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TRAVELLING WAVES IN A HYPERBOLIC SYSTEM
MODELLING TRAFFIC FLOW

Paulo R. Zingano ®

1. Introduction

We will discuss here the behavior of smooth travelling wave solutions for a hyper-
bolic system of equations introduced independently by Lighthill and Whitham
[5] and Richards [9] to model traffic flow on long crowded highways: Simple
as it looks, this model seems nevertheless to describe fairly well the essential
qualitative features of traffic flow [2], [10]. A particular feature of great inter-
est to all who deal with traffic, from drivers themselves to traffic engineers, is
the behavior of shock waves. These are nonlinear, compressible waves carry-
ing a rapid increase in the flow density, propagating at a speed slower than
that of the cars behind them. If this increase is too abrupt, these waves can
be very harmful, since drivers hitting the wave will have little time to react
to the rapidly varying local conditions. Skillful drivers aim high as they drive
to continuously check the traffic conditions ahead and behind. This behavior
introduces diffusion into the system. Diffusion dissipates sharp profiles — the
more diffusion we have, the less likely it is to come across a harmful wave. How
dangerous a rapidly varying wave turns out to be depends upon how long it
takes the drivers to react. Thus, being attentive and able to react fast are un-
doubtedly very important attributes to good driving — indeed, they may be
all that it takes to make our highways a lot safer. It is reassuring to see these
conclusions coming out easily from the mathematical model discussed below.
For convenience of the reader, we present in Section 2 a short derivation of the

equations involved, following [5], [9], [10]. These are a pair of coupled partial
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differential equations of hyperbolic type expressing the conservation of cars and
the way drivers react to local flow conditions. We introduce a parameter « to
measure how much the traffic conditions ahead and behind the drivers get to
influence their decisions. This is how diffusion comes in. Also, there is a time
scale in the problem corresponding to how long drivers take to react. This is
the relazation time T introduced in Section 2. One consequence of diffusion is
the existence of smooth shock waves. In Section 3, we review a result of Liu
[6] which shows that these travelling waves are nonlinearly stable. Finally, in

Section 4 we derive new results which establish the decay rate of disturbances.

2. The Traffic Flow Equations

For convenience, we will give a brief derivation of the Lighthill-Whitham-Richards
traffic flow equations, referring the reader to [2], [5], [9], [10] for further details.
We let p(z,t) stand for the car density, i.e., the local number of cars per unit
length of the road, at time t. Also, we let u(z,t) denote the flow speed, i.e., the
speed of the car which reaches position z at time t. On a stretch of highway

with no entries or exits, the number of cars is conserved, so that we can write

Pt + (pu)x = 0! (1)

which is our first equation. It remains to derive an equation for the second
flow variable, u(z,t). It seems fair to assume that drivers on a highway contin-
uously relax their speed towards an optimum value, the highest speed at which
they can safely drive under the local traffic conditions. Let u.(z,t) be this speed,;

thus the drivers accelerate or decelerate their cars so that u.(z,t) is achieved, or

U — Ux

(2)

where 7 is the scale representing the relaxation time. Typically, 7 will depend

U +UU; = —
=

upon p, but there is no essential change if we think of it as a constant. We have
to say how u. is determined. First, u. should depend upon p, say u. = U.(p),

with U.(p) decreasing as p increases from zero to its maximum value pmax, when
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the cars are bumper to bumper. We thus assume that

Ui(p) <0, V.(p) <0 for 0 < p < prmax 3)

where Vi(p) = pU.(p). A second effect modeled by u. is precisely the one
that introduces diffusion in our system: w. should be smaller than the value
U.(p) dictated by p alone if p is increasing at that point, so that the driver
compensates for the more dangerous traffic conditions ahead; similarly, he can
aford a larger value for u, if the number of cars is smaller ahead. It is natural

then to take

. = Udlp) — n”;’ (4)

where & is a positive constant measuring how much the drivers weigh the traffic
conditions ahead of them (and behind). A quick look at equation (4) shows
that k has the dimension LT, like a diffusion coefficient. We can argue that
k is indeed a diffusion coefficient in the following way. According to (2), u tends

to relax to u., so that, to a first approximation, we can view equation (1) as

pr + (pU.(p) — Kpz ), =0

or

pe + Vi(p)y = KPoz - (5)

a non-linearly advected heat equation with diffusion coefficient given by «.
Thus, we should not be surprised to see small disturbances to equilibrium states
(po,uo) propagating with speed A. = V. (po) and diffusing out as they go.
Equation (5) is closely related to the hyperbolic equation [4]

pe + Vi(p), = 0 (6)

We refer the reader to Liu [6]; [7] for a discussion of the role of (5),(6) in the
study of equations (1), (2).

