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COMBUSTION FRONTS IN PETROLEUM
RESERVOIRS
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Abstract

We determine the planar traveling wave solutions for a nonstrictly
hyperbolic system of two conservation laws modeling combustion in-situ
in petroleum reservoirs. Thus, the study of the analogue of the Chapman-
Jouguet combustion theory in gas dynamics is initiated for two-phase flow
in porous media.

1. Introduction

We determine nonlinear waves in a two-phase flow model, which represent com-
bustion of oil with oxygen in a porous medium. Understanding these waves is
important to maximize the oil recovery in methods such as combustion in-situ
[1], widely used to extract heavy oil in deep petroleum reservoirs.

It is difficult to extract oil from the porous rock where it lies. One of the
goals of petroleum engineering is to develop methods for improving oil recovery.
Most of the methods employed consist in injecting some fluid, such as water,
gas, steam, polymer, etc, in some producing wells to displace oil and recover it
from other wells. Because these methods are expensive, optimal strategies for
their usage are determined by means of computer simulations. To validate such
simulations, it is important to compare the numerical results with the nonlinear

waves appearing in the flow.
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If a complete mathematical understanding of the nonlinear waves occurring
in the flow is attained, such a knowledge can be used as a basis for the computer
implementation of certain extremely accurate numerical methods for the simu-
lation of flow with fronts [2]. The usage of such methods should be particularly
fruitful for the simulation of combustion in-situ, because they do not spread
the heat contents of the burning front to the enclosing computational blocks.
This usage leads the way to realistic simulation of the chemical reactions in the
burning front, which are extremely sensitive to temperature.

S. E. Buckley and M. C. Leverett [3] described the mechanism responsible
for the displacement of oil in sandstone. The mechanism is shock formation.
They considered the displacing fluid to be water or gas, but they did not take
into account temperature variations.

Higher temperatures reduce the oil viscosity, facilitating its flow. F. G.
Fayers [4] introduced a model for the flow of water and oil, taking into account
temperature variations. The Riemann problem for this model (i.e., the Cauchy
problem with initial data which is constant by parts) was solved in [5] and (6]
independently. For simplicity, the state equations for the internal energy of
the water, oil and rock were assumed to be linear functions of temperature.
Combustion was not considered in Fayers’s model.

The classical theory of combustion in gases was introduced at the beginning
of this century by Chapman and Jouguet [7]; one of its basic assumptions is
that the combustion process is instantaneous. Also, the total energy of the gas
phase is given as the sum of the internal energy of the gas with the binding
energy of the unburnt gas part.

In this work, we assume that the total energy of the gas follows the same
rule as that of Chapman-Jouguet’s theory. The resulting model may be em-
ployed to describe the method of combustion in-situ, employed for oil recovery
in petroleum reservoirs. This method consists in injecting air or oxygen to
maintain a burning zone in part of the reservoir, causing the temperature to
rise, and therefore the oil viscosity to reduce, which greatly facilitates the flow

of oil.
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The model for combustion of oil and gaseous hydrocarbons with oxygen is
presented in Section 2. In Section 3 we seek solutions which are traveling waves
with profiles connecting an unburnt state ahead with a burnt state behind.
Such solutions are represented by orbits of a certain vector field associated to a
parabolic system of partial differential equations. We show that the burnt state,
the unburnt state and the wave propagation speed are related by a Rankine-
Hugoniot condition. We determine the Rankine-Hugoniot curve. For each given
unburnt state, this curve consists of burnt states for all possible propagation
speeds.

We show that there are burnt states in the Rankine-Hugoniot curve which
are not connected by traveling waves to the corresponding unburnt wave. Thus,
there are shocks which are physically inadmissible. This behavior is not dissim-
ilar from that of combustion in gases. To select physically meaningful shocks, it
is necessary to find the phase portrait of the vector field, as it is seen in Section

3. This is done in Section 4. Conclusions are presented in Section 5.

2. The Model

The system of equations governing the flow we consider here reflects the conser-
vation of mass of each component, as well as the conservation of total energy.
It also reflects Darcy’s law of force. We work in a cylindrical volume element,

see Figure 1.
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Fig. 1: Element of volume on the porous medium.

