)2/4n)_
JEZ

Similarly, the solution of the problem given by (2.10), (2.11) and

G(z,y,t) =

v(0,t) = v(L,t) =1, (2.14)
can be expressed by
zt)—1+/ 2,9, 1)(vo(y) — 1) dy.

Let us identify any function h(z, t) defined in [0, L] x [0, 00) with a map ¢ + A(t)
from [0,00) to the space of functions defined in [0, L]. Also, let us denote by
Te(ryh(t) the function defined in [0, L] by

L
(Towh(@) = [ G, k(. t)dy,
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and similarly for Tg,(r)h(t), where G, = %G. So, a smooth solution u®(z,t)
to (2.1), (2.2), (2.3), defined for (z,t) € [0,L] x [0,T], satisfies the integral
equation ;

w'(t) = e+ Togo(uo —€) — [ T tonf (u(s)) ds. (2.15)

Now, we define the operator v = L(v), for v € L*([0, L] x [0,00); R?), by
t
L(V)(t) = e + Toy(uo — €) — /0 Te, —n)f(v(s)) ds.

By standard arguments (see [5]) we prove that this operator has a fixed point
in L=([0, L] x [0,T]; R?) for T sufficiently small, and that this fixed point has
suitable regularity properties. We then prove, again by standard arguments
(see [5]), that this fixed point u®(z,t) is a local solution to (2.1)-(2.4). Now, we
apply lemma 2.2. It is easy to verify that A and f, being a A-flux, satisfy the
hypotheses (2.6), (2.7) of lemma 2.2, where G; are the obvious affine functions
defining A. So, A is an invariant region for the solution of the problem (2.1),
(2.2), (2.3). Hence, we can easily extend the local solution u®(z,t) to a global
solution, that is, a smooth solution of (2.1), (2.2), (2.3) defined in [0, L] x [0, 00).

This global solution u®(z,t) takes its values in A.

Let 14, be a Young measure associated to a subsequence of u®(z,t), when

¢ — 0. We will now prove that 1, satisfy (1.5), in definition 1.1.

By (2.9), we have that, for every ¢ € C3((0, L) x [0, 00))

/ / {(ey )t + (v, ()b} dadt
(0,L) x (0,00) (2.16)

L
+/0 uo(z)¢(z,0) dz = (0,0).
Now, for ¢ € C$°([0, L) x [0,00)), with ¢ > 0 and ¢.(0,t) = 0, we have
e / / ()ss Pdodt = —¢ / :(ui)z(O,t)q‘)(O,t) dt
T5 / / W dop dodt > € / / S dop dadt,
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since (u{)2(0,t) <0, for all t > 0. So, for every ¢ € Cs°([0, L) x [0,00)), with
¢ 20, $:(0,t) = 0, we have

] Csenrun)de + G fi ()0} dadt
[0,L] x [0,00) (217)

+ /:u01(m)¢(x,0) dz + / :°¢(o,t)dt <o.

Now, taking ¢(z,t) = ((t)x"(z), with ¢ € Cs°((0,00)), ¢ = 0, and x™ €
C5°([0, L)) satisfying x"(z) =1, for 0 < z < 2.0<x"<1L,x"— Xpo.2 (the
characteristic function of [0,z)), as n — oo, with z, € [0,L) (a sequence of

this type was constructed in proposition 1.2), we get

05 [ (anss (1= A)C(E) dt < CVar(()ao, (218)

for some fixed constant C' > 0, provided that Zo is a Lebesgue point of the
function (cf. [7])

e A0 .
So, we have

lim /0 * (Veots r(W))C(2) dt = /0 o (2.19)

zo—0
for all ¢ € C§°((0,00)), with ¢ > 0, which gives, by linearity and density, (2.19)
for all ¢ € C4([0, 00)).

An analogous procedure would give us

lim [~ (v, fo(w))C(t) dt = 0, (2.20)

z0—0 Jo

for all ¢ € Cg([0,00)), (in this case we use the fact that (u5)<(0,¢) > 0, for all
t>0).

Now, let ¢ € C3([0, L) x [0, 00)) and set

#s(z,t) = p(z — 6,8), for z>6
¢s(z,t) =0, for z <.
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We approximate ¢5 by ¢ € Ca((0,L) x [0,00)), setting ¢7 = ¢sx", with
X" € C°((0,L)), 0 < x™ <1, Suppx™ C [6, L] and X" = x;,,y, as n — oo.
Substituting ¢ by ¢7 in (2.18), assuming that & is a Lebesgue point of the

function
/0 * (o, £(0)) d,

we get

[ ()@ + (0, Ew)($9)s} dodt
(8,L) x (0,00) (2.21)

+ [ Cuol@)p(e,0)do + [ Grae, )0, de = 0.