We note that we can rewrite (1), (2) as
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pt + vz = 0 (7a)
2 -
wt (L4 p0) = B (7t
where
v = pu (8)

gives the momentum per unit length, p'(p) = &/7(p) is the pressure derivative,

and Vi(p) = pU.(p). A quick calculation gives the characteristic speeds

/\1(P,u) =u - P’(P) ’ )\z(p,u) =u+ P’(P) ) (9)

so that the system (7) is strictly hyperbolic. Our interest here will be on smooth
traveling-wave solutions of (1) propagating at subcharacteristic speeds, see (12)
below. The existence of such waves is established in [6]; this is related to admis-
sible shock discontinuities [4], [8] for the equation (6). If (p,v)(z,t) = (¢, %) (z—
ot) is a travelling wave for (1) connecting constant states (p4,v+) = (, %)(£o0),

we must have

vy = Vi(ps) (10)

since the only constant state solutions of (7) are equilibrium states. From (7a),

we then get
o - (p+ — p-) = Vilp+) = Valp-) , (11)

so that (p_, p4) satisfies the jump condition for the equilibrium equation (6); if
this discontinuity is admissible and its speed ¢ differs from A;(p,v) and Az(p, v)
along the line 0p — v = ops — Vi(pz) for all p between p_ and p,, then the
existence of (i, 1) can be shown [6], and ¢ is subcharacteristic everywhere along

the wave, i.e.,

M((, %)) < o < (e, 9)(6)) (12)

for all ¢ ( including £ = %00 ), see [6] for details.
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3. Travelling Wave Solutions

In this section, we present a brief outline of the nonlinear stability analysis for
travelling waves given by Liu [6]. The basic result discussed here is summarized
in Theorem 3.1 below. Let (¢,%)(z — ot) be a smooth travelling wave of (7)
with speed o, and (p,v)(z,t) be the solution of (7) corresponding to a slight
perturbation of the initial profile for (y,%), i.e.,

(p,v)(2,0) = (¢, 9)(z) + (7,7)(2), (13)

with (p,7)(£o0) =0, (¢,¥)(£0) = (p+,v+), v4 = Vi(us). More precisely, we

assume that the initial disturbance (p,7) satisfies
p e HR)NLY(R) , v € HYR) (14a)
and
/° ’/ ) dy| do + /+°° /+°°-( oy (14b)
| PWdy| de ] | Ply)dy| do < oo

Because (7a) is a conservation law, we have

+00 +oo,
[ ety -ple—ot) de = [ p@)dz
so that we cannot expect (p,v)(z,t) to tend to (¢,¥)(z — ot) as t — oo unless
the initial disturbance p(z) has zero integral on the line [1]. However, observing

that, for fixed z,
+o0
[ (ele+a0) = pla) de =0 (o1 =p-)

we see that
400 +oo__ ‘
| (@) —pla+zo-0t) da = [ p(z)da —zo (o —p-) =0
provided we take zo to be
1 oo
To = o(z)dz . 15
o= [ 7 (1)

That is, for such zo, we can expect to show that

(pyv)(zyt) = (py¥)(z+z0—0t) as t— oo} (16)
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thus, the original wave (¢, %) is shifted by the amount zo given by (15) due to
the disturbance. This is in vivid contrast with the corresponding behavior of
expansion waves, which interact very weakly with the disturbances [6]. Also,
it turns out that, in the case of travelling waves, disturbances might decay
quite fast as ¢— oo, provided they are sufficiently localized in space. In Section
4, we show that this is indeed the case; for now, we will simply outline the
basic steps in proving (16), following [6] It is convenient at this point to
introduce the following notation: for given a € R, let S, be the shift operator
(5.9)(z) = ¢(z + a), ¢ an arbitrary function defined on the real line. We
have then to study the behavior of (p,v)(-,t) — (S,, _,.¢, S,p—0i¥) ast— oco.
From (14a), (14b), we can easily check that

(P, 0)(40) = (S, So¥) € HY(R) (17a)
and
+00 T 2
/_oo /_w (P(y’o)—szow(y)) dy\ dz < oo. (17b)

When' these quantities (17a), (17b) are small, we can derive energy estimates
related to (16), leading to the following result [6]:

Theorem 3.1 (Liu, 1987). Consider a travelling wave solution (yp,¥)(z—ot) for
the hyperbolic system (7), with (¢, ¥)(£o0) = (ps,vs), v+ = V.(ps), propagat-
ing at a subcharacteristic speed o, i.e., M((2,%)(£)) < o < A((,%)(€))

forall —co < ¢ < 400, where Ay and X, denote the characteristic values for

(7).