One assumes that this volume element contains a finite width combustion
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zone. In the current work, compressibility and volumetric changes associated
with the combustion process are neglected. This simplifying hypothesis will
be removed in forthcoming work. Hov&./ever, heat conduction, as well as the
capillary pressure present in displacement of multiphase fluid in porous media
are all taken into account. They contribute through parabolic terms whose
forms determine the traveling wave solution. We assume that there is a single
chemical reaction to write an equation for the chemical reaction rate. Although
petroleum reservoir exist in three dimensional space, in the current work we
restrict our attention to reservoirs with variations occurring in only one spatial
dimension.

Throughout this section, the indices g and o refer to the gaseous and oleic
phases, respectively, and r to the porous rock phase.

The flow is described by state quantities depending on (z,t). They are
denoted as follows. The saturation of phase ! in the fluid, | = g, o, i.e., the
fraction of the porous volume occupied by phase [, is denoted by s = si(z,);
the temperature, which is assumed to be the same for gas, oil and rock at each
point (z,t), is given by § = 6(z,t); and the burnt volume fraction of the gaseous
phase is € = €(z, ).

The relative permeability of phase [, denoted by ki, is a dimensionless func-
tion of saturation s;, measured in the laboratoryj it is a phase dependent quan-
tity such that Kk is the porous medium capability of allowing the flow of phase
l. Here K is the absolute permeability of the rock, which measures the porous
medium capability of allowing fluid flow.

The capillary pressure p. = p; — po = pc(s,) is obtained empirically as a
given decreasing function of sy, where p;, | = g, o, is the pressure in the phase
l

The other relevant quantities are denoted by: pi, [ = g, o, r, the density of
phase I; @, the rock porosity or fraction of total volume occupied by the fluid
phases; v;, the seepage velocity of phase [; and y;, the viscosity of phase l,1.e,its
intrinsic resistance to motion. The dependence of oil viscosity on temperature

will be taken into account.
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The equations governing the flow are the following. First, the conservation

of mass of burnt gas is

0 0

b—t(¢l’ysge) = _%(Pyvg‘) + #pgseQs (2.1)
where the first term represents accumulation of burnt gas mass. The second
term represents transport of the burnt gas mass, and the third term represents
the rate of gain of burnt gas mass due to chemical reaction. In this third term,
Q@ = Q(0,¢) is the volumetric fraction of burnt gas generated in unit time.

Similarly, the conservation of mass of unburnt gas is

Bl ) = o (1= ) = Gpp2s@  (22)

the third term represents the rate of loss of unburnt gas mass due to the chemical
reaction.

The conservation of oil mass is

%(‘ﬁposo) = —aa_w(POUO)' (23)

In this equation, the oil mass loss due to the combustion process is neglected.
Thus, the equation for total gas mass resulting from adding (2.1) and (2.2) has
no source term. Oil mass loss should be considered in more realistic models.

Finally, denoting by Ej, | = g, o, r, the total energy of phase [, the equation

of conservation of energy is

0
a(d’/’gngg + ¢posoE, + p-E;) =

9] 0, 00
_%(Py”yEy + povoE,) + gg(k%)’

where the first term represents energy accumulation in the gas, oil and rock.

(2.4)

The second term represents energy transport by convection in the gas and oil.
The last term of this equation stands for heat conduction, and % is an effective
thermal conductivity of the composite material formed by the several fluid and

rock components.
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From Darcy’s force law in porous media, the volumetric flow of phase  is

given by

-K,\,g”’, I = g,o. (2.5)

where A\; = k;/p is the mobility of the phase /. We remark that kinetic energy
terms are neglected in Darcy’s law, because accelerations have negligible effects
in usual petroleum reservoir flow conditions.

