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SOME SINGULAR LIMIT PROBLEMS IN
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Abstract

We are concerned with singular limits for conservation laws with dis-
sipation and/or relaxation, particularly zero dissipation and relaxation
limits. Such limits are of interest in many physical situations, including
fluid with vanishing viscosity, gas flow near thermoequilibrium, kinetic
theory with small mean free path, viscoelasticity with vanishing mem-
ory; and in numerical analysis such as the convergence and stability of
shock capturing methods. In this paper we discuss some recent efforts
made by the author and collaborators in this direction and analyze some
important results obtained from these efforts.

1. Introduction

As is well known, many systems arising from applied sciences take the following

conservation form

Ou+V-f(u)y=0, ueR" (1.1)

for the most ideal cases, where the flux vector function f(u) is smooth. The
typical example is the compressible Euler equations for the gas flow in thermoe-
quilibrium [17,87]. For the gas flow affected by the viscosity and heat conduc-
tivity [17,87] and by a large variation of the temperature [86,87], corresponding

systems generally take the following conservation forms
0U+ V- -FU)=¢eV-(DU)VU?), UceR" (1.2)

and

QU +V - F(U) + %R(U‘) =0, U‘€¢RM,N3>n, (1.3)
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respectively. For the form (1.2), D(U) is n x n nonnegative matrix and F(U) is
expected to satisfy that F(U¢(z,t)) are close f(u(x,t)) in some sense whenever
U¢(z,t) are close to u(z,t). For the case (1.3), the smooth functions F(U) and
R(U) satisfy:

(1) There exists an n x N constant matrix @ with Rank(Q) = n < N such
that
QR(U) = 0; (1.4)

(2) The equilibrium state U such that R(U) = 0 can be expressed by
U=&(u), u=QUER" (1.5)

and

f(u) = QF(E(u)). (1.6)
The challenging mathematical problem is to understand

(1) Limiting behavior of U¢(z,t) and F(U¢(z,t)) in appropriate sense of topol-
ogy;

(2) Relationship between the limits of these two sequences and corresponding

solution u(z,t) and nonlinear flux function f(u(z,t)) of (1.1).

Its physical motivation is well known. For the case (1.2), the constant €
measures how strong the viscosity and heat conductivity are in fluid under
consideration (cf. [17,87]). This problem relates to the relationship between
the compressible Navier-Stokes equations and the compressible Euler equations.
For the case (1.3), the system describes the nonequilibrium thermodynamical
processes and ¢ measures how far the nonequilibrium state is away from the
equilibrium (cf. [86,87]). If one solves such a problem, one understands the
stability of the corresponding equilibrium state.

In numerical analysis, it is important to explore numerical regularizations to
ensure good numerical approximations to hyperbolic conservation laws without

using the apriori structure of solutions, so called shock capturing methods. This
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problem has motivated the formation of most existed shock capturing numerical
methods such as the Lax-Friedrichs scheme, the Glimm scheme, the Godunov
scheme, the Lax-Wendroff scheme, the upwind schemes, the kinetic schemes,
and relaxing schemes (cf. [42,31,35,45,67,10,68,39,55,72,46]). Convergence and
stability analysis of shock capturing methods is another motivation for this
problem.

From the theory of partial differential equations, this problem involves the
relationship among different types of nonlinear differential equations. The
problem for the case (1.2) corresponds to that of the singular limit of non-
linear parabolic equations to hyperbolic or mixed hyperbolic-elliptic equations.
The problem for the case (1.3) involves the singular limit of nonlinear integral
partial differential equations to nonlinear partial differential equations as well
as the limiting problem from nonlinear strictly hyperbolic equations to mixed

hyperbolic-elliptic equations. For example, the following system

6;” + 61’0 = 0,
ag’U + a,,p = 0, )
6tP + Aza:cv + t}:lﬂ = 05

is semilinear strictly hyperbolic with eigenvalues —A, 0, A, which describes the
phase transition [69], where the function j(u) satisfies §'(u) < 0, when u; <

u < ug, and p'(u) > 0, when u < uy, or u > ug > uy. Its local system is

atu + Bzv = 0,
0w + Op(u) =0,

that is a mixed hyperbolic-elliptic system.

