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REMARKS ON THE DEGENERATE
VISCO-ELASTIC MODEL OF
KIRCHHOFF-CARRIER FOR VIBRATIONS OF

- STRINGS

L. A. Medeiros Angela Rocha dos Santos ®

Introduction.

The visco-elastic model proposed by Kirchhoff [12], Carrier [5] for vibrations of
stretched strings, fixed at the ends, is given by:

2 L 2 2 2
%TZ—<;P§+£;/0 (g—;(z,s)) ds)%—v%%—?:& (%)
Note that 0 < z < L, where L is the length of the string; ¢ > 0 is the
time; u(z,t) is the vertical displacement of the point = of the string at time
t; p the density of the material of the string; a area of the cross section of
the string; P, the initial tension and E the Young modulus of the material. It
is supposed that the string vibrates inside a medium with viscosity given by
&% 120
We formulate a mixed problem, motivated by (*), as follows. Let us consider
a bounded open set £ of R", with regular boundary I'. By @ we represent the
cylinder 2x]0,T[, T > 0. Given the functions f = f(z,t), z € Q, t €]0, T,
U, = uo(z) and u; = uy(z), find u: Q — R satisfying the conditions:
T — M (fo|Vu(z,t)?de) Au—yAZ =f on Q

u=0 on X=Tx]0,T[ (%)
u(@0) = ve(a), 2(2,0) = (@) on 9

with v > 0.
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Model (*) is the case n = 1 in (**), when

P, EX
M) = =2 L= > 0.
()= 23 A>0

In (**) M()) is a numerical function defined for A > 0. There are different
types of questions about the mixed problem (**), depending on the conditions
assumed on M(A), v, u, and u;. In this work we are interested in the case
M(X) > 0, that is, M () has zeros, which correspond to the case P, = 0: this
means, physically, that vibrations are observed without initial tension. With
this hypothesis on M () the problem (**) for the inviscid case ¥ = 0 was studied
by Nishida [21], M()) = A, n = 1; Ebihara-Medeiros-Milla Miranda [9] studied
the case when M(A) behaves as a polynomial, using Ebihara penalty method,
cf. also Yamada [27]; Arosio-Garivaldi [2]; Crippa [5]; D’Ancona-Spagnolo [6].
For analytic initial conditions u,, u, see Arosio-Spagnolo [1].

In the degenerate visco-elastic case M(A) > 0 for all A > 0 and v > 0, there
exists global solution in ¢, as in Nishihara [23], Matos-Pereira [16], Mufioz Rivera
[19], Nishihara-Yamada [22], Medeiros-Miranda [17]. In Nishihara-Yamada [22]
the viscosity is —27 %%.

The non-degenerate inviscid case when v = 0 was studied by Bernstein [3],
Dickey [7], Pohozhaev [24], Lions [14], Rivera [25], Menzala [18], Matos [15].

In the present work, we consider the degenerate case M(\) = A%, a > 1
with viscosity ¥ > 0 as Yamada [24] and Nishihara-Yamada [26]. We exploit
the monotonicity of the operator (J |Vu(z,t)|*dz)* (—Au), @ > 1, obtaining,
by a direct method, weak solutions for (**) with weak hypothesis on u,, u;
cf. Theorem 1 in this work. We also obtain the asymptotic behavior for the
solutions, depending on a > 1.

We knowledge Ducival D. Pereira and M. Milla Miranda for several con-
structive remarks on this work.