Substituting (2.5) in equations (2.1), (2.2), (2.3) and (2.4) we have, respec-
tively,

%(qspgsge) - ; (Kpgeh aa ) + 6pg84Q (2.6)
2 omss(1-0) = (Kol M)~ bppss@ (D)
%(quoso) = O%(Kpo aap°) (2:8)
9
578950 Es + @posoEo + prE,) = (2.9)
B (kom0 + Ko\ BT) + 2 (k)

As we already mentioned, the capillary pressure is a given decreasing func-

tion of s,, which measures the pressure difference between oil and gas

Pe = Pe(8g) = Po — Pgs

and hence

Op. _ Op _ Opy
9z 0z Oz’ (210)

The total flow of the fluid is given by

vT = Vg + Vo,
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and hence
r = —K,\g‘;”” K, %’: (2.11)
From (2.10) and (2.11), we have
3 apc ur
3" _fo m (2.12)
9po _ vr
9 - e T RO, 1) (A}

where fi, | = g, o, is called the “fractional flow function” of phase . This

function depends on s; and 6; it is defined by
f,(s,,B) = /\l/()‘g + ’\o)-
Substituting (2.12) and (2.13) in (2.6)-(2.9) we have, respectively,

a a a
a(‘#/’gsgf) o+ 3_1(Pg‘fg”T) Sleas (]‘Pg"\mfg Oz ) + dpgsgQ (2.14)

a 0 i1 Jp.
9t $059(1=€)) + 5-(pg(1 = fgvr) = =3 (Kpg(1 = Moy 5e) = #py5,Q  (2.15)

) ) ] 3
37 (9Poso) + gr(poforr) = o-(Kpodo fgﬁ) (2.16)

14] [/}
'a—t(¢Pgngg + #posoEo + prE;) + a_x((ngg,fg + poEofo)vr) =

a Opc a , 06
—a(ff(PgE PoEo)Aofo5— oz ) + (kaz) (2.17)
In the following derivations we will use the fact that s, = 1 — Sg, and

fo=1—f;

From now on, we will assume for simplicity that the fluids are incompressible,
and that there are no volume or pressure changes due to the chemical reaction.
Thus, p, and p, are constant, independent of temperature and pressure. It
follows that Equations (2.14), (2.15) and (2.16) are equivalent to the following
three equations

95  vrdfy _ _K 9pc

ot é E = ¢ oz (’\ fya ) (2'18)
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/] i} K 8 Ope

E(“v) + %ﬁ(‘fﬂ) = "75;("\ofna—z;‘) + 5@ (2.19)
dvp _
5 =0 (2.20)

From (2.20); we see that vy depends on time only. For simplicity we assume
it to be a constant in this work.
The thermodynamical equations of state we will employ in the current work

are

poEy = C,f—¢q (2.21)
poEo = Co (2.22)
prE, = C0, (2.23)

where C), | = g, o, r, are the thermal capacity of component [ for unit volume,
and g is the heat released by the combustion per unit volume. In this work, we
will make the simplifying assumptions that ¢ and C, [ = g, o, r, are constant,
and that the effective thermal conductivity k is also constant.

Substituting (2.21), (2.22) and (2.23) in (2.17), we obtain the following

equation for the conservation of energy

0
E(((Cg = Co)sg + Co + Cr/9)0 — €gsq) +

(% 8
S35 ((Co=Cfy + Co)0 = eafy) = (2:24)

K 0 dp. k 8%
—Ea—z(((Cg - C,)0 — fq))\ofga_m :

We will use the notations s and f in lieu of s, and f;. Assuming that vr is
not too small, we rescale time by t — (vr/¢)t, and the equations (2.18), (2.24),

and (2.19) become, respectively,
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ds of K8, .op

%t i) (2.25)
o ]

5{((3 + a)d — nes) + 5;((f+ﬁ)g - nef) =

";8_:((9 —ne)Ao E) + vp 027 (2.26)
O o)+ Lief) = K Dy 0y, 8
5(“’) + a—m(cf) = —;am(o\of 6z) + vTaQ, (2.27)
where a, 8, n and 4 are constants defined as

— c°+c’°/¢ = Co _ q _ k

a = Cg_Ca ' ﬁ_C’_Ca' n—cg_coi 7_Cg_co' (2.28)