So, making § — 0, and using (2.19), (2.20), we get (1.5) of definition 1.1. The

theorem is then proved.

3. Existence: Finite Difference Schemes.

In this section we prove the existence of measure-valued solution to (1.1), (1.2),

(1.3) using finite difference schemes.

Let Az, At be the mesh lengths and M € N such that L = M Az. Assume

to be satisfied the following condition

BT o 5 s (i) (3.1)
At i=1,2

uea

We propose the following scheme in order to generate a m-v solution to (1.1)-
(1.3):
uw"=e, neN; (3.2)

uk® = uo(kA:c), keN, 1< k<M - 1, (33)

and

At
S S A_I(f(uk.n) — B2, (3.4)
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n,keN,1<k< M.

We first prove that
uf'"ZO, n,kEN,lﬁkSM;i=1,2, (85)

and
uf® fubt <1, n,keN,1<k<M. (3.6)

The proof of (3.5), (3.6) is made by induction in 7 and is a consequence of the
definition of a A-flux, condition (3.1) and the Fundamental Theorem of Calcu-

lus applied to suitable functions.

Indeed, we have

u'l.c,n+1 - uf.n_%(f( kn) f(ulc—l,n))
= ul” = R~ ufre) - fifut-tn))
Be((ur) = fi(ukn — ule)

= uf"+ £Lfi(uk-1n)

— 22 (fi(uh™) — fi(uhm — ybre,))

k,n At k,n
_>_ u;" = EAU; 2 0,

if ubm, uk-1m ¢ A by (3.1), where we have used the fact that filu—u;e;) =0,
ueA; =12,

For (3.6), we begin with the following relation obtained by addition
kn+l J uk ntl _ ul,n K3 Uz _ % ((fl(uk'") + fz(uk'”))
— (fl(uk—l,n) o fz(uk—l,n))) )

Then, we consider the line ufn(t) given by

(3.7)

uz'"(t) = u]}:’" + %(1 — u]}:" - ul;: )
up™(t) = uz™ + §(1 — uf™ — ug™).
We set
h(t) = fi(u*" (@) + fa(ubm(2)).
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We note that
h(0) = fi(uk™) + fr(u*"), and A(1)=1,

since u;(1) + uz(1) = 1, and also

(-t~ ") 3 o fi(un(0).

1,j=1

K(t) =

l\)lo—-

So, using (3.7) and applying the Fundamental Theorem of Calculus to h(t) we
get

WUt = b - A5 () + fa(at )
(h(l) (o))

< ubm bt 4 A1 — fi(uktm) — fo(uktm))
+A (1 = ul ulzc'n)
< 1-(1-ASH(1-uf" - ub™) <1,

by (3.1), if uF", uk-1" € A,

So, the scheme given by (3.2)-(3.4); with condition (3.1), defines uf™ in
such a way that ub" € A, for all k,n € N, 0 < k < M. We then define, for
e = Az = AAL,

us(z,t) = ubn, if (k—1).Az<z<(k+3)A, (3.9)
nAt <t<(n+1)At,

forallk,n e N,0 < k< M.

So, by Tartar’s theorem on the existence of Young measures (see [13]),we
can obtain 144, a Young measure associated to a subsequence of u®(z,t), still
denoted by u®(z,t), satisfying Suppw,; C A. Hence, for all h € C(R?) we have
(2.9). ’

Now, by the same proof of the theorem in section 1 of (8], we obtain that
for all ¢ € C°((0, L) x [0,00)) we have that (2.16) holds for 1. To prove that

Us.¢ satisfies (1.5) in definition 1.1 we make use of the following lemma.
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Lemma 3.1. Given { € C4((0,T)) we have

| (6 (a,1) = S, DO e < CVar(Q)Je 31 4, (3.9)

forae 0<z,y<L, and

T
[ (u(z,1) ~ e)(t) dt] < CVar(Q)(a +e), (3.10)
for a.e. 0 < z < L and some constant C > 0 independent of z, T.

Proof. The inequality (3.10) is clearly a consequence of (3.9). Since, for each
t> 0, u®(z,t) is constant for (k — DAz <z<(k+ Az, keN,0< k<M,
we can assume that 2 = kyAz and y = k,Az, with 0 <k <k <M. We
can also assume T' = NAt, because of the form of the right-hand side of (3.9).