A quasilinear system of conservation laws in one dimension
86U +0.F(U)=0, UeRV, (L.7)

is hyperbolic if the N x N matrix VF(U) has N real eigenvalues \;(U) and
linearly independent eigenvectors r;(U),1 < j < N. Denote

D={U:MU)=,(U), i#41<ij <N,
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as the degenerate set. If the set D is empty, then this system is strictly hy-
perbolic, otherwise it is nonstrictly hyperbolic. Such a set allows a degree of
interaction, or nonlinear resonance, among different characteristic modes, which
is missing in the strictly hyperbolic case, and causes an analytic difficulty due
to the degeneracy. A point U, € D is hyperbolically degenerate if VF(U.) is
diagonalizable, otherwise it is parabolically degenerate.

Recent decades, nonstrictly hyperbolic systems of conservation laws have
arisen from many important fields such as continuous mechanics including the
vacuum problem, multiphase flows in porous media, MHD, and elasticity. On
the other hand, the nonstrict hyperbolicity of systems is quite generic. For
example, for three space dimensional systems of conservation laws, Lax [43]
indicated that systems with 2(mod4) equations must be nonstrictly hyperbolic.
The result can be extended to systems with +2, 43, +4(mod 8) equations [27].
Then the plane wave solutions of such systems are governed by one-dimensional

hyperbolic systems with D # 0.

2. Zero Dissipation Limit

The zero dissipation limit includes the continuous version such as the vanishing
viscosity limit for viscous approximate solutions and the discrete version such as

the zero mesh length limit for shock capturing numerical approximate solutions.

2.1. Scalar Conservation Laws

Zero dissipation limit, or vanishing viscosity limit, in the continuous version
for scalar conservation laws has been extensively studied (cf. see [43,80,46]).
The behavior of this limit is simple. The convergence and stability of shock
capturing methods with first-order accuracy have been analyzed in a large lit-
erature. Some efforts on convergence and entropy consistency of some shock
capturing methods with high resolution have been made. For example, see
[49,88,66,16] for the Godunov type schemes, [81] for the streamline diffusion
finite element methods, and [82,7] for the viscosity spectral methods.

In the paper [12], we are concerned with the convergence of Lax-Wendroff
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type schemes with high resolution. These schemes include the original Lax-
Wendroff scheme proposed by Lax and Wendroff in 1960 [45], and its two step
versions-the Richtmyer scheme [72] and the MacCormack scheme [55]. As ob-
served by Harten-Hyman-Lax [36] and Majda-Osher [56,57], the second-order
numerical viscosity in this scheme is essential to guarantee that the numerical
solutions are nonlinear stable and converge to the physical solutions. For the
convex scalar conservation laws with algebraic growth flux function, we proved
the convergence of these schemes to the weak solution satisfying appropriate en-
tropy inequalities as the second-order numerical viscosity and the mesh length
vanish. The proof is based on detailed L? estimates of the approximate so-
lutions, H=! compactness estimates of the corresponding entropy dissipation
measures, and a compensated compactness framework. These techniques are
generalized to study the convergence problem for the nonconvex scalar case and

for hyperbolic systems of conservation laws.

2.2. 2 x 2 Hyperbolic Systems

The limiting behavior of the zero dissipation limit for hyperbolic systems of

conservation laws is much more complicated.

