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Abstract

We discuss front tracking simulations of shock reflections and shock
accelerated interfaces. Some key features of the front tracking method are
the elimination of numerical diffusion and the reduction of wall heating.
In computations of the regular Mach reflection of a shock at an oblique
ramp, we see enhanced resolution of the primary waves in the interaction.
In addition, tracking allows very precise measurements to be made of
the states and location of the Mach triple point. Our computations of
the growth rate of a Richtmyer-Meshkov unstable interface are the first
numerical results that are in quantitative agreement with experimental
results of a shocked air-SFg interface. Previous attempts to model the
growth rate of the instability have produced values that are almost twice
that of the experimental measurements. Moreover, the failure of the
impulsive model, and the linear theory from which it is derived, to model
experiments correctly is understood in terms of time limits on the validity
of the linear model.

1. Introduction

In this article we present results of simulations using front tracking combined
with a second order Godunov finite difference method. Two classes of problems
are discussed, the oblique reflection of shock waves at ramps, and the computa-

tion of the instability growth rate of a perturbed, shock-accelerated interface.
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Our code achieves excellent resolution of the simulated flows, even on the rel-
atively coarse grids used here. In both cases our computed results are shown
to be in excellent agreement with experiments. Indeed, we present computa-
tions of the Richtmyer-Meshkov instability that for the first time agree with
experimentally measured growth rates of interface perturbations.

The ramp reflection simulations model the interaction of a planar shock
wave with an oblique wall. We are interested in determining the structure of
the reflection process for ramp angles that are very close to the mechanical
equilibrium condition for bifurcation to regular reflection, as defined by the
coincidence of regular and Mach reflection. The use of front tracking allows
us to conduct numerical experiments that are extremely close to this point.
Ordinary shock capturing methods are unable to resolve the Mach triple point
configuration in this regime due to the extreme closeness of this point to the
wall. We measure several quantities for the reflection process, including the
trajectory of the triple point, and the Mach number of the flow behind the foot
of the Mach stem. Comparison of these quantities to experiment shows a good
agreement between our values and the experimentally measured quantities.

The Richtmyer-Meshkov instability concerns the growth of interface per-
turbations on a shock accelerated material interface. When a shock wave col-
lides with the interface between two different materials, small perturbations of
this interface grow into nonlinear structures having the form of “bubbles” and
“spikes”. The occurrence of this shock-induced instability was predicted by
Richtmyer [18] and confirmed experimentally by Meshkov [15]. The Richtmyer-
Meshkov instability is similar to the more familiar Rayleigh-Taylor instability
and is important in both natural phenomena (supernovae) and technblogical
applications (inertial confinement fusion).

Theory and computation have so far failed to provide an understanding of
the Richtmyer-Meshkov instability that is in quantitative agreement with exist-
ing experiments [3, 4, 7, 17, 19]. Computations of the Richtmyer-Meshkov insta-
bility for singly shocked, sinusoidally perturbed interfaces have over-predicted

growth rates by factors from 40% to 100% [7] as compared to experiments. The
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main theoretical model used in this area, Richtmyer’s impulsive model [18], also
consistently predicts a growth rate that is too large.

Our computations of the Richtmyer-Meshkov instability are further vali-
dated by a comparison of small amplitude perturbation, early time simulations
with solutions to a linearization of the equations of motion. An analysis of
the time interval of validity for the linearized model explains the failure of the

linearized and impulsive models to agree with experiment.

2. The Front Tracking Method

Front tracking is a computational method for the sharp resolution of a set of
distinguished waves in a flow. It combines a standard, rectangular grid based
finite difference method with a set of lower dimensional, dynamically moving
grids that follow the tracked wave fronts. A general description of this method,
including an outline of the structure of our computer program, is given in [12].

The numerical solution for flows in two space dimensions is represented
on the union of a rectangular grid and a set of piecewise linear curves. The
state at each point on the rectangular grid represents the cell average over the
corresponding cell of the dual grid centered at that point. The solution at a
point on a tracked front is multivalued, with values corresponding to the limits
of the solution on either side of the wave. The numerical.representation of the
flow explicitly includes the jump discontinuities across the tracked waves and
thus eliminates numerical diffusion.