Then there exist positive constants 6,¢ such that the following is true whenever
lpy —o-| £ &

Let (7, 7) satisfy (14a) and (14b), and let (p, v)(z,t) be the solution of (7)

corresponding to the initial data (13), i.e.,
o(2,0) = ¢(z) + 7(z)

v(z,0) = ¢(z) + v(z)
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Let
det) = [ (pwt) = Sely = o1)) dy
w(z,t) = v(z,t) — S, ¥(z —ot) ,

where o is given by (15).

Then

(p,v) is defined for all t > 0 and

I p(rt) = Sepomp l, + N00Gt) = Syotb I, =
= o) (I =0 I, + w50 1,,)
and
I p(ot) = S L, + N0(st) = Seyotb I, = 0
as t— oo

whenever

=G0, + TuG0 0, <«
It will be useful to review the basic steps in deriving Theorem 3.1 above. To
simplify the notation, let us write (p,%) for (S, ¢,S,,¥), that is, we translate
(¢, %)(z) to (¢,¥)(x + xo) so that we assume, for simplicity,

'/::(p(a:,'t)—ap(:c—ot)) dz =0. (18)

Now, both (p,v) and (ip,%) satisfy (7); by taking the difference of the two
systems of equations and integrating the first equation with respect to z, we
obtain

z+w=0 (19a)

we+ (9(22 + Py w +¥) = 9(0,¥) ), = hlzz +@,w+¥) —h(p,¥) , (190)

where )
Vilp) — v
h(p,v) = ———— 20
(p0) = =715 (20)
is the relaxation term in (7), and
.
9(p,v) = — + p(p) - (21)

p
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To simplify the notation, whenever a function is evaluated at (p,%), we will
omit the argument; thus, g, = g,(¢, %), 9: = 9(¢, %)z, and so on. Plugging
(19a) into (19b), we get, rearranging a few terms,

Zi 4+ (A1 + A2) 2zt + MA2zoz — by - (20 + p2z) = R(z,t), (22)
where
ﬁ(m,t) = —Guzn t+ Ql(f)(hv_guz) + Gpz2z (23)
— Qi(h) + Q1(9): — Q1(f): — 9v21(f)z »
flpv)=v (24)
and
p = —h,ht, ' (25)

where, as noted above, A1, Ag, p, hy, etc., are all evaluated at (p,). Here, for

any F (p,v), Q1(F ) denotes the difference

Ql(}-) = }-(zz+¢7w+¢)_f((p7¢)_-7:u(90’¢)21‘—fﬂ(‘p,w)w (26)
0(1) (2 +w?*)

We observe that the right-hand side R in (22) involves only high powers of
terms which we expect to be small, so that it will probably have little effect
in the overall analysis. All first powers are written on the left-hand side in
(22), which contains a first-order term with speed p given in (25); this is the
dynamic characteristic speed governing the propagation of weak disturbances
over the travelling wave. We recall that the equilibrium speed M.(p) given in
(6) can be written as u(p, Vi(p)), so that for a non-equilibrium regime (p,v)
like the travelling wave (¢,v) they will be different in general. As a result of
the nonlinearities present in the system (7), this characteristic speed u changes

along the wave. A simple computation shows that

pe = (£ (pavg) + Ollp+ = p-I)) ¥, (27)

where pavg = 2(p4+ + p-). The simplest nonlinearity occurs when p changes

monotonically; we have assumed, for simplicity, that —V.(p) is convex, see (3)
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above. This is in agreement with actual observations of traffic flow [10]. It
then follows that we have p_ > py, with ¢, negative at every point; hence, for

sufficiently weak travelling waves (ip, %), i.e., [p4 — p-| small, (27) gives
pe < 0 (28)
and
M7 (loo| + [9:]) < lus| < Mlps| forall z,t (29)

for some positive constant M. Also, for weak waves (¢, %),
| p—0a| = O(lp+ —p-1) €1 (30)
and, observing that ¢, = O(|ps — p-|),

loe| + [%z] + [Ha| = O(lp+ —p-1) < 1. (31)