The plan of this article is the following. Section 1 is an introduction about
notations and terminology. In Section 2 we prove existence of weak solutions

for (**) and in Section 3 we prove the asymptotic behavior for these solutions.
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1. Notation and Terminology

Let V and H be two real Hilbert spaces with scalar product and norm given,
respectively, by ((, )), || - || and (, ), | + |. We suppose that V C H is
dense and the embedding of V in H is continuous. We represent by A the
operator defined by the triplet {V, H,((, ))}. We know that the operator A
has a domain D(A) dense in V and that A is self adjoint and positive. As a
consequence of this method of definition of A we have ((u,v)) = (Au,v) for all
v € V. As a consequence of the spectral theorem is well defined the square root
of A, that is, A% and D(A%) = V. It follows that for all u € D(A) we have
a(u) = (A7 u, AT u) = |AZul? = ||u|>. We suppose that the embeding of V
in H is compact. We represent by ( , ) the duality pairing between a Banach
space and its dual.

The problem (**) with M(A) = A%, @ > 1 in this framework consists in
finding a function u: [0,T[— H such that:

u" + |ATu®® Au+ Au' = f (1)
u(0) = uo, w'(0) =u,

Note that we choose v = 1 and that we represent by u’ the derivative %'

Let us consider the real valued function
1 /A
¢(A)=§/ s*ds, a>1, A>0.

0

Then 9”()) = § A>~! > 0, which says that () is convex.

For u € V, let us consider the real valued function
é(u) =¥(a(u)) forall uweV

where a(u) = |A? u|? as above. The function ¢(u) is convex on V, because 4 is
convex. The Gateaux derivative of ¢(u), represented by d¢(u), is an object of
V', dual of V, defined by:

(06(1),v) = - $(u+ 20) |, o,
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for all v € V. We have:
di/\ é(u + v)

£ p(a(u+ M) = La(u+ M) & a(u+ M) =
a(u + ) a(u 4 dv,v).

Then, when A = 0, we have:
(0d(u),v) = a(u)*a(u,v) forall wveW.

This implies that
d(u) = |AT uf** Au.

From the general theory, cf. Brezis [4] or Gomes [10] we know that d¢(u) is

a mapping from V into its dual V’, which is monotonic, that is,
(0d(u) — 0g(v),u—v) 20  forall w,veV.

We can prove that dé(u) = |A% u|?* Au takes bounded sets of V' to bounded
set of V.
The real valued function A = (9é(u + Av), w) is continuous for all u,v,w €
V. Because of this reason we say that d¢(u) is hemicontinuous.
Therefore, we write the equation (1) as
u" + 0¢(u) + Au' = f @)
u(0) = uo, w(0) =u,
In the Section 2 we prove existence of weak solutions of (2) and in Section

3 we study the asymptotic behavior of these solutions.

2. Existence of Weak Solutions

In this section we shall prove existence for the initial value problem (2), in
the case of weak hypothesis on u,, u;. Our method is direct: we do not need
approximate u,, u; by regular functions and take limits of the corresponding
regular solution. The monotonicity of d¢(u) allows us to work directly with

weak hypothesis about u,, u;. This is clear in the proof of Theorem 1.
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Theorem 1. Suppose M(\) = A*, a>1, A 20,
u, €V, u € H and f € L*0,T; H). (3)

Then there exists a unique vector valued function u: [0,T) = H, such that:

ue L°(0,T;V) (4)

o' e L*(0,T; H)n L*(0,T; V) (5)

u" € L*(0,T; V') (6)

W'+ 0p(u) + Au' = f in L*(0,T;V' (7)
u(0) =up,  U(0)=w (8)

Proof: We will prove the theorem by means of the Faedo-Galerkin method.

Let us consider (w;);cn and (Aj);en the solutions of the spectral problem:
((wj,w)) = Aj(wj,v) forall veV. (9)

We know that the set of finite linear combinations of the eigenvectors (wj) en
is dense in V. We assume that (w;) e is orthonormalized in H.