Points of intersection between tracked waves, called nodes, correspond to
two-dimensional interactions between wave fronts. An important example of
such a node in these computations is the Mach triple point.

A global solution operator for the evaluation of the state of the flow at
arbitrary locations is constructed from a front-limited triangulation of the com-
putational grid and the tracked fronts. This triangulation is constrained so that
no triangle crosses a tracked front. A side of an individual triangle in this con-

struction is either a rectangular lattice cell boundary, or an edge on a tracked
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front. A corner of such a triangle is thus either a grid cell corner, a point on a
tracked front or an intersection of a tracked front with a lattice cell boundary.
The states at these points serve as data for a linear interpolant of the solution
into the interior of the triangle.

The representation of the solution in our front tracking code differs from the
more standard triangular representations of a flow in that the tracked waves
are dynamic and move with time so that the triangulation must be regener-
ated at each time step in the computation. The method also differs from the
unstructured finite volume techniques in that the main solution is computed
using a regular, rectangular grid. Subsequently the states at grid points that
lie within the domain of influence of the tracked waves over the time step must
be corrected to account for the presence of these waves. It is important to note
that the front tracking code combines both front tracking with shock capturing,
so that secondary waves (such as breaking shocks or induced slip lines) are re-
solved within the ability of the underlying mesh spacing and the finite difference
scheme.

The propagation operator that updates the numerical solution over a single
time step consists of three basic parts: propagation of the tracked wave fronts
(point propagation), propagation of points of interaction between tracked waves
(node propagation), and update of the states on the rectangular grid (interior
solver). For the latter operation, the fronts at the beginning and end of the
time step serve as internal boundaries for the regions adjoining those waves.

The first propagation phase consists of the propagation of the non-nodal
points on the tracked waves. At each tracked point a local rotation of co-
ordinates is performed that aligns the coordinate axes with the normal and
tangential directions of the curve at that point. The tangent to a piecewise lin-
ear curve at a point is defined as the line through that point which is parallel to
the secant through the neighboring points. Operator splitting is used to divide
the front propagation into two one-dimensional units: a normal propagation
step and a tangential propagation step. The normal propagation of the tracked

waves is computed using a second order Riemann problem-type method as de-
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scribed in [6]. This operator solves a piecewise linear Cauchy problem and is
similar to the van Leer [20] flux computation as used in the second order Go-
dunov method. The tangential operator uses a one-dimensional finite difference
method, which in our code is precisely the same as the interior finite difference
scheme. The tangential stencil at a given point on the partially propagated
wave is formed by projecting the adjacent curve states onto the tangent at that
point. The interested reader is referred to references [6, 12] for a more detailed
description of these operations.

An interaction between tracked waves is locally approximated by a two di-
mensional Riemann problem, which is defined as the Cauchy problem for initial
data that is scale invariant with respect to the node position at the start of .
the time step, i.e. constant along rays from the node position. The numerical
solution is computed using shock polar analysis. References [10, 11] contain
a description of the node propagation algorithm. The primary nodes of inter-
est in the present calculations are the Mach triple point and the diffraction
node formed during the Richtmyer-Meshkov calculation by the intersection of
a tracked shock wave with the material interface.

The interior finite difference scheme that computes the solution on the rect-
angular grid is an operator split, second order MUSCL scheme (2, 8]. Our
implementation uses a five point stencil with linear reconstruction.

The rectangular grid update consists of two passes: a regular and an irregular
grid update. First, the finite difference equations are solved for the rectangular
grid alone, ignoring the tracked fronts. The second pass then updates the
states at the rectangular grid points near the tracked fronts. If a tracked front
crosses the finite difference stencil of a rectangular grid point during the time
step, the states computed at that location by the first interior sweep must be
discarded and recomputed to account for the presence of the tracked wave.
In our implementation we use a locally modified stencil at each such point to
compute the updated solution. We start with copies of the states on a five point
stencil centered at the given location. We then find the tracked fronts, if any,

on either side of the stencil center that are closest to the middle location. We



44 B. BOSTON J. W. GROVE R. L. HOLMES

replace any states in the stencil lying on the opposite side of the nearest front
by copies of the state on the correct side of the front at the stencil crossing,
as computed by linear interpolation between the tracked points on the curve.
Thus the final solution never uses finite differencing across tracked waves.