It is convenient to perform the analysis in a reference frame sitting on the
travelling wave. Thus, we introduce the new variables (¢,t), § = z — ot, in
terms of which (22) reads as
e+ M+ —20)ze + (0= )(0 — M)z
+  hy(o = p)ze — hvze =R (1)
where
R = —gulz—0z) + Q(f)(ho = gue) + goeze +
Q1(9)e + 0 {fe—Qu(h)— (-9 (-

As noted in [6], the stability of the travelling wave is a consequence of three

(33)

basic facts: its compressibility, expressed by (28) or, in the new variables (&),
by the inequality pe¢ < 0 ; the fact that the wave travels at subcharacteristic
speeds, see (12), which makes (¢ — A;)(Az — o) bounded below from zero; and
the relaxation effects introduced by the rate term h in (7b). In fact, under the
assumptions outlined above, Liu [6] was able to derive, after considerable work,

the energy estimate

400 . A
[ (SholVizl () + Tl Viuli(a,t) do +
T 4o 5 :
7 (els? + et V92 4 Thoo Vo0l ) dedt = (34)

=o@) (16012, +lIu¢0l, )
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provided we take || z(-,0) H:a + || w(,0) ||:r2 sufficiently small, see [6] for the
detailed derivation. We simply remark that (34) immediately gives

2 . 1 :
X(:) 197250 e + 2 I V7w(st) ]|, = 0 as t— +o0,  (35)
g=

7=0
but, due to the fact that u,— 0 as z— = oo, no decay rate can be directly
inferred from (34). This will be done by a different, though related, analysis in

the next section.

4. Decay Rate Analysis

We will now improve the stability results discussed in Section 3 above by deriv-
ing decay estimates for the disturbances (z,w) over the travelling wave (¢, 1)
introduced by the initial data (13). It turns out that these time decay rates
depend upon how fast the initial disturbances die off on the real line. Thus,
besides the conditions (14a), (14b) of Theorem 3.1, we assume that (p,) is
such that

L7 (04 l") (@) + @) da (36a)

and
Po(1 + 1alV) | F2oply) dy | do +
+ B2(1+ oY) |y dy | de

are both finite for some positive integer N. This amounts to requiring a certain

(36b)

algebraic decay of (p(z), 7(z)) as z— = oo, which in turn allows us to show
Theorem 4.1. Under all the hypotheses of Theorem 3.1, assume furthermore
that for the initial disturbance (p,) both (36a) and (36b) are finite for some
positive integer N.

Then there exist positive constants §, € such that

I (0:0)(s8) = (Sepoors o) I, = O(1)(1 4 ¢)™N?

H?
whenever

los —p-1 <6 and | 2(t) [, +wtt)], < €.

H?
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Before we prove Theorem 4.1, we will present the basic reasoning behind the
argument. The key step is to strip off the (complex) dynamics for the distur-
bances described by equations (32), (33) to its essential terms. We do this in

the following way. To a first approximation, we can think of equation (32) as
2+ (p—0)zg =0, (37)

where u = u(p(€),%(€)) is a function of ¢ only and o is a constant, the propa-
gation speed of the travelling wave (¢, ¥), see (11), (25). A simple computation
gives [6]
M—o)(A—0o
ue) o = rzMe=9)y (39)
hh,

since h(p(€),%(€)) must vanish at the equilibrium states at £ = +oo, we then
get

p(€) —o =0 forsome § € R. (39)

Thus, recalling (28), at large times most of the information for solutions of (37)
come from points ¢ far away from &, on the initial line. This suggests considering
a decay factor of the form t*|¢€ —&|?, involving both ¢ and &, in deriving energy
inequalities with decay for (32), or, for regularity reasons, (1+1¢)* <& —&o ph

where
<t>=,J1+¢, (40)

a and 3 being non-negative constants which are at our disposal. In what follows

here we assume that we have, in view of (34),
Il 2(-,t) ||H3 + || w(-,?) HH2 < ¢ forallt>0, (41)
where € < 1, and similarly,

lpy —p-| =6 , & small . (42)
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Using (28) and (39), we can show

+oo
/ < &~ 5P by (p— Yoz db db =

—-00 .

