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GLOBAL BEHAVIOR FOR SOME CONSERVATIVE
NONLINEAR EQUATIONS

Thierry Cazenave® Alain Haraux® Fred B. Weissler

1. Introduction.

In this paper we describe some results on global properties of solutions to
conservative nonlinear wave equations. One of the most natural examples of
this type of equations is the cubic one-dimensional wave equation with Dirichlet

boundary conditions,

Utt — Uz + uB = Oa
{ “ (1.1)

upaq =0,
in @ = (0,7). It is well known that the initial value problem for (1.1) is well
posed in Hj(f2) x L*(2). Moreover, due to the conservation of the energy

1 1 1
Euu) = [ {Fultef + Judlt 2 + Jult,2)'} de,

all solutions are global in time and bounded in the energy space HZ(f2) x L*(1)
(see for example [16]). In particular, it makes sense to study their asymptotic
behavior as t — oo.

Equation (1.1) is an infinite dimensional Hamiltonian system. For finite
dimensional Hamiltonian systems, Poincaré’s recurrence theorem says that al-
most all solutions are recurrent. For completely integrable Hamiltonian sys-
tems, a classical result of Liouville (see for example Arnold [1]) asserts that
most solutions are quasi-periodic. For the (linear) wave equation wuy — Au = 0
with Dirichlet boundary conditions in a bounded domain, all solutions are al-
most periodic. It is natural to wonder to what extent this property persists

with the addition of a nonlinear term. A well-known result of Rabinowitz [21]
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(see also [2]) says that the equation (1.1) has nontrivial time-periodic solutions.
However, there are very few results concerning the global properties of a generic
solution (see [6,7]).

In [8], we presented the results of numerical computations which we used
to test some conjectures on the global behavior of solutions. In particular,
we tested the recurrence property, the relative compactness of the trajectories
in the energy space and, in connection with the last property, the possible
existence of nontrivial solutions converging weakly to 0 as ¢ — oco. These
numerical experiments suggest an almost periodic behavior, but up to now
there is no definite result in this direction. Note also that the almost periodic
behavior is supported by a few results concerning other nonlinear conservative
equations. In particular, Lax [18] showed the existence of a large class of quasi-
periodic solutions to the KdV equation, and Cabannes and Haraux [4] showed
the existence of a large family of almost periodic solutions to the equation of a
string with fixed ends vibrating against a straigh fixed obstacle.

In [9,10,11], we studied the equation

Utt _urz+u(fﬂ u(t,:c)2 d.’D) =07 (1 2)
upn =0, '

which can be considered as an approximation of the equation (1.1). The initial
value problem is well posed in H}(Q) x L?(§2), and there is conservation of the

energy

E(u,uy) := /ﬂ {%u,(t,:l:)2 + %u,(t,z)Q} dz + LII (/nu(t‘,:z:)2 dz>2.

(See [10].) In particular, all solutions are globally defined and bounded in the
energy space. Moreover, equation (1.2) has some interesting properties that are
not shared by (1.1). In particular, if one expands the solution in a Fourier sine

series, the coefficients u; satisfy the following infinite system of ODE’s

u;-' + Aju; + (Z u,z) u; =0, (1.4)

i>1
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where the );’s are the eigenvalues of the Laplacian in H3(f), i.e. A; = j2. The
energy for (1.4) has the form