The organization of the interior solver into two passes allows the bulk of the
code for this part of the computation to be vectorized. Note that even though
our computations used a nonvector machine (Sun Sparcstation2), this organi-
zation provides a substantial improvement in performance on vector machines

and adds little additional overhead on nonvector computers.

3. Shock Wave Reflection at Ramps

Before going to the results of our simulations of Mach reflections, we include a
description of the initialization and propagation algorithms. Our computation
is initialized just after the shock crosses the ramp corner, when the reflected
wave bubble is just a few mesh blocks in height. Tx'acking the complete reflected
shock bubble requires an estimate of the initial geometry of this object to serve
as a seed for the final computed configuration. We use the following technique
to install the initial reflected waves. These procedures have also been described
in [10], and all relevant equations may be found in [9].

We assume the Mach stem is initially normal to the ramp and short enough
to be modeled as a single, straight line segment. The Mach trajectory angle y is
then determined algebraically by the condition that the turning angle through
the incident and reflected waves, in a frame that moves with the Mach triple
point, is the same as the turning angle through the Mach stem, i.e. the flow
behind the configuration must be parallel to the slip line on both sides. The
data for this system of equations consists of the angle of the Mach stem and the
incident shock data (ahead and behind states). This system is solved using a
root-finding iteration on x, which determines the local states and wave angles
about the triple point. After guessing a value for x, we can determine a node

velocity using the angle of the incident shock. Once this transformation to the
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steady frame is known, it is a straightforward application of shock polar theory
to determine the states behind the reflected and Mach shocks. If these two flows

are not parallel, we modify x and recompute.

Figure 1 shows a schematic of the basic geometry of the reflection. The Mach
stem and contact are installed as straight line segments from the triple point to
the wall, at the computed angles. The position of the bow of the reflected shock
behind the ramp is found by solving a head-on reflection Riemann problem for
the incident shock. The shape of the initial reflected wave is composed of two
pieces. The first is a straight piece at the triple point tangent to the computed
reflected wave, and the second an ellipse from the end of this segment to the
bow point, with minor axis and center on the bow wall. Depending on the reso-
lution, this ellipse can often degenerate to a single line segment. It is important
to note that this construction is only performed once at the beginning of the
computation. The subsequent propagation of the Mach triple point and the
bow node uses only the local information at each of these points. In particular
there is no restriction that the Mach stem remain straight, or that the reflected
wave have any particular shape. These properties are determined dynamically
by the computation. In fact, the shapes of the waves at later times appear to

be independent of any reasonable initial configuration.

Incident shock Incident shock .

Regular Reflection Mach Reflection

Fig. 1. A schematic of regular and Mach reflection. Here, x is the
Mach node trajectory angle, and 6, is the ramp angle. The incident
shock is moving from the left to the right.
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The propagation of the Mach node for subsequent times requires a different
procedure, as we can no longer assume the Mach stem is straight. As before, we
use the incident shock information - ahead state and behind pressure. The piece
of data that replaces the angle of the Mach stem is the pressure behind the Mach
stem. This pressure is obtained by solving a non-local Riemann problem across
the Mach stem, as described in the discussion of the front tracking algorithm,

Once again, the problem lies in finding the node velocity. After this is
known, the computation of the new states at the node is straightforward, as in
the initialization. The basic relation is

tan?(0) = @_:_127_0) (po_qu_ - 1) ; (8.1)