Let us represent by Vi, = [w1,ws,. .. , W] the finite dimensional subspace
V., of V generated by the m-first eigenvectors wy, wa, ..., Wmn. We propose the

following approximate problem:

Find um(t) € Vm such that:

(s (1), w) + (8 (um(8))s w) + ((un(2),w)) = (£,)

for all w € V. (10)
U (0) = tom =+ Yo in 1%

u! (0) = tim 2wy in H

Note that if um(t) € Vim, then
Um(t) = Y gim(t)wj. (11)
J=1
With this notation, it follows that (10) is a system of nonlinear ordinary differ-

ential equations in the unknown functions gim(t), given by (11). This system
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has local solution in [0,¢y[, tm < T. To obtain a global solution on [0, T[, we

need a priori estimates for un(t) and ul,(2).

Estimate i: Choose w = 2u/,(t) in ‘(10). Note that

209 (um(1)), Upn (1)) = 20AT um(1)** a(um(t), upn(t)) =
We obtain:
& (10 + 148 um(O47) + 2143 iy (O = 27(2), i (8)
dt, m o _+_ 1 m m 'y Y“m .
Integrating from 0 to ¢ < t,, and applying the Gronwall inequality, we obtain:
t
(D + 14} un ()42 + [ fluin(s)]ds < C (12)

for all ¢ in [0, T, after extending the solution from [0, [ to [0, T].

From (12) we obtain:

T

(TP + [ (o)1 ds < C. (13)
Whence,

u! is bounded in L%(0,T;V). (14)

We have that |AZ up(t)]?**2 = ||un(t)|[?**? is bounded in [0,T] by (12).
This implies that u,(t) belongs to a bounded set of V, when t € [0,T]. Note
that d¢(u) takes bounded set of V into bounded sets of V’. Then we obtain:

[10¢(um()llv < Cy i [0,T). (15)

From (12), (13) and (15) it follows that:

Uy is bounded in L*(0,T;V)

u'  is bounded in L*(0,T; H)N L*(0,T;V)

0é(un) is bounded in L*=(0,T; V") (16)
ul (T) isbounded in H

um(T) is bounded in V

Estimate ii. Now we estimate the second derivative u/,(t) using a projec-

tion method, cf. Lions [14].
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Let P,: H — V,, C V be the orthogonal projection operator defined by:
h € H — Pnh =) (h,wj)w;.
j=1
It follows that P, is bounded in £(V, V), the space of continuous linear map-
pings from V' to V. The adjoint P, is bounded in £(V',V’). For all w € V,,

we have P,w = w. Then from the approximate equation, we can write:

(uﬁ,(t), me) + (a¢(um(t)’ Prw) + (Au:n(t)» Prw) = (f, Prw)

whence,

(um (), w) + (Prdd(um(t)), w) + (Pr Aup(t), w) = (P*f,0)

for all w € V;,. It follows that

Um(t) = —Pr0¢(um(t)) — PrAup,(t) + P*f

in Vp,. We obtain,

ul s bounded in L?*(0,T;V"). (17)

From (16) and (17) we obtain a subsequence (u,) of (un), such that:

uy = u weak star  L=(0,T;V)
u, = u' weak star L*(0,T; H)
u, = u' weak L*0,TV)
u, = u" weak L*0,T;V') (18)
uy(T) = w(T) weak V
w,(T) = u(T) weak H
O0¢(uy) = x weak star  L*=(0,T; V')
Remark 1. Note that from (18) it follows that u € C5([0,T]; V)NC°([0,T); H)
and u' € C([0,T); V) N C°([0,T]; V'). Then it makes sense to evaluate u(0)
and u/(0). Also from (18) we have u(0) = u, and v/(0) = u;.

Limits of Approximate Solutions

From (18) line two, the subsequence (u/,) converges to u’ weakly in L2(0,T'; H).
This means that

T T
e wnd — [, wio)
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for allw € L%(0,T; H). If w(t) = 6(t)v, for v € H and 6 € D(0,T), the above

convergence of integrals implies:

(w,(8),v) = (W/(t),v) in D(0,T).

w

Whence,

for all v € H.
From (18);7 we have:
7 T
|} 08w wiat — [ (x,u)d (20)
for all w € L!(0,T; V), whose strong dual is identified with L>(0,T; V).
From (18)3 it follows that:
/ (L (1), w))dt — / (1), w))dt (21)

for all w € L*(0,T; V).
If we consider (u,) in the approximate equation (10) and let p goes to

infinity, we obtain:

2 ((2),9) + (x(0), )+ (1)) = (Fr0) (22)

in the sense of D'(0,T), for all v € V.

