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FUNDAMENTAL SOLUTIONS OF A SYSTEM OF
CONSERVATION LAWS WITH A SINGULAR
CHARACTERISTIC FIELD

Dan Marchesin®  Aparecido J. de Souza®

Abstract

We analyze the Riemann solution of a nonstrictly hyperbolic system
of three conservation laws for Cauchy data in the neighborhood of a curve
consisting of points where one of the characteristic line fields is linearly
degenerate and has a saddle singularity. Even though the construction is
nontrivial, the solution consists of sequences of shocks and rarefactions,
with at most two intermediate constant states. Thus, this is an example
where the Lax construction for Riemann solutions can be extended to
hold even though some of its fundamental hypotheses are violated. The
system describes three phase flow in porous media with four components
employed in Petroleum Engineering. The line of singularities occurs in
the contact field associated with the transport of the fourth component.

1. Introduction

We are interested in studying the behavior of the Riemann solution of a non-
strictly hyperbolic system of three conservation laws for states in a neighborhood
of a curve where a characteristic line field is singular.

For strictly hyperbolic system possessing characteristic fields which are ei-
ther genuinely nonlinear or linearly degenerate, there is a classical theorem due
to Lax establishing existence and uniqueness of local Riemann solutions (8].

This result was generalized by Liu [7] for strictly hyperbolic systems which are
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allowed to lose genuine nonlinearity at isolated points of the rarefaction curves.
Recently, the result was generalized again by Isaacson and Temple [5], for a
class of non-strictly hyperbolic systems containing surfaces in state space where
the characteristic speed corresponding to a linearly degenerate field coincides
with the characteristic speed of a nondegenerate field.

In this work we consider an example of a non-strictly hyperbolic system of
three equations containing coincidence surfaces (i.e., surfaces where two charac-
teristic speeds coincide). However, the linearly degenerate field does not satisfy
the main assumption in [5] that it has no singularities. The novel feature of this
model is that there is a curve of points which are saddle singularities for the
linearly degenerate field. The curve of singularities is also the set of states where
branches of Hugoniot curves associated to contact discontinuities intersect each
other. In this work, we characterize precisely the curve of singularities. In a
future work we will show that similar curves exist and play analogous role in
more general models.

Away from the curve of singularities the assumptions used in [5] are valid
and there exist unique Riemann solutions [10]. Surprisingly, although on the
curve of singularities the two main assumptions used in [5] fail, we find a unique
solution consisting of at most three wave groups for the Riemann problem with
initial data in a neighborhood of this curve. Thus this work is a step towards
generalizing Lax’s construction to systems where some of its main assumptions
are violated. It also indicates that the right construct in this generalization is
not the wave curve - a one-parameter family of wave groups - but rather wave
surfaces - multiparameter families of sequences of wave groups. -

The paper is divided in more six sections. In §2 we present the system we
study. The system captures some essential mathematical features of multiphase
fluid flow in porous media where mass is transfered between phases, which oc-
curs in petroleum reservoirs. In §3, we establish some basic definitions about
Riemann problems and about nonlinear waves. In §4, using explicit calcula-
tions, we determine and characterize the curve of singularities of the linearly

degenerate field. Next, in §5, we review the contact entropy condition used in
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the wave curve construction. In §6, we present the qualitative behavior of the
Hugoniot curves and discuss the admissibility of the elementary waves which
occur in the Riemann solution. Finally in §7, we construct the Riemann solution

for initial states in a neighborhood of the curve of singularities.

2. The model

Let us consider the system of three conservation laws introduced in [10]:

Uy + f(u,v,¢); =0
vy + g(u,v,¢); =0 (2.1)
(cu)e 4+ (cf(u,v,¢)): =0,
where f(u,v,¢) = u?/{a(c) D(u,v,c)}, g(v,v,c) = v?/D(u,v,c) and D(u,v,c) =
u?/a(c) + v2 + (1 — u — v)% The dependent variables take values in the prism
= {(y,v,¢) € R*|0 < u,v,u+v < land0 < ¢ << 1}, and a(c) is a
prescribed smooth function with a(¢) > 0 and —f}cfl > 0. The explicit calcu-
lations occurring in this work were performed utilizing the simplistic function
a(c) = 1+ c. In the context of flow in porous media, u, v, 1 — u — v may be
thought of as the saturations of each of the three phases, water, oil and gas. The
concentration of a polymer transported in the water phase is c; the presence of
the polymer affects the viscosity of the water phase a(c). The viscosities of the
phases described by v, and 1 —u — v are considered identically 1. With this in-
terpretation, this is a model for polymer injection, a method used in Petroleum

Engineering to improve oil recovery in reservoirs.