2
1 1 1
E(U,V):= 521}} + EZ/\]uf + 7 (Euf) ;
i21 j21 i>1
where U = (u;);51 and V' = (v;);»1. Furthermore, the solutions to the central

force motion
U + u (/Q u(t, z)? d:c) =0,

are quasi-periodic with two basic frequencies, so that (1.2) corresponds to the
superposition of two operators which both produce almost periodic solutions.
Equation (1.2) has solutions with only a finite number of nonzero Fourier
modes. More precisely, if u(0) and u,(0) are in the space spanned by k eigenfunc-
tions, then u(t) remains in that space for all ¢ € R. In particular, any solution
to a finite sub-system of (1.4) is an actual solution of (1.2). Solutions with only
one excited Fourier mode £ are called simple modes. They are solutions of the
form u(t,z) = f(t)pe(x), where f solves the equation f” + Aof + f3 = 0, and
in particular u is time periodic. Earlier in our research, we studied numerically

solutions with two Fourier modes 7,4, i.e. solutions of the system

" 2 2 =
{u +u+ (u? 4+ v*)u =0, (1.5)

v+ kv + (u? + v?)v =0,

with k = A\¢/A; = £2/5%, and we observed nonrecurrent solutions. More pre-

cisely, we found solutions such that v(¢) — 0 as ¢ = co. Indeed, we were later
able to rigorously establish the existence of nonrecurrent solutions.

It turns out that the system (1.4) is completely integrable, due to the exis-

tence of an infinite family of conservation laws (E;);»1 given by

1 1 uv; — viu;)?
i>1 i i~ A

By using the conservation laws (1.6), one can describe the global behavior for

a wide class of solutions to (1.2).
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Some of the properties of equation (1.2) persist for certain non-integrable

equations, such as

U — gz + u (fpu(t, z)? dz)” =0, (1.7)

upq = 0, :
with a # 1, and the nonlinear string equation

Uy — (a + b foui(t,z) dz) uze = 0, (1.8)

Ul = 0, '

witha > 0,5 > 0.

The paper is organized as follows. In Section 2, we describe the quasi-
periodicity results for the equation (1.2). Section 3 is devoted to the nonrecur-
rence results for the same equation, and Section 4 is devoted to the nonrecur-
rence results for the non-integrable equations (1.7) and (1.8). Finally, Section 5

is devoted to further comments.

2. Quasi-periodicity Results for the Modified Cubic Equa-
tion.

We observe that for equations which, like equation (1.4), have solutions with
only a finite number of nonzero Fourier modes, we can apply Poincaré’s recur-
rence theorem to any finite (say N dimensional) sub-system, so that for almost
all (with respect to the Lebesgue measure in R?) initial values, the solutions
are recurrent. It follows that for the infinite dimensional system, there is a large
number (in fact a dense subset in a relevant space) of initial values giving rise
to recurrent solutions (see Corollary 5.2 in [10]). We recall that a bounded,
continuous function u from R to some metric space Z is recurrent if for every

t € R there exists two sequences a, — 400 and 3, = —oo such that
u{t) = lim ulea) = lim u(fh).

In particular, almost periodic functions are recurrent.
Before stating the main quasi-periodicity result of this section, we introduce

some notation. We set

H = {u € H}(R); u has finitely many nonzero Fourier components},
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so that # is a dense subset of both H3 () and L*(Q). For u,v € H and j > 1,

we set
&i(u,v) = Ej ((w)iz1, (vi)iz1) 5

where u; is the i** Fourier coefficient of u and where E; is defined by (1.6). We
note that &;(u,v) = 0 except for a finite number of j’s. Our main result of this

section is the following (see Theorem 6.2 in [10]).

Theorem 2.1. Given (ug,v0) € H, let u € C(R, H}(Q)) N CY(R, L*(Q)) N
C*(R, H™'()) be the solution of (1.2) such that u(0) = up and u,(0) = vo. If
&;(uo,v0) > 0 for all j > 1 such that (uo)? + (vo)? # 0, then u is quasi-periodic.

The proof is based on Liouville’s theorem. One first shows that the E;’s are

pairwise in involution, i.e.

S ’E {6uk Oue Qv au"} =

for all j,£ > 1. The positivity assumption on &; implies that on the set
‘Dl{gj(u,v) = &;(uo,v0)}, the gradients of the functionals £; are linearly in-
2

dependent for all j's such that (uo)? + (vo)? # 0.