If u is solution in the sense of (22), we can prove that u satisfies:

W'+ x+ A =f in L0,T; V).

Convergence of the Non Linear Term

To complete the proof of Theorem 1, we need to prove that x = 8¢(u). In
fact, we prove this fact by means of the monotonicity of 9¢(u). We have for all
v€ L*(0,T;V):

T
¥ =/0 (0(u,) — D$(v),u, — v)dt. > 0
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for all p. Then:

305

05X, = [ (@p(u), w)dt ~ [ (06w, v)dt — [ (00(v),u, —v)dt. (23)

The only difficulty lies in limits in the first integral at the right hand side of

(23). Infact, in the approximate equation (10) with m = y, w = u,,, integrating

in ]0, T'[, we obtain:

i (s, )i + S (0(wy), up)dt+
+ 00 (upup))dt = J3 (f, w,)dt

Note that

T
s wa)dt = (T, 0lT) = (0 0),wa0)) = [ (1)
and
[ (uadt = (DI - )1
g SRR gk 2! '
Substituting (25) and (26) in (23) we obtain:

((0) (0) — (0T 1)+
Sy T (O dt+ HlluOIF ~ (TP + 7 (Fw, e
= T (O, 0)de = 7 (00(0), s ) di.

Taking the superior limit in (27) we have:

0<(

0 < Tim (1,,(0), u,(0 ))+E[ (un(T), uu(T)))+

+Tim / u 0) Pt + ST OV + T~ () I+
+Tm [ a4 hm[/ (e dt]+
+E[—AT(6¢( o), u—v)dt].

There is some difficulty in the term

- T
]im“_m/o |l (¢)[? dt.

(29)

It happens that the viscosity term Au’in the equation gives an extra estimate

in order to get strong convergence of (u/,) in L?(0,T’; H) and this estimate solve

the difficulty in (29).
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We have by estimates (16) and (17):

u, and wuj bounded, respectively, in

L2(0,T;V) and L3(0,T;V"). (30)
Since V C H C V'is continuous, dense and V C H is compact, it follows by (30)
and by Aubin-Lions compactness theorem [13], that there exists a subsequence,
still denoted by (u,), such that ul, — u’ strongly in L*(0,T’; H), that is, in (29)
we have!

T T
i [ 0P = [ WPt (5)
Remark 2. Note that we have
lim(u},(0), uu(0)) = (¥/(0),u(0)).

We also have lim ||u,(0)|?> = ||u(0)|[%.

Remark 3. We have that u,(T) bounded in V, V C H is compact. Then there
exists a subsequence (u,(T')) such that lim u,(T) = § = u(T), strongly in H.
We have lim u/,(T') = v/(T') weakly in H. Then,

lim(uy,(T), uu(T)) = (W'(T), u(T))-

Remark 4. By (18)s we have lim u,(T) = u(T) weakly in V. It follows that
llu(T)I[* < lim|Ju(T)|[?. Then, —|[u(T)|| 2 =lim|uu(T)|* = Tim(=[[uu(T)I?).
It follows from Remarks 1, 2, 3, 4 and from the inequality (2828), for u — oo,
that
(0 (0) = /(D) () £ F WO de 4 AP~ )
—3llu(D)IP + [ (fru)dt = 7 (x,v)dt = J§ (5¢( )yu—v)dt 20.
Multiplying the approximate equation by @ in C*([0,T]; R) and integrating
on ]0, T, we get:
(u“(T) wd(T)) = (u,(0),w0(0)) = Jg (u, w0')dt+
+ JT (00(u,), w) dt + J§ ((uy, w0))dt = [§ (f,wO)dt.