Then, we have
Nat
|/D (f(u*(k1 Az, 1)) — f(u®(kp Az, 1)) () dt|

< lNi:l(f(uk"") - f(uk""))((nAt)At[ + CyVar(¢) At

n=0

N-1 ko
=1 ¢(nAl) 3 (E(uE) — f(ut")) At 4 CyVar(¢) Al

n=0 k=ky+1

(= ko
= IEC(nAt) 3o (Wb — kM Az 4 €y Var(¢) At

n=0 k=k; +1
k2 N
S| X X uFn(((n - 1)At) — ¢(nAY) Az + CyVar(C) At

k=k)+1n=1
< CVar(()((kz — k1) Az + €),

and this gives (3.9). The lemma is then proved.
(m]

Now, (3.9) allows us to obtain a subsequence of u®(z,t), such that, for a.e.
z € (0,L), f(u*(z,-)) converges weakly as a function of ¢ (we get first the
convergence for a countable dense subset of (0, L) and then use (3.9) to extend

the convergence to a.e. z € (0, L)). This weak limit must then coincide a.e. in
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(0, L) x [0,00) with (14, f(u)). In particular, (3.10) gives us
| (G B(0)) = €)0(8) ] < CVar(0)a, (311)

for a.e. z € (0, L) and some constant C > 0 independent of z, T'. We now use
(2.16) and (3.11) to conclude that i, satisfies (1.5), exactly as we did in the
end of the last section. So, 14, constructed by the finite difference scheme given

by (3.2)-(3.4), with condition (3.1), is a m-v solution of (1.1)(1.3).

We conclude this section with the description of another scheme which also
gives us a m-v solution to problem (1.1)-(1.3). This time we discretize only the

space variable. So, we set

u'(t) =e, (3.12)
uk(0) = up(kAz), (3.13)

keN,1<k<M,and
%uk = —le(f(uk(t)) £t (1), keEN, 1<k<M.  (3.14)

The equation (3.14) defines a system of ordinary differential equations in R,
So, we have a initial value problem given by (3.14), (3.12) and (3.13). Set

M
Qe ]I A,

k=1
and let X denote the vector field defined in Q2 given by the right-hand side of
(3.14). It is easy to see that X satisfies the hypotheses of Picard’s theorem
on the local existence and uniqueness of solutions to initial value problems for
systems of ordinary differential equations. We will show that we can extend
this local solution to a global one (u*(¢))M, with u*(t) € A, for all ¢ > 0,
k = o vV

Let w be a point in 89, with w = (u¥)}M,, u¥ € A. Then, there exists
k € {1,...,M} such that u¥ € K. That is, for this k we have one of the

following alternatives:

u¥=0, for i=1 or 2 (3.15)
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or
uf +ub =1. (3.16)

We will have shown to be possible to extend indefinitely any local solution of

the problem in question, with initial value in A, if we verify that
(X(w), Nw)) <0, (3.17)

for all w € 89, where N(w) is the outward, unit normal vector to 09, defined

in w. But, (3.17) is a consequence of the fact that
Y TR DR PRy
(X(0), M) = =XH(w) =~ fiut)
if (3.15) holds, for i = 1 or 2, and
1
(X (W), N(w)) = Xf(w) + X} (w) = — 75 (1= A(u*) = f(uk1),

if (3.16) holds, where w = (u*)M | with u* € A. So, we can extend the local
solution to a global solution, (u*(2))M,, of (3.14), (3.12), (3.13).

Again, we define for ¢ = Az
u®(z,t) = u*(t), if(k-3})Az<z< (k+ DAz, 0<k<M.

By Tartar’s theorem on the existence of Young measures we obtain a family of
probability measures 1, with Suppuz, € A, satisfying (2.9) for all A € C(R?).
We prove that 1, is a m-v solution to (1.1)~(1.3) exactly as we did for the

Young measure obtained from the solutions of the scheme (3.2)-(3.4).

4. Weak Asymptotic Steadiness.

Here we study the asymptotic behavior of the m-v solutions of (1.1)-(1.3). We

will be interested in proving the following result.

Theorem 4.1. Let 1, be a m-v solution of (1.1)-(1.8) and set

1 /T
(ug,.) = 7 h (ot ) dt.
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Then, for a.e. « € [0,L], p% — be, as T — oo, where e is the Dirac measure

concentrated at e. Further, the rates of convergence of the limits

,Ili_‘r{.lo(l‘%,ul) =1, }i{&(/“:’;"ui‘) =0, (4.1)
for a.e. z € [0,1], can always be estimated using properties of the map f and

the fact that the rate of convergence of the limit

lim (u5,f) = e

T—o0

is O(T™1).