Corollary 2.2. There exists e > 0 such that if (uo, vo) € H verifies €(uo, vo) <
€ with € defined by (1.3) then the solution v € C(R, H}(2)) N CY(R, L*(Q)) N
C*R, H™(Q)) of (1.2) such that u(0) = uo and u,(0) = v, is quasi-periodic.

Corollary 2.3. Let (uo,v0) € H and u € C(R, H}(Q)) N CY(R, L*(Q)) N
C*(R,H™'(Q)) be the solution of (1.2) such that u(0) = uo and u,(0) = vy.
If uo and vo are linearly dependent, then u is quasi-periodic. In particular, if

uo = 0 or if vg = 0, then u is quasi-periodic

Indeed, both the small energy assumption in Corollary 2.2 and the linear
dependence assumption in Corollary 2.3 imply the positivity condition of The-
orem 2.1. (See Theorems 6.3 and 6.9 in [10].)
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Remark 2.4. The above results show the existence of a wide class of quasi-
periodic solutions of equation (1.2). The conservation laws can also be used
to show some results that are valid for all solutions of (1.2). For example, if

u € C(R, H}(Q)) N C}(R, L*(2)) N C*(R, H~}()) is a solution of (1.2), then
U (u(t), w(t))

teR
is a relatively compact subset of H3(Q) x L2(f) (see Theorem 4.5 in [10]). This
implies that no nontrivial solution of (1.2) can converge weakly to 0 as ¢ = oco.

(See Theorem 4.1 and Remark 4.2 in [10].)

Remark 2.5. These results can be extended to more general equations of the
form

u” + Lu + ||ul|*u = 0,
in a Hilbert space X, where L > 0 is a self-adjoint operator with a complete set
of eigenvectors, under various assumptions on the eigenvalues. In particular,
the analogue of Corollary 2.3 holds without any assumption on the eigenvalues
(see Theorem 6.9 in [10]).

Remark 2.6. For the system (1.5), one can give a more detailed description
of the solutions. (1.5) is the Hamiltonian system associated with the energy
E(u,v,u',v") = %u'z - %v’z + %uz + ng + i—(u2 + v?)%. (2.1)
Furthermore, (1.5) has a second conservation law F(u,v,u/,v’) given by
(uv' — u'v)?
20k — 1)
If £ > 1 and if (u,v) is a solution of (1.5) such that F(u,v,u',v’) # 0, then

(u,v) is quasi-periodic with at most two basic frequencies. To prove this, it

1
F(u,v,u,v") = — + 0 + kv + 51}"’(1;2 +v?). (2.2)

suffices to show the independence condition on VE and VF. In fact, given a
set A= {E = a} N {F = b} with b # 0, one shows that either VE and VF are
linearly dependent at every point of A, or else A is the union of two curves; so
that in the last case all solutions of (1.5) in A are periodic. (See Theorem 2.1
in [11].)
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3. Nonrecurrent solutions for the modified cubic equa-
tion.

In this section, we consider the system (1.5), which is a particular case of the
system (1.4), hence of equation (1.2). In other words, a solution (u,v) of (1.5)

gives an exact solution of (1.2) of the form

Ju(jt)p;(z) + jo(5t)pe(x),

if k= £2/5% and (p;);51 are the normalized eigenfunctions of —d,, in H(Q).
Throughout this section, we assume k& > 1. The system (1.5) has the two
conservation laws (2.1) and (2.2), and it follows from Remark 2.6 above that all
solutions suéh that F'(u,v,u’,v") # 0 are quasi-periodic. Therefore, the possible
nonrecurrent solutions are those for which F(u,v,/, v') = 0. Our main result

is the following (see Theorems 2.2 and 2.3 in [11]).