3. Combustion waves

Given the unburnt state (sg,0r,ep = 0) and the burnt state (sz,0r,€, = 1),

we want to know if there is a traveling wave solution of the system (2.25)-(2.27)

in the form

s(z,t) = s(z —ot) = s(2) (3.1)
O(z,t) = 0(z — ot) = 6(2) (3.2)
e(z,t) = e(z — ot) = €(2), (3.3)

with
lim (s(2),0(),€(2)) = (52,05, e = 1) (3.4)

and
lim (s'(2),0'(2),€(2)) = (0,0,0) (3.5)

zZ—4—00
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zli’rglo(s(z),a(z),C(Z)) = (sr,0r,er =10), (3.6)
zlirtr,lo(s'(z),ﬂ'(z),e'(z)) = (0,0,0), (3.7

where z = z — ot, z € R, and ¢ is the propagation speed of the wave.

Proposition 3.1. In order for (3.1)-(8.3) to represent a traveling wave solution
of system (2.25)-(2.27), it is necessary that this solution be an orbit of the

dynamical system

ds m+0os— f(s,0)

dz H(s,0) (38)

% = vTT((’yl —oa+B)0 — e — 72) (3.9)
de (0]

E = - SQ(Q, 6), (310)

satisfying (8.5)-(3.7). Here H(s,0) = (K/vr) X, f(s,0) (dp./ds) is a strictly
negative function, 1 = fr—osp and v2 = (fr+ B — o(sr+ @))0r, fr =
f(sr,0r) are constant. In this case o and the states (sgr,0r,er = 0) and
(sp,0L, e, = 1) are related by the shock condition

. fo—fr _ (fr+B)0r + nfr — (frR+8)0L (3.11)
sL—sr  (srR+)0r + nsp — (sR+a)fL’ |

Proof: Substituting the traveling wave (3.1)-(3.3) in (2.25), (2.26) and (2.27),

we obtain, respectively,

dp.

T =N (312)

K
—0os + f et _/\of
vr

K dp, dé
—(8(s-+0) = nes) + 0(f+8) = nef + (0 =nhof 57 — Lo = 3 (3.13)
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d d K d dpc, ¢
—05(63) + E(Cf) + EE(E)‘J dz) = UTSQ, (3.14)
where 4; and <, are integration constants. Since
. _ dneds
dz ~ ds dz
the equation (3.12) becomes
ds m+4os—f
=17 (3.15)
Using (3.12), the equation (3.13) reduces to
do v
B = 7T((’71 —oa+B)0 — e — 7). (3.16)
From (3.14), we have
de 1)
_—= : 3.17
rrial e (3.17)
From (3.4), (3.5), (3.6) and (3.7), we have
ds . do
Sz = AR =0
Hence from (3.15), we have
M+ osp—fr=m+osy - fL =0,
or
o= fL=tr (3.18)

S, — SR
From (3.16), we have

(m—oa+B)fr -7 =0
and
(m—oa+pB)0r —nn — v = 0.
Eliminating v, from these two equations and using 4, = fr — s, we obtain

o = URTBOR + nfr — (fr+6)0L
(sr+a)0r + nsp — (sp+ )0’
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which completes the proof. O
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Fig. 2: Speed of the combustion front.

We saw that if there exists a combustion wave traveling with speed o con-
necting the states (sg,0r, er = 0) and (s, 0L, € = 1), then the shock condition
in Proposition 3.1 holds. As we will see, the converse is not true.

Let us fix the unburnt state (sgr, g, €r = 0) and assume that fr/sr < B/a.
The case fr/sg > B/a can be treated in a similar way. Notice that the speed
o of the combustion wave depends only on the temperature at the burnt front

and on the unburnt state, since

(3.19)

where

A = (frR+B)0r + nfr
B=fr+p

C = (sr+a)fr + nsr
D = sp+a.

In this case do/df < 0 and the plot of ¢(0) is shown in Figure 2.
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From now on, the capillary pressure function p.(s) will be assumed C! and
dp./ds < 0. Similarly, the fractional flow function f(s,8) will be assumed to
be C? and to be S-shaped in s for each 6§, and to decrease in 6, see Figure
3. Thus f(0,0) = 0, f(1,0) = 1, 8f/0s vanishes for s = 0 and s = 1, for
each 0, 8%f/0s? is first positive and then negative for s in (0,1). We also have
0f/00 < 0 for s in (0,1)." These assumptions are used to model two-phase
thermal flow in porous media, with the oil viscosity being a decreasing function
of temperature[4, 5.