The theorem 4.1 will follow from proposition 1.2, more precisely, from (1.6),
and some lemmas about weak convergence of probability measures to Dirac
measures that we now pass to state. The proofs of these results are very simple

and given in [4].

Lemma 4.2. Consider a one-parameter family of probability Borel measures
defined on the interval [0,1], uy € P([0,1]), 0 < T < oo. Let 0:[0,1] — [0,1]
be a Borel function satisfying: for some eo > 0, o([0,1—€0)) N ([l —&o,1]) = 0

and o|[1 — €, 1] is injective increasing, with o(1) = 1. Assume

Jim (ur,) = 1 “2)
Then pr — 61y, where &1y is the Dirac measure on [0,1], concentrated at 1.
Suppose, further, that (4.2) converges at a rate O(T~%), a > 0. Then, for the

rate of convergence of the limit

(uryid) = 1, (43)

lim
T
where id denotes the identity map on [0,1], s — s, we have the following:

(1) The rate of convergence of (4.3) can 'always be estimated by the order of
the envelope of a family of functions p*(T) of the form

£ — C -a
p(T)_€+1—a(1—e)T ’

for some C > 0.
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(2) If we can choose ey sufficiently small so that o|[1 — €o,1] is continuously
differentiable and o’ > 0 in [1 — o, 1], then (4.3) is realized with, at least,
the same rate of convergence O(T~°) as (4.2).

(3) Ifp : [0,1] = [0,1] is convez with p(0) = 0 and poo(s) < s, s € [0;1];
then (4.8) is attained at a rate at least O(1 — p(1 — O(T~%))).

The analogous result for probability measures on [0, 1] converging weakly to

a Dirac measure concentrated at 0, is the following.

Lemma 4.3. Consider a one-parameter family of probability Borel measures
defined on the interval [0,1], ur € P([0,1]), 0 < T < co. Let :[0,1] — [0, 1]
be a Borel function satisfying: for some eo > 0, &([0,€0]) N &((co,1]) = O and

][0, 0] is injective increasing, with 5(0) = 0. Assume
11‘_?;(#%") =0. (4.4)

Then pr — S(0y. Further, if (4.4) converges with a rate O(T~?), a > 0, then,

with respect to the rate of convergence of

Jim (ur, ) =0, (4.5)
where t denotes the identity map ¢t — t on [0,1], we have the following:

(1) The rate of convergence of (4.5) can always be estimated by the order of

the envelope of a family of functions of the form
« w c -
p(T)—e+&(€)T ,

for some C > 0.
(2) If we can choose o sufficiently small so that &|[0,eo] is continuously dif-

ferentiable and &' > 0 in [0,e0), then (4.5) is achieved with, at least, the

same rate of convergence O(T~°) which estimate the rate of (4.4).

(3) If 5 : [0,1] = [0,1] is a concave function with 3(1) = 1 and o o(t) >t
t € [0,€0], then (4.5) is realized at a rate at least O(p(0O(T~))).

)
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We easily see that lemma 4.3 follows from lemma 4.2 by making s =1 —1
(with a corresponding pull-back of the measures pr) and defining o(s) =

1—&(t).

The last lemma is an extension of the above ones for probability measures
defined on multidimensional intervals. Before stating it we need to establish

some general definitions.

n
Let K = J][0,1] be the n-dimensional unit cube and u denote a generic

1=1
element of K. For the time being, let us denote by e any vertice of K, that
is, e = (81,...,0,) where §; = 0 or 1, s = 1,...,n. For &g > 0, set U, =

[T, [—€o, €0) and denote

K(e;e0) = KN (e + Us,).

Definition 4.3. A K-fluz of first kind is a continuous map f : K — K,
f=(f1,...,fn) satisfying:
(i) filtury.-oyUic1y6iyUigrye oo Un) =&, where =0 0or 1, i =1,...,n;
(i) for a certain g > 0 and a certain vertice e of K, f is a homeomorphism
of K(e;eo) onto its image by f.

The vertice e in (ii) of definition 4.3 will be said a vertice of coerciveness for
the K-flux f. We say that the K-flux f is of class C* if f can be extended as a
map C* to a neighborhood of K. We denote by F*(K) the set of all K-fluxes
of first kind.