Theorem 3.1. There exists Ey > 0 such that if (u,v) is a solution of sys-
tem (1.5) with F(u,v,u,v") = 0 and E(u,v,u’, v') > Ey, then v and v' tend
exponentially to 0 ast — +oo and as t = —oco. Moreover, u(t) is exponentially
asymptotic as t — +oo to one of the solutions of w" 4+ w + w® = 0 such that
L. 1
3 13

similar conclusions hold as t — —oo with w replaced by w(-+7) for someT € R.

w? + Zw4 = E(u,v,u/,v), and v’ is asymptotic to w'. Furthermore,

Remark 3.2. Note that Theorem 3.1 concerns a three parameter family of
solutions. For most of these solutions, we have v # 0, so that these solutions
are in general nonrecurrent (and in particular not quasi-periodic). On the other
hand, it follows from Poincaré’s recurrence theorem that the set of nonrecurrent
states for (1.5) has measure zero in R®. Therefore, the counterexample of

Theorem 3.1 is in some sense optimal.

Remark 3.3. With the notation of Theorem 3.1, w(-) and w(- + 7) have

the same orbit in phase space. Therefore, Theorem 3.1 shows the existence of
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homoclinic orbits of (1.5).

Sketch of the proof of Theorem 3.1.- We observe that if (u,v) is a solution
of (1.5), then both u and v must vanish on every interval of length 7. Given a
solution (u,v) as in the statement of the theorem, if v(to) = 0 and v # 0, then it
follows from the property F = 0 that u(to)? = 2(k—1) and that u'(to)*+v'(t0)* =
2E(u,v,u',v") — 2k(k — 1) > 0. Therefore, up to a translation, and because of
the symmetries of the system, we may assume that u(0) = \/2(1:_—1), v(0) =0,
v'(0) > 0.
Setting

a = 2E(u,v,u',v') — 2k(k — 1) > 0, (3.1)
we define the mapping T : (0,7) — (0,7) as follows. For 0 < 6 < m, let (f,9)
be the solution of system (1.5) such that f(0) = /2(k — 1), g(0) = 0, f'(0) =
acosf and ¢'(0) = asind, and let T be the first positive zero of g. It follows
from what precedes that there exists ¢ € (0,) such that f'(7) = —acos¢ and
g(r) = —asing. We define T(9) = ¢. It follows easily that T is a bijective,
bicontinuous and monotone map (0,7) — (0, 7). Moreover, we claim that T is

increasing and that if a is large enough, then
T(@) <fforall0 < <m, (3.2)
0<T(0)=2-T'(r) < 1. (3.3)
If (ta)npo denotes the increasing sequence of nonnegative zeroes of v, then
V'(ts) = (—1)"asin(T"(6o)), where 6o € (0,7) is defined by v'(0) = asinbo.
Assuming (3.2) and (3.3), it follows that there exists 7 € (0,1) such that
[v'(t,)] £ Cn™. 1t is not difficult to deduce the exponential decay of v, then the
exponential convergence of u as t = +oo. The behavior as ¢ — —oc is obtain
similarly by considering the decreasing sequence of nonpositive zeroes of v.
The proof of (3.2) and (3.3) is made in two steps. One proves that T is
increasing and satisfies (3.3) by letting 6 | 0 and studying the linearized system

w4+ w+w =0,
2+ kz+wlz=0.
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(3.2) follows from (3.3) and the property T(0) # 0 for all 0 < < 7. This last
fact is proved by studying the limiting system

w” 4+ w® =0,

2"+ wlz =0,

obtained by letting a — oo, with a suitable rescaling.