Poqo m

This relation is applied across the incident, reflected and Mach shocks, where po
is the density ahead of the shock, qo the steady flow speed ahead of the shock,
m is the mass flux, po and p; the pressures ahead and behind respectively, and 0
the turning angle across the shock. This gives three equations, one each for the
incident, reflected and Mach shocks, in thirteen variables. The ahead state and
all pressures are assumed known, which gives the mass fluxes and the densities.
We then have enough information to compute the turning angles across the
incident and Mach shocks, and the turning angle across the reflected wave is
eliminated by forcing the behind flow to be parallel on both sides of the slip line.
The only remaining unknowns are the steady flow speeds ahead and behind the
incident. We eliminate the latter by applying the following across the incident
shock:

0’ — q® = (p1 = po)(1/po +1/p1). (32)

This system of equations is solved numerically for go, which gives the node
speed since the ahead velocity is known. The angle of the node is found by
propagating the incident shock normally at the node (via a non-local Riemann
problem) and intersecting it with a circle of radius ¢o centered at the old node
position. We then have the complete node velocity (magnitude and direction)
and can use the shock polar equations to finish the computation of the states

and wave angles at the new node. The other waves are then attached to the
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new triple point, making sure to enforce the computed angles of each.

(b)

Fig. 2. (a) Density contours for the single Mach reflection run, using
6., = 46° po = 0.3 bars, To = 300°K, and My = 2.0. The Mach triple
point trajectory angle x = 2.557°. (b) The tracked wave fronts from the
same computation.

The first wall reflection simulation we present consists of a shock wave in
air (modeled as a perfect gas with ¥ = 1.4) colliding with an oblique ramp.
The gas ahead of the shock wave is at an ambient pressure of 0.3 bars and a
temperature of 300° K, with an incident shock Mach number of 2.0. The ramp
angle is 6, = 49°. A computational grid of 256 x 256 zones was used, and the
run was conducted on a Sun Microsystems Sparcstation2 with 64 megabytes of
RAM, taking approximately 20 CPU hours to complete. Our investigations have
shown that grids as coarse as 100 x 100 would resolve the basic structure (front
locations), and much of the interior structure of the reflected shock bubble.

Figure 2 shows the results of our computation of the simulation outlined
above. Figure 2a shows density contours, while Figure 2b shows only the tracked
wave fronts. The density difference between adjacent contours is 4% of the den-
sity of the unshocked air. We see very sharp resolution of the tracked waves, and
in particular at the triple point. This resolution becomes even more important

as we move closer to the bifurcation point to regular reflection, which we will
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discuss more fully in our last set of Mach reflection simulations.

There is a considerable amount of activity in the flow at the point where the
slip line induced from the Mach triple pdint reaches the wall. The slip boundary
conditions at the wall require that the flow there be parallel to it, and hence
there is a large gradient in the velocity as the flow adjusts from being parallel
to the slip line to being parallel to the wall. Tracking the slip line reduces the
amount of numerical spreading of this wave at the wall, which in turn enhances
the resolution of the flow about the triple point by preventing its contamina-
tion by the transient waves produced at the boundary. In Figure 2, we see the
compression band near the base of the Mach stem just beginning to sharpen
in this simulation. For stronger incident waves, this becomes an actual shock,

and forms what is known as the double Mach reflection, with two triple point

configurations.

(a)

(b)

Fig. 3. (a) Density contours for the double Mach reflection. Here
6,, = 30°, the ahead state is at standard temperature and pressure, and
Mp = 10.0. (b) The tracked wave fronts from the same computation.

Our next simulation was chosen to demonstrate this double Mach configu-
ration, and is intended to match a simulation done by Colella and Berger [5].
The gas is once again air, but the state ahead of the incident is at standard
temperature and pressure. The incident shock is much stronger, with a Mach

number of 10, and makes an angle of 60° with the ahead wall, which translates
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to 6, = 30°. Our computational grid was 300 x 60 zones, which is three times
finer than the base grid in [5]. However, we use no automatic mesh refinement,
and our grid is 25% coarser than their finest level of refinement. The results
are presented in Figure 3.

Once again, the resolution of the tracked wave fronts is very good, and
there are some new features here that were not present in the previous run.
The compression band generated at the base of the slip line has sharpened into
an actual shock, which is resolved by the interior finite difference solver. There
is no slip line seen at this second triple point, but such waves are typically very
weak. No such wave is visible in [5] either.