+o0
=4[ 7T< €= 60 > Ihl gl 2 de

ogs (43)
3 <t P e (u-o) 2 +
+3[ <60 > Mg e
where
ME = 3l b <e-6> + A8l _o . (ag
= 2w e 0 <€_£0 = 12 f
It is important to note that we have
M(E >2m-B foral ¢ € R (45)

for some positive constant m = m(4), which will be used below. We now get
to the crucial step of the whole analysis. Taking C' > 1, multiplying (32) by
(14 T)* <€—& >f (2/C + z) and integrating the result over R x (0,77,
one can show, following [11], that, for ¢ and § small,

A+T)[ "< £ 50 (26T) +HET) + 2ET)) de

+/0T(1+t)°‘/_:o< £ >FP (]u5|22+zg+zf) d¢ dt
+ﬂ/OT(1+t)"/+°°< € 56122 dedt =
+o0 b (46)
= o) { [T< €58 (26,0 +2H60) + 2(6,0)) de
+a/0T(1+t)°"1/_+°°< £ =P (z2+zg+zt2) d¢ dt
+ﬂ/0T(1+t)a/_:°(zg-’+z3) de dt }

This weighted energy inequality will be the key point in the decay analysis
below. More general estimates are derived in [11], but for completeness we will

sketch the basic steps behind (46). Multiplying (32) by (1 +1)* < £ — & >P 2
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and integrating the result over R x (0,7 , we get, after a few integrations by

parts,

H047) [ < 6o > |26, T) de
T 400
= /0 (1+t)°/:°° < €& >Phy-(p—0)zz dE dt
" /OT(1.+t)°‘/_+:|/\1—a|-|A2—a|< £ >P 22 dedt =
+00
= — Ty <t-6 > HET)H(ET) da
+ [T b >0 Ihl (6 0) de +
+o0
[T -t > a(60)u(6,0) dE
+ a/oT(1+t)“-1/_+°°< £ — o >P 2z, dE dt
+/0T(1+t)°’/_:°< £ — € P 22 de dt
+ /OT(1+t)°/_:°< €=t >P (M + Ay — 20)z¢2, dE dt
+/0T(1+t)a/:< € — € > (M1 + Mg 220 dé dt
+ %a/oT(l +t)“'1/_J:°< € — & >P |h,|22dEdt +
B a0 [(7< €=t 397 (€= 60) (b4 da = 20) 22, d

+ ﬂ/oT(l 5 t)°'/:°< £ —& >P2(E—6b) (M —0) (N2 — o) 22 dE dt

[ [T e-6 > (n-o)a—o)e sredede

+/0T(1+t)a/_:°<§—§o SO R (€,1) dE dt "
a7
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where we have used (12), (28). ;From (12), (29), (45), (43), (47), we get

(1+7) [T< - >0 (e, T) de +
foT(l +t)°/_:°< §— b >P 2Zdedt
[T [T 6o > ulede e +
+ m-ﬁ/oT(1+t)°/_+°°< E-§ >P1 A dedt =
= o) { [T< e >0 (6,0 +22(6,0)) e
+ (D) [< £ -6 P 2ET) de
+/0T(1+t)c’/_;m< €—& >P 22 dedt
+ a/oT(1+t)°“1/_+°°< E—& >P (224 22)dE dt

F8[ 00 [T b > (Jael 1z el de at

+ ‘/OT(1+t)“/_:°< €~ >P 2R(E 1) dE dt ’ }

We must now estimate the last two terms on the right-hand side of (48). We

have, recalling (45) above, that for a given ¢ > 0,

+00
J < €=6 5 (el + |al) |21 dg

3 .
< em < E-§ >P1 2de + (49)

s/+°°< -t >0 (2+22) de + x(a)/:(zgnz) dé

=00

where K(9) is a positive constant depending on §, see (42). As to the last term in
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(48), we can show, using (19a), (26), (29), (41), (42), after a few computations,

/()T(1+t)°/_:°< £— SP2R(E,t)dEdt =
= oW (VE 4 o) [ty [T gmto > (Il + ) de
o5 ’°° (50)
+ O(e) (L +T) /_ ; < E—6 > (2(6T)+ 226 T) + 2 T)) dé

+0(e) [T €= 6 >0 ((6,0)+=HE0) +2HE0)) de

Taking (49), (50) into (48), we obtain, for ¢ and ¢ small,

(1+T)a/_:°< ¢ > 22(E,T) de +/OT(1+t)°/_:°< € >P 22 dedt
s [T [T 8 el

+mgf (o[

< e b2 dedt =
= o) { f_f< £ 58 (2(6,0) + 22(6,0) + 21(6,0) ) de
+ afoT(1+t)°'1/_+°°< € >P (224 2}) dE dt
+K(6)ﬁ/OT(1+t)°'/_:° (s34 22) dedt +
T +00
+/0 (1+1) /_oo < € >F 2} dE dt