Remark 3.4. The large energy requirement in Theorem 3.1 is needed for
the proof of (3.2) which is made by contradiction, letting the energy go to
infinity. We made some numerical experiments that indicate that the large
energy requirement is possibly unnecessary. Note, however, that if (u,v) is
a solution of (1.5) such that F(u,v,, v') = 0 and v # 0, then necessarily
E(u,v,u',v") > 2k(k — 1) by (3.1). On the other hand, property (3.3) is proved
without any condition on a (i.e. on the energy), and this property has an

interesting consequence. Let Eo > 2k(k—1) and w be a solution of the equation
w' +w+uw? =0,

such that
%w” + %w"’ + 417.0‘1 = E,.

w is periodic and unique up to a translation, so that without loss of generality
we may assume that w(0) = 0 and w'(0) > 0. Using property (3.3) and the
argument of the proof of Theorem 3.1, one can show that there exists 0 < Oo<m
and o > 0 with the following property. If (u,v) is the solution of (1.5) such that
u(0) = b, v(0) = 0, w'(0) = acosf and v'(0) = asinf and if 0 < 0 < 0o, then
there exist o and C such that v(t)? + v(t)? < Ce=°* and (u(t +0) —w(t))? +
(W'(t+0) —w'(t))* < Ce=°tfor t > 0. (See Corollary 5.4 in [11].) In particular,
the solution (u,v) is nonrecurrent. Note, however, that this is a local result,
as opposed to the global result of Theorem 3.1. Changing ¢ to —t, one can
interpret this result by saying that the periodic solution (w,0) has a nontrivial
unstable manifold.

By using (3.3), one can show that all recurrent solutions of (1.5) are quasi-

periodic. (See Proposition 2.4 in [11].)
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4. Nonrecurrent solutions in the non-integrable case.

The proof of the existence of nonrecurrent solutions for the system (1.5) (see
Theorem 3.1) depends on the rather special property that the system admits a
second conservation law. This leaves open the question as to whether or not the
result itself is due to the completely integrable character of the system (1.5). To
answer this questions, we consider the equation (1.7) with & > 0. By considering
a two mode solution we are led, as above, to the following system of two ODE’s

u” +u+ (u? +v?)%u =0, (4.1)
V" + kv + (u? 4 v?)* =0, i

where k > 1. (4.1) is the Hamiltonian system associated with the Hamiltonian

u’2+lu'2+lu2+gv2+

507+ 5 (W +o?)*.  (4.2)

1
ronN AT S
E(u,v,u',v") = et D)

| —

If o # 1, then a result of Grotta Ragazzo [15] suggests that (4.1) is not com-
pletely integrable. (In fact, the non-integrability is proved for a slightly different
system under the assumption that e is an integer, but the argument suggests
that the system is not integrable even for noninteger a’s.) However, the fol-
lowing result shows that system (4.1), hence equation (1.7), has nonrecurrent
solutions. (See Theorem 1.1 in [12].)

Theorem 4.1. There exists C > 0 such that for every Ey > C, there ex-
ists a two dimensional submanifold M of the (three dimensional) manifold
{E(u,v,u',v") = Eo} with the following property. If (uo,vo,up,v) € M, and
if (u,v) is the solution of (4.1) with initial data (uo,vo,ug,vp), then v and v’
converge exponentially to 0 as t — oo, and there exists a solution w of the
equation w" +w+ |w|**w = 0 with energy lw’2 + %wz s Jlw|?e+Y) = E,

2 (a+1)
such that u — w and u' — w' converge exponentially to 0 as t — oo.

Remark 4.2. The manifold {E(u,v,u',v") = Eg} N {v = v' = 0} is one
dimensional; and so, for most solutions of (1.1) with initial values in M, we

have v # 0. It is clear that such solutions are nonrecurrent, hence not quasi-
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periodic. Note that Theorem 4.1 is a local result which does not describe the

behavior of (u,v) as t & —oo.

Remark 4.3. Since solutions of w” 4+ w + |w|**w = 0 with a given energy are
unique up to a translation, changing ¢ to —¢ in Theorem 4.1 implies that the
periodic solutions (w,0) of sufficiently large energy have a nontrivial unstable

manifold.