2.2.1. Strictly Hyperbolic Case

For strictly hyperbolic and genuinely nonlinear systems of conservation laws
with C? flux functions: F' € C? and V;(U) - r;(U) # 0,U € RV, 1 <j<N.
DiPerna [23] proved that any uniformly bounded viscous solution sequence must
be compact in L* no matter whether corresponding approximate initial data
sequence is compact or not. This theorem was extended to the linear degenerate
case by Serre [78]. An alternative proof of DiPerna’s theorem was given by
Morawetz [60]. The uniform L?,1 < p < 00, estimates for viscosity approximate
solutions were discussed by Dafermos [19]. Also see [48] for the convergence of
uniformly L? bounded viscous approximate solutions for the system of elasticity.

If the flux function F is not C? or the genuine nonlinearity fails, the situ-

ation is different. Greenberg and Rascle [34] showed by an example that the
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loss of C? smoothness for the flux function can produce oscillation. For the
linearly degenerate case, the initial oscillation will propagate along the linearly
degenerate characteristic fields (cf. [4,78,70]). In these cases, one cannot expect
the convergence of viscous approximate solutions. The next issue is whether
the degenerate set D affects the limiting behavior of dissipative approximate
solutions to conservation-laws when the dissipation disappears. To make my
points more precisely, I will focus on two of the most important systems in
this area. The first one is the system of isentropic gas dynamics, which is of

parabolic degeneracy.

2.2.2. Parabolically Degenerate Case
The system of isentropic Euler equations are of the form

{ Op + 0;m =0,

Bim -+ B:(22 + p(p)) =0, (21)

where p,m, and p are the density, the mass, and the pressure, respectively.
For the polytropic gas, p(p) = k?p", where 7 is the adiabatic exponent and
1 < 4 < 5/3 for usual gases. In this case, the flux function is not C-.

One can check that D = {p = 0}, which is the vacuum state, and the degen-
eracy is parabolic. An interesting mathematical issue is whether the dissipation
limit is still stable near the vacuum.

Since this system is the most typical one in fluid dynamics, the study of
this system has an extensive history dating back to the work of Riemann [73],
where a special Cauchy problem, so-called Riemann problem, was solved. Zhang
and Guo [89] established an existence theorem of the global solutions to this
system with a class of initial data by using the characteristic method. Nishida
[63] obtained the first large data existence theorem with locally finite total
variation for the case v = 1 using Glimm’s scheme [31]. Large-data theorems
have also been obtained for general 4 > 1 in the case where the initial data
with locally finite total variation is restricted to prevent the development of
cavities (e.g. [22,47,64]). The difficult point in bounding total variation norm

at low densities is that the coupling between characteristic fields increases as



SOME SINGULAR LIMIT PROBLEMS IN CONSERVATION LAWS 113

the density decreases. This difficulty is a reflection of the fact that the strict
hyperbolicity fails at the vacuum: D # . Using the compensated compactness
ideas developed by Tartar and Murat [84,62], DiPerna [24] established a global
existence theorem with L* bounded data for v = 1 + ﬁ,m > 2 integers,
with the aid of the viscosity method.

In the papers [20], we first succeeded in proving the convergence of the
Lax-Friedrichs scheme for this system in the case ¥ = 3/2 with the aid of
compensated compactness. Then we established a compensated compactness
framework for approximate solutions to the Euler equations for the general case
1 <y <5/3 (cf. [2,3]). Uniform boundedness of the approximate solutions
coupling with H~! compactness of corresponding entropy dissipation measures
implies the compactness of the approximate solutions in L*°. This means that
the degenerate set D and the loss of C? differentiability of the flux function do
not affect the compactness of approximate solutions for this case. The proof is
based on a careful analysis of weak entropy and a detailed study of regularities
of the family of Young measures v, that is both determined by the approximate
solutions and restricted by a commutativity relation derived from an analysis of
the weak entropy fields and a basic continuity theorem for the 2 x 2 determinant
in the weak topology. Then this compactness framework is applied to prove the
convergence of the Lax-Friedrichs scheme, the Godunov scheme, the viscous
approximate solutions, the MUSCL type schemes, the entropy flux-splitting
schemes to this system (cf. [3,21,13,10]). Recently, this framework has been ap-
plied to the initial-boundary problem for this system [83], the Euler equations
coupled with the Poisson equation that model the hydrodynamic behavior of
semiconductors [90,59], and the global solutions of the compressible Euler equa-
tions with geometrical structure including transonic nozzle flow, cylindrically

symmetric flow, spherically symmetric flow, and symmetric rotating flow [8].