3. The Riemann problem

In this section we establish the definition of the Riemann problem for system
(2.1) and we recall a few definitions about nonlinear waves.

First of all, the system (2.1) can be written in a compact notation as:

HU): + F(U)s
U(z,t) = (u,v,¢), H(U)

0, z€ R, teRt, where
(

u,v,cu), F(U)=(f(U),g(U),ef(U)).
(3.1)
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The Riemann problem for (3.1) is the initial value problem with piecewise

constant initial data given by:

UL, for z<0
U(’”’t‘o)‘{Ua, for >0 (3:2)

For differentiable solutions U with values in €, the system (3.1) can be

written as:
Ui+ AU) - U, =0 ,

where A(U) is the Jacobian matrix:

(fu fo fe )
A=(DH)'DF=| g. 9 g (3.3)
0 0 flu

A rarefaction wave connecting U_ to U, is a continuous piecewise smooth
solution of system (3.1) depending on z/t, with initial data U, = U_ and
Ur = Uy, given by:

U_; if z/t <ANU-)
U(z,t) =1 ¥(z/t), if MU-) <z/t < MU,), with A(y(z/t)) = z/t,

Ty if 2/t >A\U,),
(3.4)

where. A(U) is one of the characteristic speed of the matrix A in (3.3). The
values of the function (z/t) in (3.4) must lie on a section of the integral curve
through U_ of the characteristic line field; along this section the corresponding
characteristic speed is monotonically increasing. Such maximal section of the
integral curve is called a rarefaction curve through U-_. Isolated critical points of
A(U) along the integral curve are called inflection points. The set of inflection
points in state space is called a inflection locus. A characteristic field of A
associated to A(U) is called linearly degenerate if A(U) is constant -along its
corresponding integral curves.

A shock wave connecting U_ to U, is a discontinuous (weak) solution of

system (3.1), with initial data U = U_ and Ug = Uy, given by:

3 _J U, ifzft<o
3 U(a:,t)—{ U, ifzft >0, (3.5)
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where o is a real constant, called the speed of the shock between U_ and Uy. It
is well know that a shock wave connecting U to U, must satisfy the Rankine-

Hugoniot condition
o[H(Uy) = H(U-)] = [F(Us) = F(U-)]- (3.6)

The Hugoniot curve H(U_) of U is the set of states U, satisfying (3.6),
for o varying on IR. For system (2.1), in general a Hugoniot curve consists
of three branches emanating from U_ in the direction of the eigenvectors of
A, (8], together with one or two detached branches [10]. We call a secondary
bifurcation point of a Hugoniot curve H(U-) a state U* distinct from U- where
two branches of H(U-) intersect each other. The secondary bifurcation locus is
the set of states U_ for which H(U-) has a secondary bifurcation point U, (3].

If in (3.5) we have o = A(U-) = A(Uy), the shock wave is called a contact
discontinuity. A Hugoniot branch along which the shock speed o is constant
and coincides with a characteristic speed ) is called a contact Hugoniot branch.

According to [11], contact Hugoniot branches coincide with integral curves of
linearly degenerate characteristic fields. Thus, we use the nomenclature contact
curves for both.

A composite wave connecting U- to U, consists of a rarefaction (or shock)
wave connecting U- to an intermediate state U;, followed by a shock (or rar-
efaction) wave connecting U; to U,, with the shock speed coinciding with the
characteristic speed at U;.

A wave group connecting U to U is a sequence of rarefaction and shock
waves with increasing wave speed and no embedded sector of constant states
separating U_ from U.

A forward (backward) wave curve through U— (Uy) is the locus of states Uy
(U-) in state space 1, such that the state U— can be connected to Uy by a
single wave group.

A Riemann solution of system (3.1) with initial data U, and Up, given in

(3.2), is a sequence of wave groups separated by sectors of constant states.
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4. The Linearly Degenerate Field

In this section we characterize the lin¢arly degenerate characteristic field of

system (3.1) and a certain curve where this field is singular.

It is clear that one of the eigenvalues of matrix A in (3.3) is A° = f/u. The
other characteristic speeds A* and A/ are the eigenvalues of the 2 x 2 top left

block of A associated with the subsystem (4.1) for ¢ = constant:

uf+f(u7v;c)z=0

vt + g(u,v;¢); = 0. (4.1)

Since we have A* < M in 0, we use the superscripts s and f to indicate the
slow and the fast waves of system (4.1), respectively. The Riemann problem
for the subsystem (4.1) was studied in detail in [9]. The next theorem can be

found in [10] as Proposition 3.1.