+4Te [T g >0 (BET) e D)) de b

(51)

To make (51) useful, we have to estimate the last two terms on the right-hand

side. To this end, we multiply (32) by (1 +1)* < £ -6 > z, and integrate
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the result in R x [0,7] , which gives, after a few computations,
0+7) [ T< €58 (ET) +.Ih— ol e — o] 26, T) ) de
+/ 1+t/ lhol< € >P 22dedt =
=1 T< 650 (60 + Mol e -0l 2(6,0)) d
- /OT(1+t)°/_;°°< € 58 (A1 + Dy — 20) 2 21 dE dt
+£'-/T 1+t “-1/+°°< £>F (z3+|,\1—a|~|,\2—a|zg) de dt .
+/ 1+t)/ (<€> M=0)ha-0)) 2z dedt +
+A (1+t)°‘/_°° hy< € >0 (4 — o)z 2 dE dt
T 400
+/0(1+t)°’/_°°<£>ﬁz¢7?, dé dt

in view of (12). On the other hand, using (19a), (26), (29), (42) it is not hard
to get [11]

LT(1+t)a[;w< f >B ZtR(é.,t) dfdt =

53
= (6+e)0(1)/0T(1+t)°‘/_:°<§>"’ (22+22) dedt *
Using (30, (42), (53), we then get from (52) that, for ¢ and & small,
(+7) [T< g >0 (36 T)+HET)) de
+ /OT(1+t)"/_:°< € >822 dedt =
= o) { [T< &5 (260 +2260) (
54)

+(s+a)/0T(1+t)a/_:°<g>ﬁzg de dt
+ﬂ/0T(1+t)°’/_zo< £ >P-1 (zf+z€2) de¢ dt
+a/0T(1+t)°'1/_:°< ¢ >° (22 +22) dedt } .
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Now,
/_+°° < £ >P1 (z?+z§) de <

< (o) /+oo

—00

i (55)
(zt2+zg) d¢ + E/_m < €é>P (z;"+z?) d¢

for some positive constant £(¢) which depends on ¢, so that (54) can be rewrit-

ten as

+1 [T e > (BET)+AHED)) o
i /OT(1+t)°'/_:°< ¢ > 2dedt =
= om { [T<e>? (a0 +:0) de
+(€+6)/0T(1+t)°/_:°< € >0 22 de dt
+L(s),8/0T(1+t)“/_:°(z3+zg) de dt
+a/0T(1+t)“-1f_:°< € >F (27 +22) dedt } .

Finally, choosing C' > 0 big enough, we multiply (51) by 1/C and add the result
to (56) to get (46) for € and & sufficiently small.

Having derived (46), we are in a good position to proceed. We first rewrite

(46) in the following equivalent way, using (19):
(1+T) /_+°°< g > (22(5771) +2(6T) +2(6T) + wz(EaT)) d¢
s [fror [T e 5t (ndt 4+t 4t ) de
T 400
+5/0 (1+t)"/_°°< € >P-1 22 dedt =
+o0 (57)
= o) { [T< 5P (260 +HE0) +uE0) de

+a]0T(1+t)°-‘/_:°< €58 (2 422+27) dedt

+ﬂAT(1+t)a/_;w(z§+zf) de dt } .



354 P. R. ZINGANO

We now proceed in much the same way as in Kawashima and Matsumura [3].
Having assumed that (36a) and (36b) are both finite for a certain integer N > 1,

this immediately gives

[T e >N (260 + 260 4026 0) d <o, (38)

where < ¢ > is defined in (40). Then, taking = N, = 0 in (57), we immedi-
ately get

/_+°°°° < €5V (2(6T) + 246 T) + 2(6,T) + w(E,T)) de
+/0T/.:°< € >V (luels® + 22 + 22 +w?) de dt (59)
+/0T/_+m< ExN1 A dEdt = 0(1).