2.2.3. Hyperbolically Degenerate Case

The typical example with hyperbolic degeneracy is the gradient quadratic
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flux system, which is umbilic degenerate, the most singular case:
U +0,(VC(U)) =0, U= (u,v) €R? (2.2)

where
o) = %au3 + bu?v + uv?, (2.3)

and a and b are two real parameters.

Such systems are quite generic in the following sense. For any smooth non-
linear flux function, take its Taylor expansion about the isolated umibilic point.
The first three terms including the quadratic terms determine the local behavior
of the hyperbolic singularity near the umbilic point. The hyperbolic degeneracy
enables us to eliminate the linear term by a coordinate transformation to obtain
the systems with a homogeneous quadratic polynomial flux. Such a polynomial
flux contains some inessential scaling parameters. There is a nonsingular linear
coordinate transformation to transform the above system into (2.2)-(2.3), first
studied by Marchesin, Isaacson, Plohr, and Temple, and in a more satisfactory
form by Schaeffer and Shearer [75]. From the viewpoint of group theory, such a
reduction from six to two parameters is natural: for the six dimensional space of
quadratic mappings acted by the four dimensional group GL(2,R), one expects
the generic orbit to have codimension two.

The Riemann solutions for such systems were discussed by Isaacson, March-
esin, Paes-Leme, Plohr, Schaeffer, Shearer, Temple, and others (cf. (37,38,76,77]).
Two new shock waves, the overcompressive shock wave and the undercompres-
sive shock wave, were discovered that are quite different from gas dynamical
shock. The overcompressive shock can be easily understood by the Lax entropy
condition [43]. It is known that there is a traveling wave solution connecting
the left state and the right state of the undercompressive shock for the artificial
viscosity system. Stability of such traveling waves for the overcompressive shock
and the undercompressive shock has been studied ([52,53]). The next issues are
whether the compactness of the corresponding approximate solutions is affected
by the viscosity matrix as the viscosity parameter goes to zero, to understand

the sensitivity of the undercompressive shock wave with respect to the viscosity
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matrix, and whether corresponding global existence theorem of entropy weak
solutions can be established.

The global existence of weak solutions to the Cauchy problem for a special
case of such quadratic flux systems was solved by Kan [40] using the viscosity
method. A different proof was given independently to the same problem by Lu
[54].

In the papers [9], P.-T. Kan and I established an L* compactness frame-
work for sequences of approximate solutions to general hyperbolic systems with
umbilic degeneracy specially including (2.2)-(2.3). Under this framework, ap-
proximate solution sequences, which are apriori bounded in L* and produce
correct entropy dissipations, lead to the compactness of the corresponding Rie-
mann invariant sequences. This means that the viscosity matrix does not affect
the compactness of the corresponding uniformly bounded Riemann invariant
sequences. Oné of the principal difficulties associated with such systems is the
general lack of enough classes of entropy functions that can be verified to sat-
isfy certain weak compactness conditions. This is due to possible singularities
of entropy functions near the regions of nonstrict hyperbolicity. The analysis
leading to the compactness involves two steps:

In the first step, we constructed regular entropy functions governed by a
highly singular entropy equation. There are two main difficulties. The first
is that, in general, the coefficients of the entropy equation are multiple-valued
functions near the umbilic points in the Riemann invariant coordinates. This
difficulty is overcome by a detailed analysis of the singularities of the Riemann
function of the entropy equation. This analysis involves a study of a correspond-
ing Euler-Poisson-Darboux equation and requires very complicated estimates
and calculations. An appropriate choice of Goursat data leads to a cancellation
of singularities and to the realization to regular entropies in the Riemann in-
variant coordinates. The second difficulty is that the nonlinear corresponding
between the physical state coordinates and the Riemann invariant coordinates
is, in general, irregular. A regular entropy function in the Riemann invariant co-

ordinates is usually no longer regular in the physical coordinates. We overcame
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this by a detailed analysis of the correspondence between these two coordinates.