Using Figure 2 and the relationship ¢ = (fr — fr)/(sL — sr), we see that
there exist temperatures § = 6, > C/D, for which there are three states
satisfying the shock condition for a specified state I = (sg,0r, er = 0), as shown
in Figure 3. In this figure the three states corresponding to I are denoted by
IV, V and VI. In Figure 3 the specified state (sg,0r, er = 0) could also be I
or II1.

Replacing 6, by 0 in (3.11), and allowing 6 to vary, we obtain all burnt
states (s,0,e = 1), related to (sg,0r,er = 0) through the Rankine-Hugoniot
equation. These states form the projection on the plane € = 1 of the Hugoniot
curve through (sg,0r,er = 0). See Figure 4, where the three states IV, V
and VI are indicated. The dashed part of this projection corresponds to states
(s,0,€ =1) which are not connected by traveling waves to (sg,0r, er = 0). To
verify this fact, we have to study the phase portrait of the dynamical system of

Proposition 3.1. This will be done in the next section.

4. The phase portrait of the associated dynamical system

The dynamical system (3.8)-(3.10) has the following properties. The first equa-
tion depends only on s and 6, the second one depends only on 6 and ¢, and it

is linear in these two variables. Thus, we may write

ds _ n+as—f(s0)

s - L0 H(s,0)
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dé

7 = Y(0,¢) = %r(('y, - qa+ﬂ)0 — 7€ — 72) (4.2)
& — 2(00,9 = 55Q00,0) (43)

where the constants v, = fr — ospand 72 = (fr+B—o(srta))br depend
only on the unburnt state (sr,0r,€r = 0). We also know that H(s,0) < 0. Now
let us consider a temperature 61, such that the speed o of the shock connecting
(sr,0r €R = 0) and (sz,0L,€L = 1) is given by the slope of the straight line in
Figure 3.

f“ slope © e{‘
oy WL

%! \
L '
% 5 7
0p ;
I
fR """""" d L H 3 >
v—""sg 1! =g 55
Fig. 3: The states IV,V or VI are Fig. 4: Projecti?n on the plane e=1
connected to the states I, ITor III by a the Hugoniot curve through
shock of speed o. (sr,Ors€R = 0).

In the following we will make the assumption that the volumetric rate of gas

burning is given by the function

Q6,¢) = (1 = )Q(O),
where Q(6) > 0. This function is artificial because it vanishes at € = 0. More
realistic functions Q will be considered in future work. They should not contain

the factor € ; rather an Arrhenius-like formula should make the combustion rate
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small for low temperatures. However, in such a model the linearized fluxes at
the singularities I, II and II] have a vanishing eigenvalue; thus the analysis
is more difficult than the one presented here. We hope that the current model

contains many of the features of the more realistic one.

Our aim is to prove the following theorem:

Theorem 4.1. For equilibrium points given as in Figure 3, there are orbits of
the vector field (4.1)-(4.8) starting at IV and V which end at I. There is no
orbit from VI to I.

The proof is given in the Lemmas 4.2, 4.3 and 4.4, which follow.

We start by studying the field (X,Y, Z) defined in (4.1)-(4.3). The zero set
of X is a cylindrical surface S, whose intersection with the coordinate plane

(s,0) is the curve

7 + os — f(s,0) = 0.

Using the value of 71, we see that this curve is formed by points (s, ) such that

f(svo) _fR —

s — SR

The plot of this curve is given in Figure 5, where I = (spy0r,er = 0), I and
II] are the states at temperature Op indicated in Figure 3. The regions where
X > 0 are denoted by “+” and those where X < 0 by “~”. Note that

m = sﬁ(% —-0) < 0.
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/90 R 9, [}
Fig. 5: Intersection of the surface Fig. 6: Intersection of the surface Y =0
X = 0 with the plane (s,9). with the plane (0, ¢).