The kink in the reflected wave is very well defined despite the fact that the
shock producing it is spread over three to four mesh blocks. The angle of the
reflected wave on either side of the kink could be accurately measured from
the picture alone. A feature of our code, however, is the ability to measure
various physical quantities very precisely. For example, we know the exact
states around the triple point or at the base of the Mach stem, or the exact
angle of the reflected wave at any point on the curve, by simply reading them
from the data structures in the computation. Examples of this are given by
the density profiles along the reflected wave and lower wall, shown in Figure 4.
From these, we can measure the strength of the secondary shock and the slip
line.

We also see very nice roll-up of the contact at the wall as it is swept along
behind the Mach stem. For a grid this coarse, such resolution is simply not
possible without some sort of enhancement such as front tracking or the adaptive
mesh refinement used in [5]. The roll-up would otherwise be lost due to the
secondary shock and the hot spot where the contact begins to roll back under
itself.

Let us mention again that we are not enforcing any global structure on the
tracked fronts. The kink in the reflected wave, the roll-up in the slip line, and
the forward bow in the Mach stem are all being produced solely by the numerics

in our code.
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Fig. 4. Arclength versus density in the double Mach reflection run (a)
along the reflected shock, triple point to bow, and (b) along the lower
wall and ramp, from right to left.

The density contours of both runs show that our computation is doing a

good job of reducing the effect of wall heating at the ramp boundary. Most of
the contours are relatively smooth going into the boundary, which is consistent
with the inviscid model used for these computations. We made no attempt to
model the boundary layer effects that are present in a real experiment. Notice
also that the stagnation point on the ramp is captured very nicely by the interior
solver, as seen by the sparseness of the contours near this region.

In a separate series of runs, we further applied front tracking to the study
of Mach reflections by comparing them with experiments performed at the Uni-
versity of Sydney by Henderson and Virgona [14]. Considerable effort was made
to simplify these experiments in order to facilitate comparison with numerical
results. For example, the Mach reflections were generated in argon (y = 1.667)
so as to eliminate vibrational non-equilibrium, dissociation, and chemical reac-
tions. The strength of the incident shock ¢ was sufficiently large to ensure that
the flow downstream of the reflected shock r was supersonic, but not so strong
as to ionize the argon. More precisely, the average strength of i used in the ex-

periments, or rather the average inverse strength & = po/p; was & = 0.1534,
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corresponding to an incident Mach number of 2.327. The ahead state pressure
and temperature were pg = 14.1 £ 3.0 kPaand Ty, = 293.15 + 4.0° K.
The Mach reflections were generated by diffracting incident shocks over a series
of symmetrical wedges of different apex semi-angles ,, (Figure 5). This design
eliminated shock-boundary layer interaction at the apex of every wedge. The
more conventional concave corner model (Figure 1) undergoes significant shock-
boundary layer interaction as the reflected shock r sweeps back over the lower
wall. The newer model eliminates this effect, and is mathematically equivalent

to the model in Figure 1 in the inviscid case.

Fig. 5. A schematic representation of the experimental used to pro-
duce Mach reflections. This configuration produces a pair of symmetric
reflections as the incoming shock passes the apex of the wedge.

A graph of the Mach triple point trajectory angle versus the ramp angle is
shown in Figure 6a. These figures show the experimentally measured value of x
together with the values computed by our front tracking code, as well as those
computed by Colella [14] using a highly resolved shock capturing scheme. This
measurement was attractive because x cannot be computed from the shock polar
analysis used to compute the local configuration at the node. Its value is entirely
a result of the interaction of the numerics in our code, and its experimental value

is particularly robust. We have also found the Mach number behind the base of
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the Mach stem to be a very useful measurement, for exactly the same reasons.

As can be seen from the figure, our results agree very well with both the
experimental and the shock capturing results. We note that both sets of compu-
tational results are on the high side of the experimental values. This difference
has been attributed to boundary layer effects.