In the second step, we studied the structure of the Young measures asso-
ciated with the approximate sequencés, and proved that the support of the
Young measures lies in finite isolated points or separate lines in the Riemann
invariant coordinates. This is achieved by a delicate use of Serre’s technique
[78] and regular entropy functions, constructed in the first step, in the Tartar-
Murat commutation equation [84] for the Young measures associated with the
approximate solution sequences.

This compactness framework is successfully applied to prove the convergence
of the Lax-Friedrichs scheme, the Godunov scheme, and the viscosity method
for the quadratic flux systems. Some corresponding existence theorems of global
entropy solutions for such systems are established. The compactness is achieved
by reducing the support of the corresponding Young measures to a Dirac mass
in the physical space.

Finally we also refer the reader to [28,29,74] for several other important

nonlinear systems endowed with similar features.

2.3. Hyperbolic Systems with More Than Two Equations

One of the most typical systems with more than two equations is the system
of thermoelasticity, which describes the balance laws of mass, momentum, and
energy for one-dimensional elastic media. When the initial data have small
total variation, a global BV solution to this system can be constructed by
the random choice method of Glimm [31]. The issue of existence of solutions
with large initial data is a long-standing open problem. Recently, Dafermos
and I [5] succeeded in constructing large solutions by the method of “vanishing
viscosity” in which the elastic medium is visualized as the zero viscous limit of a
family of viscoelastic media with viscosities for a class of constitutive relations.
Oscillations in the entropy field may propagate along the linearly degenerate
characteristic field but do not affect the compactness of the velocity field or the
pressure field in the viscous approximate solutions as the viscosity coefficient

goes to zero.
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Some related results (cf. [4,79]) have been established for a class of systems,
so called the rich systems (cf. [79]).

2.4. Remarks on Multidimensional Cases

The multidimensional hyperbolic conservation laws are much more compli-
cated. An essential feature in the multidimensional case is degeneracy, the loss
of strict hyperbolicity and/or genuine nonlinearity (cf. [44,27,1]). Another dis-
tinguishing feature in this case is the rollup of the compressible vortex sheet
through the nonlinear interaction of the kink mode and the development of
the vorticity in the compressible vortex sheet, which is quite different from the
one-dimensional case. The study of the behavior of the zero d.issipation limit of
multidimensional conservation laws is one of the major challenging problems in
the field of nonlinear analysis.

One of the most typical problems in this context is the compressible Eu-
ler equations with geometrical structure. Physical examples of this systems
include transonic nozzle flow, cylindrically symmetric flow, spherically symmet-
ric flow, and symmetric rotating flow. The similarity solutions to the Euler
equations with spherical symmetry were studied by Guderley, von Neumann,
Taylor, Sedov, and many others (see [17,87]). The existence of global solutions
was discussed by Liu [50] provided that the initial data are close to a constant
state and are away from the sonic. Some numerical calculations were performed
and analyzed by Embid-Goodman-Majda, Glimm-Marshall-Plohr, and Glaz-Liu
(25,32,30]. A global entropy weak solution with spherical symmetry was con-
structed in [58] for the isothermal case y = 1. In [8] a shock capturing numerical
scheme is introduced to compute the isentropic flows and to construct dissipa-
tive approximate solutions. The convergence and consistency of the dissipative
approximate solutions generated from this scheme are proved, which indicate
that no oscillation produces in this zero dissipation limit. A corresponding exis-
tence theory of global solutions is established and then this theory is applied to
the transonic flow, the cylindrically symmetric flow, the spherically symmetric

flow, and the symmetric rotating flow.
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At this stage, it would be interesting to understand the behavior of the zero
dissipation limit for the two-dimensional steady systems of compressible Euler
equations and for the incompressible Euler equations because of the appearance

of the vorticity in the compressible vortex sheet.