Theorem 4.1: The field e°(U) of eigenvectors of A associated to \°(U) is
linearly degenerate, i.e., VAS(U) - e¢(U) = 0.

Let us denote e° by X. From (3.3), the line field X(U) turns out to be:

X =((x- ) fe + fuge, (’\C - fu)gc + gufer (fu — A) gy — %) — fugu). (4.2)

We are interested in studying the line field X. To do so, we establish the

following;:

Proposition 4.2: The line field X has a curve of singularities interior to the

domain Q.

Proof. A direct calculation using the formulas in Section 2, was performed

using the Mathematica symbolic manipulation package. Eliminating denomina-
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tors, the line field (4.2) can be written as X = (Xi, Xz, X3), where:

Xi(u,v,¢) = —% (u —2u? + u® — 2a(c)v — 2uv + 4a(c)uv
+2u?v — 2a(c)u’v + 2a(c)v? + 2uv? — 2a(c)uv?);
Xo(u,v,¢) = %:)25 (—2a(c) + u + 2a(c)u + 2a(c)v); (4.3)
Xs(u,v,¢) = % (—a(c)u + u® + a(c)u® + 2a(c)*v + 2a(c)uv
—2a(c)u’v — 2a(c)*u?v — 2a(c)*v? — 2a(c)uv?
—2a(c)?uv?).
A straightforward calculation shows that line field X vanishes at an interior
curve a with g—‘: # 0. This curve may be parametrized by c as:
a(c) 1

T+al 2ita@) ()

afe) = (

There exist two disjoint surfaces where coincidence of A° with A* and of A°
with A/ occurs. (See [10]). We denote these coincidence surfaces T* and T,
respectively. These surfaces subdivide the domain § in three distinct subre-
gions: R, in which A° < A* < M, R, in which A* < A° < A and Rj in which
A* < M < A, As shown in [5], if an integral curve of X crosses a coincidence
surface at a state Up = (uo, vo, o) away from curve e, then X(Up) is tangent
to the plane ¢ = co; also, such integral curve crosses planes ¢ = ¢; < ¢ exactly
twice. A special projection of typical contact curves for our model is exhibited
in Fig. 4.1. Even though the three characteristic speeds are out of order, we

maintain the nomenclature slow and fast for the two waves of system (4.1).

c b od T/ v a
0
\ S
A 0

c
L /

0 ()

Fig. 4.1: Projection of two contact cur- Fig. 4.2: The curve of singularities

ves and the two coincidence surfaces. a and the line field .X on S,.
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Let us study the degenerate characteristic field X near the curve of singu-
larities a. Let Up = (uo,vo,co) be an arbitrary state on a and consider the line
field in a neighborhood of Up. Since A°'is constant along the integral curves
of X, such integral curves lie on level surfaces of A°. In other words, the level
surfaces are foliated by the integral curves of X. It is also easy to show that «
is transversal to such level surfaces.

Now consider the level surface Sy = {(u,v,c) € Q|A°(U) = I(Up)}. A
direct calculation shows that the plane mo tangent to the surface Sy at the point
Up is given by:

(¢ —co) = K(u — u), (4.5)
where K = (1 + ao) and ap = a(co).

Since we focus our attention to a neighborhood of Uy, let us consider the
line field X restricted to mo. Consider the basis {f1,f,} spanning the plane o,
with f; = e; + Kes and f; = ez, where {e;}{_, is the standard basis for IR®.
Substituting (4.5) in (4.3), the line field X can be written (for p = (u,v,co +

K(u — up)) on mg) as
X =Xi(p)f1 + Xa(p) f2 + (X3(p) — KX1(p)) es. (4.6)

Notice that the coefficients of f; and f; vanish at (uo,vo, o) while the coef-
ficient of es vanishes quadratically at this point. Let X = X;f; + X,f; be the
projection of X onto my along es. Linearizing X near U, we obtain that the
corresponding 2 X 2 Jacobian at U is

(X1, Xa2) -1
det = ; 4.
el O(u,v) ] 4(1 + ao)8 & )

This means that for any value ¢y the state U on the singular curve o cor-

responds to a saddle point of the line field X defined on the tangent plane .
Since a is transversal to horizontal planes ¢ = constant, varying Uy along a, we
see that the line field X can be topologically visualized as a family of saddles
centered on the curve a. See Fig. 4.2.

Now let us determine the invariant manifolds associated to the saddles at

the curve of singularities . To do so, as we saw in §3, we regard the contact
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curves as Hugoniot contact branches. The next proposition and its Corollary

can be found in [10].