The Y component of the field is linear in 6 and €, hence its zero set is a

plane P. The intersection of P with the coordinate plane (8, €) is the following

straight line (see Figure 6):

(m—oa+p)0 —mme —7 =0,

or

0
Tl =1) = e = L.
R

We indicate by “+” the region where Y > 0 and by “—” the region where
Y < 0. Notice that

The Z component of the field vanishes at ¢ = 0 and € = 1, hence these
planes are field invariants. Figure 7, in the space (s, 0, €), shows the surface
S = S5, U S, US; where X vanishes, the plane P shows where Y vanishes, and

the planes e = 0 and € = 1 show where Z vanishes. This figure also shows that
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the field has exactly six equilibrium points, the states I, I1,...,VI. Since on

each of these equilibrium points 7; + 0s — f = 0 holds, we have

and

1
s

Fig. T: Surface S = S; U S, U S; where Fig. 8: Unstable manifold £ for the
X =0, plane P where Y = 0, and the equilibrium point V.
planes € = 0 and € = 1 where Z = 0.

The Jacobian matrix of the (4.1)-(4.3) field at each of the equilibrium points

a=f _L 0

H H
M=(0 _ra_‘rz_m)

0

is given by

=

0R A

0 Z,
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The signs of the eigenvalues (o — f;)/H, vry2/(70r) and Z, of the matrix M
at each of the equilibrium points are given in Table 1.

Fim o=
Ir: + -
Iri: — -
v. — -
Vi + -
vi: — -

+ 4+ + |

Table 1: Signs of the eigenvalues of the Jacobian M at the equilibrium points.

Lemma 4.2. The only orbit which departs from VI = (sy1,0vr,e = 1) enters
I11. Furthermore, this orbit is located underneath P, between the plane s = sy;

and the surface S.

Proof: Let (a,b,c) be the eigenvector of the matrix M at VI associated to the

eigenvalue Z,. Then

U_fa f0 _
T - Hb = Za (4.4)
and
ey vt _ gy (4.5)
v0r 6

Ifc=0thena=05b=0. Hence c#0, b+ 0and a # 0. We know that the only
orbit which exits VI is tangent to (a,b,c). From (4.5), we have

Z

= O I . B (4.6)
b Ormm  vrm T Ormm

Because the last term in (4.6) is the slope of the straight line defining P, we

conclude that the orbit is initially located below P. Since no orbit may cross P
upwards, the orbit has to lie below P.
On the other hand, from (4.4), we have
b -fs HZ, —fs
=T=dh HE& o=b .4

a o Jfo fo
where (0 — f,)/ fs is the slope of the curve y; + s — f(s,8) = 0, which defines

S1. Then the orbit initially lies in the region between s = sy and S1, and it
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must stay there. Now we can easily see that the orbit has to enter 111, and this

completes the proof. O

Lemma 4.3. The only orbit exiting IV = (s;v,0iv,e = 1) enters I. Fur-
thermore, this orbit is located underneath P, between the plane s = syy and the

surface Ss.

We skip the proof since it is analogous to that of Lemma 4.3. Finally, we

have the last lemma needed to complete Theorem 4.2.

Lemma 4.4. There is an infinite number of orbits eziting V and entering I,

all located below the plane P.

Proof: As shown in Figure 8, let ¥ be the two-dimensional manifold formed
by the orbits exiting V. Let T be the tangent plane to ¥ at V. The plane T
is generated by (1,0,0) and by the eigenvector associated to the eigenvalue Z..
Proceeding as in the proof of Lemma 4.2, we see that T is located below P in
the region 0 < € < 1. Now, if an orbit exits V with direction close enough to

(=1,0,0), then clearly it has to enter I, and this completes the proof. =

We could make a much more complete analysis of the phase portrait of (4.1)-
(4.3), studying the invariant planes e = 0 and € = 1 and the stable manifold of

I1, but such an analysis is not necessary in this work.

5. Conclusions

We have shown that it is possible to find the Rankine-Hugoniot relationship
between burnt and unburnt states in a very simple model for combustion of
two-phase flow in porous media. We were able to determine which pairs of
states correspond to traveling waves. We hope to generalize this analysis to

more realistic models in future work.
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