An application of important interest is the transition conditions between
regular and Mach reflection at a wall. It is well known that for certain flow
regimes there is an overlap between the regions in phase space where regular
and Mach reflections are possible. Both experimental and computational inves-
tigations have shown that the boundary layer at the wall plays an important
role in the process that selects the type of wave produced by the wall reflection.
In order to quantify the effect of the wall boundary layer it is important to un-
derstand the inviscid limit of the solution where this boundary layer is absent.
It is in the computation of this inviscid limit that a major strength of the front
tracking method is revealed. Since we are explicitly tracking the most singular
parts of the calculation, we can make very precise statements about exactly
where a given discontinuity is located; there is no numerical diffusion of the
fronts. This allows us to perform computations near the transition to regular
reflection, yielding structure that is simply not resolvable in either experiment
or standard shock capturing codes. We can resolve the full Mach triple point
configuration for angles yx as small as 0.1° (Figure 6b). In such simulations the
Mach stem is less than a grid block long. By contrast, shock capturing codes
generally lose the resolution of the Mach triple point when the length of Mach
stem is less that two or three grid blocks. This loss of resolution is due to the
presence of a numerical boundary layer at the wall, so that the entire structure
is contained in a smear of contours. This regime is also difficult to approach
experimentally due to the real viscous boundary layer at wall. Currently, front
tracking appears to be the only method that can conduct numerical simula-
tions of inviscid wall reflections to within a small fraction of a degree of the

mechanical equilibrium condition.
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Wall Angle vs Mach Node Trajectory
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Fig. 6. A comparison of the Mach triple point trajectory for experi-
ments, fine grid shock capturing computations, and front tracking. We
note that both numerical methods are is substantial agreement with each
other, and are close to the experimental measurements. Front tracking
provides approximately the same value for x as the shock capturing
code, using only a fraction of the grid resolution.

The resolution for the front tracking runs was achieved on grids which are
much coarser than those used in standard finite difference simulations of this
problem. Most of our grids were 100 x 100, up to about 150 x 150 close to the
transition point. This also gives a commensurate savings in time - the runs

took between one and four hours.

It should also be pointed out that for the region between 0, and 0y, our code
can simulate either regular or Mach reflection — both are theoretically possible
in this region. However, based on the shape of the curve outside this region (see
Figure 6b), our results definitely seem to converge to the point On, and there
is no reason to expect a discontinuity in the curve at 0,. This would require
a corresponding pressure jump for a shock on a curved ramp, for example,
which smoothly passes through the transition point. Such a wave has never

been observed experimentally. We feel that this is a very strong statement
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that in this parameter regime, the bifurcation from Mach Reflection to regular

reflection takes place at the mechanical equilibrium condition and not at the

detachment point.

4, Numerical Simulation of the Richtmyer-Meshkov In-
stability

We focus on the simplest case of the shock tube experiments of the Richtmyer-
Meshkov instability where a sine shaped material interface is accelerated by a
single shock wave, as in the experiments of Meshkov [15], Benjamin (3, 4], and
others. The general configuration of the computation and experiments is shown
in Fig. 7. A thin membrane was used in the experiments to separate the two
gases at the material interface. Quantitative agreement was achieved between
our computational results and the experimental measurements of Benjamin (4]
for the rate of growth of a shocked air-SFs interface [13]. The collision results
in a transmitted shock and a reflected wave that can be either a shock or a
rarefaction depending on the values of the fluid parameters. The experiments
considered in this paper are of the reflected shock type. Viscosity and heat

conduction are negligible here, so the fluid motion is described by the Euler

equations.
Initial Configuration Refraction Regime Early Time Late Time
Light Gas Reflected Shock
Incident Shock

(a) ®) (c) (O]

Fig. 7. A schematic representation of the geometry of the Richtmyer-
Meshkov instability modeled in this paper. The interaction consists of
the collision of a shock wave with a material interface. The refraction
of the shock by the interface produces reflected and transmitted waves.
The instability consists of the growth of perturbations of the material
interface with time.
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The impulsive model proposed by Richtmyer [18] is commonly used to es-
timate the growth rate of a shock accelerated interface. This model is derived
by assuming that the shock acceleration can be treated as being impulsive, and
that the flow is nearly incompressible once the shock wave has passed through
the material interface. It is also assumed that the flow is observed in a frame
where the average position of the material interface is at rest, and the position,
y(@,t), of the material interface at time ¢ can be given by y(z,t) = a(t)sin kz,
where k is the wave number of the perturbation. Richtmyer's formula gives the
growth rate of a(t) as