Theorem 4.1 is proved by showing that the Poincaré map associated to a
periodic solution (w, 0) of sufficiently large energy has a hyperbolic fixed point.
More precisely, E; > 0 being fixed, we define the mapping 7' : i — R?, where
U C R? is a neighborhood of 0, as follows. Let

b2 ka? a2(a+1)
- 2 = e AN,
u—{(a,b)€R12+ 2 +2(a+1)<E0}$
and for (a,b) € U let up > 0 be defined by

£+E+k_a2+—a2(a+l) = F,
2 "2 2 "atl)

Given (a,b) € U, we consider the solution (u,v) of (4.1) with initial data
(u,v,u',v")(0) = (0,a,up,b). Since u(0) = 0 and u'(0) > 0, we have u(t) > 0
for small ¢ > 0. On the other hand, one sees easily that u must have a zero on

(0,7). Let 7 be the first positive zero of u. We define

T(a,b) = —(v(7),v'(1)). "

We next define the linear operator B € L(R? R?) as follows. Let wy = 1/2Eq,

and let w be the solution of the equation
w" + w4+ |w|**w = 0,

with initial data w(0) = 0 and w'(0) = wg. Since w(0) = 0 and w'(0) > 0, we
have w(t) > 0 for ¢t > 0 and small. Let p be the first positive zero of w. Given
(a,b) € R?, let z be the solution of the (linear) equation

2" +kz+|w*z=0,
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with initial data z(0) = a and z’(0) = b. We define B € L(R?,R?) by

B(a,b) = —(2(p), #'(p)),

for all (a,b) € R% One shows easily that B = DT(0,0) so that, by using a
perturbation argument, Theorem 4.1 follows from the property that if Eo is
large enough, then B has eigenvalues A and A~1 for some A € (0,1). Since B is

associated with the linearized system

W + w+ |w|>*w =0,
{ 2"+ kz + |w|**z =0, a8
its eigenvalues for Ep large are calculated by studying the system
w" + |w|?w = 0,
o s (4.4)

which is a limiting system of (4.3) as Eo — oo after a suitable rescaling. Note,
however, that the operator corresponding to the limiting system (4.4) has the
double eigenvalue 1, so that the property of B follows from an analysis for large,

but finite energy.

Remark 4.4. This method can be adapted to more general systems, for which
one still gets to the limiting system (4.4). In particular, if f (s) = as® + bsP
with a,b > 0 and 0 < (8 < a, then the conclusion of Theorem 4.1 holds for the

system
u +u+ f(u? +0?)
v + kv + f(u? +0?

which corresponds to the wave equation

Ut — Ugg + Uf (fn“(t,l‘)Q dw) =0,
ulan =0.

)—=

(See Theorem 1.2 in [12], which gives general conditions on the function f so

that the same analysis can be carried out.)

A classical model of the nonlinear vibrating string is given by the equa-

tion (1.8), where a > 0, b > 0. This model has been extensively studied, for
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example by Carrier [5], Bernstein [3], Narashimha [20]. See also Dickey [14],
Medeiros and Milla Miranda [19] and the references therein. Our main in-
terest in this model is the stability of simple modes, i.e. solutions of the
form u(t,z) = w(t)sin(jz), such solutions necessarily being periodic in time.
Dickey [14] showed that small amplitude simple modes are stable. We prove
that simple modes of sufficiently large energy are unstable, i.e. that they have
nontrivial unstable manifolds. This shows in particular the existence of nonre-
current solutions of (1.8).
Expanding the solution in a Fourier series, we obtain for the Fourier com-
ponents u;’s the following system of ODE’s:
o
uf + j* <a + bZizu‘?) u; =0. (4.5)
i=1
It follows that, given any integer j > 1, equation (1.8) has the particular (simple
mode) solution u(t,z) = %w(t) sin(jz) where w solves the equation w”+j%(a+
bj?w?)w = 0. To prove that simple modes are always unstable once they have
sufficiently large energy, we consider a two-mode solution of (1.8) (or (4.5)), i.e.
a solution of the system

uf + j%(a + bj'zu;‘f + bk*u?)u; = 0, (4.6)
uf + k*(a + bj%u? + bk*u})ux =0,
where j, k are integers such that k > j > 1. After rescaling, we are led to the

system

" 2 2\y =
{u +v+u4+0v*)u=0, (4.7)