Hence, taking now 8 = 0,a = 1, one gets the estimate

+7) [T (A T) 4 26T + 26 T) + 026 T)) de )
60
+/0T(1,-+-t)_/_.:<> (|,u¢|z2+z€2+zf+w2) d¢dt = 0O(1),

which in turn allows us to consider 8 = N —1, a = 1 in (57) above, thus
improving (60) to
+00
(L+T) [ < & 5N (26, T) 4 236, T) + 226, T) + (6, T)) de
T +o0
+/0 (L) [T< € 5N (Jule? + 23 4 22 +u?) de e (61)

+/OT(1+t)/+°°<5>N-2z=d§dt = 0(1).

-00

Proceeding in this way, i.e., taking successively in (57) =N —j, a = j, and
then
B=0,a=j+1,forj=0,1,2,..,N -1, we end up with the following decay
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estimate

N
ST [ <e>N (26T + HE T+
j=0 e

+2{(¢,T) + w?(§, T)) dE

N T . [t ; 62
+ 2:/0 (1+t)1/ < €N (|ugle? + 23 + 22 +w?) dEdt + (62
i=0 e

N-1 .7 . oo )
+ Z/(1+t)’/ <e>N1i 2 gedt <,
j=0 0 =00

where C is a positive constant depending on the initial data but not on 7. In

particular, we have
A+T) [77 (26T + HET) + 26 T) +0HET)) de
+/ 1+t)N/ (Ipele? + 22 + 22 +w?) de dt (63)
+/o (1+t)N'1/_; 2 dedt = O(1).

We can now proceed in a similar way as in Liu [6]. Differentiating (32) with
respect to £, multiplying the resulting equation by (1 + ¢)*2¢ and integrating

over Rx[0, T], we get, after some work,
(1 +1y [ T) de +/ 1+t [ deds =
= o) { [ (60 + (e 0) & +
+00
+ e+ [T g

+/ (1+1) /m (22 +2%) dedt +

+a/0 (1+t)""1/:;<> (252+252:) d¢ dt
terd) [[arie [T (gasegera) a |

where we have used (41), (42). In a similar way, differentiating (32) wich respect

to ¢, multiplying the result by (1 + ¢)*z; and integrating over R x [0,T] , w
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can show, using (41), (42) again,
a+7) a6 T) de +/0T_(1+t)a/_:°23, de dt =
= o { [0 & +
+/ 1+1) /w zw+z€,,) dé dt (65)
+(+9) [ (Ht)a/_;

T +00
+a/0 (1+t)°-1j_°° 2 de dt } .

If we now differentiate (32) with respect to ¢, multiply the result by (1 + t)%2¢,

(z?+zf+z€2€+z?t+zft+zg“) d¢ dt

and integrate over R x [0,T] , we get, after similar work,

(1+T)/ 24(6,T) de +/ 1+1) /_ng, dedt =

= 0(1) {/_ z(€,0) d€ + / (1+1) /_ e dE dt
. (66).
+ (e+6)/0 (1+t)°/_°o (22422 + 2% +2%) dedt

T +00
+ a/o (1+t)°‘“/_°° 22, dé dt } .

Finally, integrating (32)ee(1 + t)%2¢¢ , (32)ee(1 +t)*2¢er , (32)ee(1 +¢)*2¢re , and
(32)#(1 + t)*244: over R x [0,T] , we get, after a number of straightforward

estimations,
(1+1) [ 226 T) de t [Laroe [T da =
= o) { @+ [Tae T de
+ [T (2le,0) + 2le,0)) de
-+-/0T(l+t)°/_:oz§€t dedt +
+a/0T(1+t)°-1/_;°° (2 + 2% ) dedt

+ (e+9) /OT(1+t)°/_+°:°(z£2+z,2+z€2€+zgt) de dt } :
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400 B 5
4T [ (D) + el 6T)) 6 +
T 400
& /0 (1+t)°’/_oo 22y dEdt =
+oo ;
= o) { [ (ule0) + el60)) de + (68)
T 400
(s+6)/0 (1+t)°‘/_ (22422 + 2k + 2+ 2ok g + e+ ) dE
T +00
+ a/0 (1+t)a_lf_w (zg“-}-z?é,) d¢ dt } 5
+o0 .
4T [ (6D +leT)) de +
; T +o0
+ by o dedt =
+00
= o) { [ (ule.0) + 2ul6.0) e + (69)
T 400
(e+9) /0 1+ t)a/_ (z? a7 I P z?,t) dé dt