. P1— P2
a(t) = kAu ——=a(0+), 4.1
(t) e (0+) (4.1)
where Au is the difference between the shocked and unshocked mean interface

velocities, the p; are the post-shocked densities on the two sides of the interface
(the incident shock moves from material “2” to material “17), and a(0+) is
the perturbation amplitude immediately after the collision of the shock with
the material interface. This formula implicitly assumes the initial preshocked
amplitude, a(0—), is small compared to the wavelength.

Given that a(0—) is small so that ka(0—) <« 1, a more exact calculation
of the amplitiide growth rate can be made. The Euler equations are linearized
around the solution of a one dimensional Riemann problem defined by the head-
on collision of a planar shock with a zero amplitude (planar) material interface,
using the initial amplitude of the sinusoidal perturbation as a small expansion
parameter. The result of the linearization is a system of partial differential
equations in one spatial dimension with associated boundary conditions. This
system can be solved numerically for the growth rate of the perturbed inter-
face. This approach, following Richtmyer [18], has recently been generalized to
include reflected rarefactions as well as reflected shocks [21]. Simple order of
magnitude estimates limit the validity of the linearized equations to the dimen-

sionless time interval
temin = ka(0-) < t. < 1/[ka(0-)] = t.max. (4.2)

Here the dimensionless time ¢, = kcoMot, where Mp is the incident shock Mach
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number, and ¢ is the sound speed of the fluid ahead of the incident shock. The
limits twmin and t.max represent respectively the transit time of the incident
shock through the perturbed interface and the time required for the pertur-
bation to grow to unit amplitude. Necessarily, these time limits apply to the
derivation of the impulsive model as well, since it is an approximation to the
linear theory. Recent systematic comparisons of the impulsive model and the
linear theory have revealed both regions of agreement and of disagreement in

parameter space [21].
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Fig. 8. Perturbation amplitude, a(t), and amplitude growth rate,
a(c), of a shocked air-SFg interface. This graph compares the results
of experimental averages, front tracking simulation, linear theory and
Richtmyer’s impulsive model. Also shown are results of a least squares
fit to the front tracking amplitude data over the period of experimental
observation. The plus marks (+) show the results of one particular
experiment, while the experimental growth rate represents an average
over several experiments.

We compared our simulations of a singly shocked air-SF¢ interface to the ex-
periments of Benjamin [4]. The material interface is accelerated by a shock wave
with Mach number 1.2 moving from air into SFe. The initial amplitude, a(0—),
was 0.00637 times the period of the sinusoidal perturbation. For these experi-
ments, t, max = 2.5, while the observational time interval is 15 < ¢, spservational <

50. The observational times and the validity of the linear theory fail to overlap
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by a factor of about 6. We conclude that the linear theory has no relationship
to this experiment,

Fig. 8 shows plots of the amplitude and amplitude growth rate of the ma-
terial interface as obtained from experiment, the front tracking simulation, the
linearized theory, and Richtmyer’s impulsive model. The time axis in these fig-
ures is shifted so that ¢ = 0 corresponds to the time at which the shock wave
has completed its refraction through the interface.

As can be seen from these figures the front tracking results are in substantial
agreement with the experimental results in the sense that the growth rate de-
rived by a least squares analysis of the front tracking amplitude data, 9.2m/s,
is identical to the same quantity derived from the experimental data. Note
that for late (i.e., experimentally observed) times the linearized theory and the
impulsive model growth rates are a factor of two larger than those found in ex-
periment or in our simulation. This may be due to the fact that this particular
configuration has a relatively large initial amplitude and quickly leaves the re-
gion of validity of the linearized theory and impulsive model. The displacement
of the experimental curve with respect to the front tracking curve is possibly
due to membrane effects, i.e. the material strength of the membrane or the
influence of its fragmentation may affect the fluid flow.