"+ (v +u? +0?)v =0,
where ¥ = k?/j% and v = a/b. The system (4.7) is a Hamiltonian system, whose

conserved energy E, expressed in terms of u, v, u, v/, is given by

2 ,n 24,2 2 ,2\2
yon U v u?+v? (u? +0?)
E(u,v,u,v)-———2 +—27+V 5 r ’

We prove the following result (See Theorem 1.1 in [13]).

Theorem 4.5. Assume that v > 0 and let

7 € (m+1)(2m +1),(m +1)(2m +3)),
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for some nonnegative integer m. There exists C > 0 such that if Eo > C,

then there exists a two dimensional submanifold M of the (three dimensional)

manifold {E(u,v,u’,v") = Eo} with the following property. If (uo,vo,ug,vp) €

M, and if (u,v) is the solution of (4.7) with initial data (uo, vo, ug, vg), then v

and v' converge exponentially to 0 ast — oo, a;;ld therze exists a solution w of
w

the equation w" + vw + w® = 0 with energy B + V? + wT = FEy such that

u —w and u' — w' converge exponentially to 0 ast — oo.
i
Note that, given an integer j > 1, there exists k > j such that v = — falls

in one of the intervals defined in Theorem 4.5. Thus, since the system (4.6) is

. 2 4 7
time reversible, Theorem 4.5 indeed proves that a simple mode {/—w(t) sin(jz)
m

of sufficiently large energy has a nontrivial unstable manifold.

In fact, more can be said. The first two intervals in Theorem 4.5 are (1,3)

k2
and (6,10). If we set k = 35, Vj > 1, then v = — = 9 independent of
j. Theorem 4.5 thus implies the existence of an energy level above which all

simple modes are unstable.

Theorem 4.5 is proved by showing that a periodic solution of system (4.7)
with sufficiently large energy and such that v = 0 gives rise to a hyperbolic
fixed point of the induced Poincaré map. The details of the proof follow the
same outline as for Theorem 4.1, however several new ingredients are needed
to study the linearization of the Poincaré map. In particular, the limiting form
(for high energy) of the linearized Poincaré map is defined using the system

" 3 e
{w+w =0, (4.8)

2"+ qw?z = 0.

The real line is partitioned into a sequence of intervals, and the behavior of
solutions to (4.8) depends on which interval contains v; and using Jacobi poly-

nomials, we can specify the intervals exactly.

Remark 4.6. If we assume a = 0 in equation (1.8), then we have an extension
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of Theorem 4.5 without the energy condition. (See Theorem 4.1 in [13].)

Remark 4.7. This method can be adapted to more general systems. In par-
ticular, if f(s) = as® + bs? with a,b> 0 and 0 < 8 < «, then the conclusion of
Theorem 4.5 holds for the system
{ u” +u+ f(u?+v?)u =0,
v+ 91+ f(u? 4+ v?))v =0,
which corresponds to the equation

{ up —a(l+ f(fuu(t,z)?dz))uz =0,
Ujan = 0.

(See Theorem 4.3 in [13].) Similar results for the system (4.8) were previously
obtained by Yoshida [22], by using analytic function theory. However, this
method seems to apply only when f(s) = |s|*™s for m € N.

Remark 4.8. By the same method as above, one can prove that the sec-
ond order Galerkin approximation of equation (1.1) has also a three parameter

family of nonrecurrent solutions.

5. Conclusion.

In view of the above results, one may naturally expect that conservative non-
linear wave equations posess in general nonrecurrent solutions. This is possibly
the case for the cubic equation (1.1). Also, the existence of recurrent trajec-
tories which are not periodic is an open problem for nonintegrable cases such
as (4.1) and (4.6).
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