T +00
o a/o (l_l_t)a—lf-oa (z?"+z;"5‘> dé dt } 5

and
400
4Ty [ (A6 D) +22(6T)) dE +
T +o00
+/0 (1+t)a[_°° 7, d€dt =
+0c0
ro { [ (6.0 + 2u(0)) de + (70)
Y Tl He kiad JUTTIE SO I 2 2 52 Y ded
(t+ ) o ( + ) o (~f+zt+~€f+b€2+~{ﬁf+szt+z£!l+"llt) f t
T +00
+ a/o (1-+-t)“"‘/_oo (zfu+z?") d¢ dt } ;

If we now consider (64)C~3 + (65)C~% + (66)C~* + (67)C~! + (68) + (69) +
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(70), we get, choosing C' > 0 big enough,

o0 3 g
(1) S Ve ) e +
+/T(1+t)“/+°°za:|vjz|2d§dt »
0 =00 =3
= o) { [ w0 e+ @)
+ [Lat e[ vep de a

T +o0 3 X
14 t)=-t P dedt y .
+ [a+y /_w;]V|d§t}
Together with (57), (63), this immediately implies

a+1 (S i) de +

+[asovf :OZSZIV"zl’ de dt =
s H{ (72)
= o) { [ X Ivre0) de +

+/+°°< £ SN Zl:lvjzl’(f,o) de } .
- 2

The corresponding estimates for Viw , j = 0,1,2 can be obtained from those
for V2 ,1=0,1,2,3 using (19); in a similar way, we can express the time-
derivatives of 2 in the right-hand side of (72) in terms of ¢-derivatives of z and
w. We write this final result in terms of the original variables z,t: assuming

(68), there exist positive constants ¢, C, which are independent of ,7 given in
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(13), such that, for all T > 0,
400 " o
(1 +T)N/ (T2 V922, T) + T2y [Viwl¥(2,T) ) da
T +o0 . .
+ [a O [ (el 22 + T3y V92 + Teg [Viuf? ) dods
T 400
4+ / (1+t)N“/ 2dzdt <
0 i

(o)

= C'{/.:o(l + 1elV) (2% + 22 + w?)(2,0) do

+o00 2 jol?
+ (e |20 + 2k 250 e )
provided
1200, + w0, < e,

with € > 0 small.

In particular, we see that, for any 2 < p < 400,

;, Ivoz( )1, + 2 I Viw(, )], = O(1) (1+2)~2.

7=0

References

359

[1] Goodman, J. - Nonlinear Asymptotic Stability of Viscous Shock Profiles
for Conservation Laws. Arch. Rat. Mech. Appl. 95(1986), 325 — 344.

[2] Greenberg, H. - An analysis of traffic flow. Oper. Res. 7(1959), 79 - 85.

(3] Kawashima, S. and Matsumura, A. - Asymptotic stability of travelling

wave solutions of systems for one-dimensional gas motion. Comm. Math.

Phys., 101(1985), 97 - 127.

[4] Lax, P. D. - Hyperbolic Systems of Conservation Laws and the Mathe-

matical Theory of Shock Waves. SIAM, Philadelphia, 1973.

[5] Lighthill, M. J. and Whitham, G. B. - On kinematic waves: I. Flood

movement in long rivers; Il. Theory of traffic flow on long crowded roads.

Proc. Roy. Soc. A 229(1955), 281 - 345.



360 P. R. ZINGANO

[6] Liu, T. P. - Hyperbolic Conservation Laws with Relazation. Comm. Math.
Phys. 108(1987), 153 - 175.

[7] Liu, T. P. - Nonlinear hyperbolic-parabolic partial differential equations.
In: .F. C. Liu and T. P. Liu (Eds.) - Conference on Nonlinear Analysis:
Academia Sinica, China, June 1989. World Scientific, New Jersey, 1991.

[8] Oleinik, O. A. - Uniqueness and stability of the generalized solution of the
Cauchy problem for a quasi-linear equation. Amer. Math. Soc. Transl.
14(1959), 165 - 170.

(9] Richards, P. I. - Shock waves on the highway. Oper. Res. 4(1956), 42 -
51.

[10] Whitham, G. B. - Linear and Nonlinear Waves. Wiley, New York, 1974 .

[11] Zingano, P. R. — Nonlinear stability analysis with decay rates for two
classes of waves. PhD dissertation, New York University, 1990.

Departamento de Matemadtica Pura e Aplicada
Universidade Federal do Rio Grande do Sul
91509-900 — Porto Alegre — RS - Brazil

Internet address: zingano@mat.ufrgs.br