Let y — oo

(u(T) () - ( '(0), w0(0)) — [T (u', wd')dt+
+J5 (x,w0)dt JE((u', wo))dt = i (f,w0)dt.
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The identity (33) is true for all w € V and 8 € C'([0,T); R). Then it is true

for all functions in G instead of wf, where G is defined by:
G={y e L*0,T;V)¢'€ L*(0,T; H)}.
Note that the solution u € G, so that we have from (33):

(w/(T), u(T)) = (w(0),u(0)) = Jo |[u'(t)|* dt+

I G di+ BRI - HOF = £ . @

By (32) and (34) we obtain:
5
/o (x — 0é(v),u—v)dt > 0.
Ifv=u+ I, we L*®(0,T;V), A >0 we obtain:
T
/0 (x = 0(u + Aw), w) dt > 0.
By the hemicontinuity of d¢(u) we get:
T
[ (x- 0¢tu),upd 20,
for all w € L*(0,T; V). Taking —w we conclude that
T
/0 (x — 0¢(u),wydt =0 forall we L®(0,T;V)

what implies x = d¢(u). Then u satisfies:

%(U’(t),v) + (0¢(u),v) + ((w(2),0)) = (f(1),v)

in the sense of D'(0,T), forallv e V.,

To obtain uniqueness we employ the usual method of energy.
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3. Asymptotic Behavior

Let us consider f = 0 in the equation (1). Then the corollary below follows

from Theorem 1.

Corollary 1.Assume M(A\) = A*, a > 1 for A >0,
u, €V, u; € H. (35)

Then there exists a function u:[0,00) = H such that:

u € L*(0,00; V) (36)
u' € L*(0,00; H) N L*(0,00; V) (37)
u” € L*(0,00; V') (38)
u” 4+ 8¢p(u)+ Au' =0 in L*0,00; V") (39)
u(0) =u,, w'(0)=1w (40)
If we take scalar product of (39) with v/, we obtain:
LW+ 3 AP b =0 )

If we consider

Tt uor (42)

E() = s OF + 575

and call it the energy of the system, we obtain from (41):
E'(t) +]A% v/ =0, (43)

which says that E’(t) < 0, proving that E(t) is not increasing. This sections is
dedicated to study the behavior of the energy E(t) when t — co. We use the
Nakao method [20},-cf. also Zuazua [28] or Haraux-Zuazua [11].

Let us denote p = 2a + 2, and ||u||* = |A% u|?, which is the norm in V.
Then the energy (42) can be written as:

B(t) = gu/()F + {lu(t)P. bis (44)



REMARKS ON THE DEGENERATE VISCO-ELASTIC MODEL 309

By (43), we obtain:
B(t)+ [ ()| ds = E(0), (45)
which says that the energy is bounded.
If we integrate (43) from ¢ to t + 1, we obtain:

t+1
[ ()P ds = B(t) - Bt +1). (46)
t
By the Poincaré inequality, we obtain:
Mol < [lolf?,
norms in H and V, respectively, A, the first eigenvalue of A. Then, from (45)
we obtain:
t+1
[ W@ < B - B(t+1)] = F()? (47)

where ¢ = ]!,

Remark 5. The idea of Nakao consists in proving the inequality:
sup E(s)"** < C,(E(t)— E(t+1)) (48)
t<s<t+1
for all t > 0; with 8 > 0, C, > 0. Once this inequality is proved we obtain:
i) if 8 =0, there exist Cy, §; positive constants, such that

E(t) < Cie™® forall t>1
ii) if B > 0, there exists C, > 0 such that
E(t)< Co1+1t)"# forall t3>0.

Our goal is to prove that the energy (42) or (42 bis) satisfies the inequality
(47) with 8 > 0. In fact, the first part of energy satisfies (46). We need to
analyze the second part as follows.