The front tracking results indicate a decay in amplitude growth rates while
Benjamin [4] finds a fairly constant growth rate during the measurement pe-
riod. Other experiments and simulations, however, have shown a decaying
growth rate [1, 16, 17]. Mesh refinement studies show that the decay rate is
independent of the mesh. We also tested our simulation against changes in
other numerical parameters and found that the value of a(t) was insensitive to
these changes. These parameters include artificial viscosity and the frequency
of redistribution of the points on the tracked interfaces. Since the fluid between
the interface and the reflected and transmitted shocks is moving rather slowly
after the inferaction, a transfer of momentum from the fluid near the expand-
ing interface into the slower moving regions is to be expected. This transfer of

momentum would result in a reduced growth rate. In addition, some sort of
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decay in amplitude growth rates also seems reasonable as the interface develops
highly nonlinear “mushroom caps”. We conclude that this decay is a real effect
and not due simply to numerical dissipation as has been suggested [4]. Models
of momentum transfer from the interface to surrounding regions are being stud-
ied and we hope these will provide a quantitative explanation of the decaying
growth rate.

In addition to the amplitude growth rate it is instructive to compare trans-
lational velocities of the interfaces. Benjamin has found the mean interface
speed, defined as the average of the speeds of the peak and the trough, to be
85m/s. Solution of the 1-d Riemann problem, i.e. an unperturbed interface,
gives a velocity of 66.8m/s. Our simulations show a fairly constant velocity of
70.5 £ 0.5m/s after t = 300us. Benjamin says that the discrepancy between
experimental and 1-d velocities could be an indication of diffusion across the
membrane before shock acceleration. In some simple tests of the effects of diffu-
sion we ran 1-d unperturbed interface simulations using a linear density profile
between the air and SFg instead of a discontinuous interface. Various transi-
tion lengths were used and the interface velocity was measured. None of our
tests showed an appreciable increase in translational velocity. An understand-
ing of the difference in expected and measured interface velocities would be very
useful, as it may provide clues to the still unresolved discrepancy in interface
amplitudes.

A further validation of the nonlinear simulations can be accomplished by
comparison to the small amplitude theory (Fig. 9). This serves both to deter-
mine the range of validity of the linear theory and to validate the solution of
the full Euler equations at small amplitudes. As can be seen in Fig. 9, the front
tracking calculation is converging to the linear result as we reduce the ampli-
tude. We note that the interval of convergence of the nonlinear simulations to
the linear theory appears to be finite. This is in contrast to formula 4.2 which
suggests that the domain of validity of the linearized equations should increase

with decreasing initial amplitude. This point deserves further study.
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Fig. 9. The convergence of the nonlinear simulations to the linearized
solution for small amplitudes. A comparison of three separete calcula-
tions of the normalized perturbation growth rate, a(t)/[kcoMoa(0-)], of
a shocked air-S Fg interface with three different initial amplitudes where
k is the wave number, ¢ is the sound speed ahead of the incident shock,
and My is the incident shock Mach number. The horizontal axis is in
dimensionless time units kcgMpt.

Of interest is the question of why our results agree with experiment while
results found through other numerical methods do not. Prior disagreement
between the growth rates measured in experiments and those predicted by nu-
merical simulation has led to the suggestion that mass diffusion and membrane
effects may have an important role in the behavior of the interface instabil-
ities. Our work does not exclude this possibility, but the agreement of our
computations with experiment suggests that a proper numerical resolution of
the material interface is essential to obtain agreement with experiment, and
also that if other effects are important, they may be offsetting one another.
It is also clear that there is still much to learn about the highly nonlinear as-
pects of the Richtmyer-Meshkov instability. These effects include the possible
coupling between nonlinear modes, and their study will require experiments on

singly shocked interfaces as well as computations with random interfaces which
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have been run to late times. Similarly, understanding the effects of reshocking
remains an important theoretical challenge. For the single mode case, a sys-
tematic study of mass diffusion, membrane effects, and a detailed comparison

to earlier calculations of others would be desirable.
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