Given a K-flux of first kind, let us define
fi(s) = file+ (s —&)es),  s€(0,1], (4.6)
where e = (81,...,6,), 6 = 0 or 1, is a vertice of coerciveness of f. The fi

satisfy: f;([0,1—€0)) N fi([L — €0, 1]) = @ and fi|[1 — €0, 1] is strictly increasing,
with f;(1) = 1.
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Proposition 4.4. Let K = [][0,1] and pur € P(K), 0 < T < co. Suppose
i=1

f € F*(K) with e a vertice of coerciveness, and assume that
Am (ur,f) = e (4.7)

Then, pr — de. Further, if the limit (4.7) is attained at a rate of convergence

O(T~*), for some 0 < a < 1, then we can obtain estimates for the rates of

convergence of the limits
%i{&(“Tv,fi):‘si i=1,...,n,
by the order of the envelope of a family of functions p%(T), of the form
p(T) = ¢ + C(e)T~, (4.8)

where C(g) is a function such that C(e) — oo as € — 0, which depends only on
the map f. In particular, we can obtain estimates for the rates of convergence
of the limits

711_'rr°10(;11~,u,-) =d;, i=1,...,n,
by using assertions (1), (2), (3) of lemma 4.2, with ¢ = f;, if & = 1, or the

corresponding assertions in lemma 4.8, with & = f;, if & = 0.

Remark: The order of the envelope of a family of functions like (4.8) is often
easy to obtain. For instance, if C(¢) = %, v > 1, it is easy to see that it is
O(T~ 7).

Now, we observe that we can eztend any A-fluz to a K -fluz of first kind, in
the case n = 2, by defining
f(u) = (1 - f2(1 = ‘LLZ,I - ul),l e fl(]- = 71.2,1 = ul))

if u € K is such that u; +u; > 1.

Proof of Theorem 4.1. By (1.6) in proposition 1.2 we have, for a.e. = € [0, L],

lim (u7,f) = e,

T—o0



198 H. FRID

with a rate of convergence O(T!). So, by the above observation, we can apply

proposition 4.4 to get all the assertions in the statement of theorem 4.1.

Remarks:

1. The estimates for the rates of the expected values of the dependent variables
can usually be obtained by combining the use of peculiarities of the map f with
the estimate of the order of envelopes of families of functions. For instance,

consider the map f = (fi, f2) given by

2

filun,w) = grmmn—ay
2

fa(ur, u2) = grenme—ay

which appears in the simple model for three-phase flow in porous media in [6].

Assume that for a family ur € P(A), 0 < T < oo, we have
%m(NTaf) = (1,0),

with a rate of convergence O(T™!), as it occurs if the ur are the time-averages
of a m-v solution to the initial boundary value problem modeling the flow of
water, gas and oil in a reservoir submitted to the constant injection of pure

water.
Then, since
Ciuz® < falur,uz) < Crug?,
for some constants C;, C; > 0, we easily see that
Jim (ur, us’) = 0,
with a rate O(T~!). By Jensen’s inequality we have
1
(ur,us®)? 2 (pr,u2) 20,
which gives

%%(NT;“?) =0,
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at a rate at least O(T~%).

Now, by Tchebychev’s inequality, we have, for & > 0 small,
0 (ur, X (1)) < (o, ua?)
Hence,
A (BT Xy (u2)) = 0,

at a rate O(T-1), and so

lim (/‘T’X[o,.](UZ» =1,

T—oo

with the same rate. We, then, get

71325(”7’3 X[o,.](u2)fl) =1,
at a rate O(T~"). So, we obtain, for fi(s) = fi(s,0),

(/‘T’fl) <”T7X[o,:](u2)f_1)
(,“Ta X(o..] (u2)fl> = C'25

1- %T_l = 026.

vV v IV

Thus, we arrive at
Am (pr, fi) =1,
the rate of convergence being estimated by the order of the envelope of

=

2 T! + Cae,

pi(T)
which is easily seen to be O(T‘:lT). Then, the rate of convergence of
Tli_{lolo(NTaux) =1,
can be estimated by O(1 — f{'(1 — O(T~%))), which is the same as O(T~%),

since f{(1) = 0 and f(1) < 0.

2. By lemma 3.1 we see that the asymptotic behavior of the expected values of

m-v solutions to the problem (1.1)-(1.3) is already presented by the approximate
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solutions given by the finite difference schemes defined in section 3. This fact
allows the investigation of sharp estimates for the rates of convergence on the

basis of the issues of numerical experiments.
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