Let us consider the interval [¢,t + 1] broken into four equal parts and take
[t,t+ 1], [t + 2,t + 1]. We have, from (46) and from the mean value theorem

for integrals:

1

1, 2 K ITPENT 2 1
Z|u(t1)]=[ W()Pds < () t<ti<t+.
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Then,
[u'(t1)] < 2 F(2). (49)

By the same argument, there exists ¢; satisfying t + 2 < ¢, < t + 1, such that:
|u(ta)| < 2 F(2). (30)

The next step is dedicated to control %Hull”. Taking inner product of both

sides of (7) with u, we obtain:

d
7@ (@) u®) = [ OI + [P + (W), u(®))) = 0.
Integrating from ¢, to ¢, points obtained by applying the mean value theorem,
we obtain:
flu(E)Pds = =(u/(ta), u(ta)) + (w/(ty), u(t))+
+Ji 1W(8)[* ds = [ ((w'(s), u(s)))ds
or

i Nlu(o)lPds < u'(ta)] |u(ta)] + [u'(t1)] [u(ts)]+
+ L 1w (s)[* ds + Ji7 [lw'(s)l] [u(s)llds.

By the Poincaré inequality,

2 lu(s)llPds < Colu!(ta)| [Ju(ta)l] + Colu'(t)] [lu(ty)l|+

T 00 |u(s) P ds + [ |1/ (3)]] [fu(s)]ds. (51)

Remark 6. We have:

Culu/(a) [[u(ta)] + Calu'(t)] ()| €41 F(t) sup [lu(o)l

Remark 7. Assume % + 1 = 1, where p is the energy index. We use ab <

La? 4 3, for a, b positive. Then,

t2 i 1 rta 1 rta
< = / q z Pds.
L7 Il hu(e)lds < - [ (o)l ds + = [ (o)l ds
By Remarks 6 and 7, we modify (50) obtaining:

(1 = ,l',) Ji llu(s)|lPds < 40y F(2) supygogus llu(s)ll + F2(2)+

+ L)l ds. (52)
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Since ||u(s)|| < Cz E(s)V/?, C; = p%, we obtain, from (51):

(1=1) 2 |lu(s)llPds < 405 F(t) sup;g,gipy B(s)'/7 + F2(2)+

(53)
+ 2 L l(s)]] ds.
Remark 8. If B¢ = 2, consider a such that 1 + 5 =1. Then,
t2 d t2 1/8
[ ) ds < (ta =t ([ llw)117)
171 ty
or G B
t ¢ q t+1 q
[riw@leds < ([ w@iras) < ([ Is)Pds)
t ty t
By the identity (45), the inequality (46) and the Remark 8, we obtain:
12
[ el ds < 04 P (50
4
From (52) and (53) we obtain:
1 t2 1
(1 - —) / ||u(s)||Pds < 4C3 F(t) sup E(s)? 4+ F2(t) + =C4 F(t)*.
p) Jt t<s<t+1 q
Let us define:
G(t)* =4Cs F(t) sup E(s)"/?+ Cs F(t), (% * %)
t<s<t+1
and we obtain:
t.
J )P < G2 + Py, (55)
1
Integrating both sides of (42 bis) on ]¢;, 15[, we obtain
t2 e 1 f2 4 2 " 1 rt =
/; E(s)ds = §/t1 [u'(s)] .d.s + ;‘/tl [lu(s)||? ds. (56)
From (46) and (54), substituting in (55), we get:
¢
[ Bls)ds < %G(t)z +Cr F(1)". (57)
t

By the mean value theorem for integrals, there exists a point ¢; < ¢* < t; such

that:
[ * B(s)ds = (tz — t,)E(t") >
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Therefore,
EW)S%GUY+2QFWV. (58)

For any 7 < 7, we obtain:

B(n) < B(r) + [ |W(s)| ds.
Taking 7, = t*, for any 7, < t*, we have:

E(n) S B)+ [ In(s)IPds
then,

t+1
sup E(s) < E(t%) +/ [lw'(s)][? ds.
t<s<t+1 b

Whence, from (57) and (45), it follows that:
sup B(s) < 2 G(t)? +2C; F(t)? + L F(t)2. (59)
t<s<t+l P c
Substituting (***) in (58) we obtain:

1/p
sup E(s) < 4Cs F(t) ( sup E(s)) + Cs F(t)? + Cs F(t).

t<s<t41 t<s<t+1

By Hoélder inequality with ;—) + % =1 we have:

sup E(s) < Co F(t)? + Cs F(1)?

t<s<t+1
or
sup E(s) < F(t)?(Ce + Cs F(t)*7),
<5<+l
then

sup E(s)7 < Cyo F(1)?,
t<s<t41

because the energy is bounded. Note that F(t)? = C(E(t) — E(t + 1)) and
qz = 14 233, because p = 2a + 2. Then, by Nakao [20], (note Remark 5 in this

section) we obtain the asymptotic behavior:

Ef)<COA+t)7"%, >0 (60)
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0

To complete the proof of the asymptotic behavior for weak solutions, we
need to obtain the asymptotic estimate (59) for an weak solution, because (59)
is true for approximated solutions u,,. Therefore, the next step is dedicated to
prove that (59) is still true for an weak solution given by Theorem 1.

In fact, take any t, in [0, T, fixed. Then, from (59) we obtain

1 1 _atl
glum(to)l* + Zllum(t)[I* < € (14 £)7"5. (61)

From the estimates obtained in Section 2, follows:

Um —u weak star L*(0,T;V)
u, = u' weak star L*(0,T; H)
Un(t,) = € weakin V
u(t) =n weakin H

(62)

Remark 9. We have

) = um(s) = [ u i

un(t) = un(s) = [l (0)do

From Section 2, taking H norm of both sides of the last equality it follows:
lum(t) = um(s)| < Clt - s|,

what proves that (u,,) is equicontinuous in [0, 7).

We also have |un(t)| < C on [0,T)]. Then, from Arzela-Ascolj theorem we
have limu,, = u in C°([0, T]; H). Consequently limup(t,) = u(t,) in H, that is
& =u(t,).

Taking inferior limit in (60), we obtain:
1 1 —otl
3nl* + I-JHU(to)H” O +¢)" = (63)

We need to prove that n = u/(t,). In fact, let be 6 € C°([0,T]; R) defined by:

I if 0<t<t,
0(t)= | —-$+%E if t,<t<t,+4
0 if to+d<t<T
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Let us consider the subsequence (u,) of the Section 2. We obtain from the

approximated equation:

(un(t), w) + (88(uu(t)), w) + ((ua(t),w)) =0 (64)
for all w € V},. Multiply both sides of (63) by 8 and integrate on [0, T]. We get:

—(uuto)yw) + 3L (1), w)dt + [t ((ua(t)), w)O(t)dt+
) f"’”(( u(8),w))o(t)dt = 0.

Taking the limits when u — oo, observing (18) in Section 2, we have:

—(nw) + 3 ft°+5( '(t), w)dt + ft°+6(6¢(u)»w)0( )dt+
. s f'°+6(( (1), w))é(t)dt = 0.

Taking the limits in the above equality when § — 0, we find n = u'(t,) in
V.

Note that the above argument is true for any ¢ in [0, T[. In T it is sufficient

to consider

0 in 0<t<t-4, for §>0

()= | linearin T—6<t<T

Consequently, if u is an weak solution of Theorem 1, we have the behavior
(60) on [0,T), for all 0 < T' < oo.

We summarize the above argument in the following:

Theorem 2. The weak solutions u obtained in Theorem I has the following

asymptotic behavior:
1 1 _atl
! 2 t 2042 < =
W) + 14T ()™ < C(1 +1)

forallt > 0.
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