3. Zero Relaxation Limit

The zero relaxation limit is much more complicated. In general, this limit is
not stable even for the linear case. For example, consider the following relaxing

system:

Btu + a,,;'U = 0,

3.1
0w + A?0,u + =2 =0, ®.1)

where A and A > 0 are constants. From (3.1), we conclude that u satisfies the
equation:

Byu + A0,u + €(Byu — A?0z5u) = 0. (3.2)

This is the first order operator perturbated by the wave operator. For the
equation (3.2), it is well known from the linear theory that the limit is stable

as € goes to zero if and only if A and A satisfy
—A<A<A. (3.3)
This means that the characteristic speed A of the local equation
Ou+ Aou=0

is interlaced with the characteristic speeds of the relaxing system (3.1). The
same condition is true for 2 x 2 quasilinear hyperbolic systems of conservation
laws with stiff relaxation terms to ensure that the local relaxation approximation
is dissipative [51].

In the paper [11], Levermore, Liu, and I studied the limiting behavior of gen-

eral hyperbolic systems of conservation laws with stiff relaxation terms. The
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local relaxation approximation and its first correction for a general system of hy-
perbolic conservation laws with the relaxation terms (1.3)-(1.5) are constructed.
A general notion of entropy is introduced for such systems, the existence of
which ensures the hyperbolicity of the local relaxation approximation and the
dissipativity of its first correct. For general 2 x 2 strictly hyperbolic systems,
the existence of the dissipative entropies is implied by a strictly stability crite-
rion that the equilibrium characteristic lies between the frozen characteristics as
pointed in (3.3). This stability theory is then applied to study the convergence
to the reduced dynamics for the 2 x 2 case.

In the zero relaxation limit, the solutions of the relaxing systems tend to
those of the local relaxation approximation. The limit is highly singular because
of shock and initial layers. In [14] this limit is studied for the physical models
in elasticity and phase transition. Entropy pairs are constructed to derive the
energy estimates, and the compensated compactness method is then applied to
control the oscillations. The stability theory allows to extend to general 2 x 2
systems and more physical systems in mechanics [11]. A natural application of
such a stability theory to the construction of relaxing schemes can be found in
[39].

Another related limit is the weakly nonlinear limit. This limit shares the
feature of the local relaxation approximation that it does not contain the re-
laxation time. It is based on the observation that the linearization of the local
relaxation approximation about an equilibrium gives a simple advection dynam-
ics with the equilibrium characteristic speed. This suggests that for solutions of
the relaxing system (1.3)-(1.5), a small perturbation about an equilibrium will
be slowly varying in the corresponding moving frame. This limit is derived for

2 x 2 systems and is justified through energy estimates in [11].

4. Conservation Laws with Memory

One important class of systems in conservation laws is hyperbolic systems of

conservation laws with memory: the solution at each state point depends not
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only on the present value, but on the entire temporal history, so called nonlocal
systems. Typical examples of such systems come from viscoelasticity (cf. [71])
for certain viscoelastic materials such as polymers, suspensions, and emulsions
which have memory: the stress at each materials point depends not only on
the present value of the deformation gradient and/or velocity gradient, but
on the entire temporal history of motion. These materials exhibit behavior
intermediate between that of an elastic solid and a viscous fluid.

It would be interesting to study the behavior of the zero dissipation limit for
conservation laws with memory. For this reason, we refer the reader to Dafermos
[18], Nohel-Rogers-Tzavaras [65], and Chen-Dafermos [6]. Another interesting
problem is the vanishing memory limit, which corresponds to the zero relaxation
limit for some ideal cases. In this connection, we refer the reader to [14,11] for

the zero relaxation limit.
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