Proposition 4.3: For any fized U in Q, the Hugoniot curve of system (3.1)
through U_ consists of two parts. The first one is the Hugoniot curve of system
(4.1) lying on the plane ¢ = c-. The second one consists of contact branches
with associated shock speed A°(U-).

Corollary: Let Uy be a state of H(U-), with u- # uy, and associated shock
speed o. Then o < A(U-) if, and only if, o < X(Uy) and o = A°(U-) if, and
only if, o = X°(Uy).

One peculiarity of the Hugoniot curves in this model is that they may possess
a detached contact branch in addition to the local contact branch through U_.
A typical Hugoniot curve for system (3.1) is exhibited in Fig. 4.3 in the three-

dimensional state space {(u,v,c)}.

We obtain the invariant manifolds for the line of singularities a as surfaces
generated by contact Hugoniot branches of H(Up), with Up varying along a.
Actually, the same kind of calculations used to obtain the parametrization of
o in (4.4) also characterize o as the set of states U* where contact Hugoniot

branches undergo a secondary bifurcation.

Thus, let Up be a state on . Using equations (3.6) and the formula for
¢, the contact Hugoniot branches of H (Uo) are given by the following pair of

equations:

A(U) = 2*(Uo)

Xe(Uo)(v — vo) = g(U) — g(Uo) - (4.8)

Using the parametrization (4.4) of o and substituting the coordinates of Up
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in (4.7), we obtain the following pair of equations, where a = a(c):

%
¢
v
¢
—
Fig. 4.3: Typical Hugoniot curve in sta- Fig. 4.4: Contact curves in the
te space (. invariant manifolds of a.

|
o

4(1 + ao)(uv — av?) — u
2(1 + ao)(u — u? — 2av? — 2auv — au® 4 2au + 2av — a) — u

(4.9)

o

Near Up we have uv — av? # 0. Eliminating 1 + ao from equations (4.8),
we see that the two contact branches of H(Up) emanating from Up lie on the

surfaces given by

(1—u—2v)(u+au—a)=0.

Therefore the invariant manifolds are the plane m; with equation 1 —u—2v =
0 and the ruled surface S; given by u + a(c)u — a(c) = 0. We recall that the
invariant manifolds are also the secondary bifurcation locus associated to the
contact branches, which means that for U_ on m, or on Sy, the contact Hugoniot
branches of H(U-) intersect each other precisely at a state U* on c. The curve
of singularities « and its invariant manifolds are represented in Fig. 4.4. In
this figure two contact curves (Hugoniot branches) with the same characteristic
speed lying on the invariant manifolds are also represented. The state U* in
Fig. 4.4 corresponds to the secondary bifurcation point of the contact Hugoniot

branches.
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5. The Entropy and the Compatibility Conditions

In the construction of the Riemann solution, an entropy criterion is essential to
select physically relevant solutions and to avoid multiplicity. By an admissible
shock we mean a shock wave satisfying the entropy criterion in usage.

For the subsystem (4.1) in each plane ¢ = co, the viscous profile entropy
criterion, introduced by Coﬁrant and Friedrichs [1] and Gel’fand [2], is used
with identity viscosity matrix. For contact discontinuities we use the following
entropy condition, introduced in [4, 10]:

The contact entropy criterion: A state Uy on a contact branch of H(U-) gives

rise to an admissible discontinuity in the Riemann solution if:

a) U, lies on the local branch of H(U-) and the contact curve joining U- to

U, does not cross any coincidence surface, or

b) U, lies on a detached branch of H(U-) and there are states U, and U,
with U, in the local branch of H(U-) and U in the detached branch of
H(U.), such that:

i) the state U, belongs to a coincidence surface;

ii) the shock wave joining U; to U is admissible for the system (4.3) in
the horizontal plane ¢ = ¢; (i.e., it satisfies the viscous profile entropy

criterion);

iii) the contact curve joining U, to U; does not cross any coincidence

surface.

In the context of flow in porous media this contact entropy condition means
that the concentration of a substance injected in the phase with saturation u
must vary monotonically in state space along an integral curve of the linearly
degenerate field, [4]. In Figs. 6.3-6.7 in next section, the set of states on
H(U_) that can be connected to U_ by an admissible contact discontinuity is
represented by thick lines. We will use the nomenclature admissible segments

to refer to connected portions of this set.



280 D. MARCHESIN A. J. SOUZA

The states U, and U} in the entropy criterion are such that the shock speed
o(U-;U4) coincides with Ae(U-) = X(U,) = A°(U}) = A°(U4). This means
that in (z,t) space, there is no embedded sector of constant states between U,
and U!. Only one discontinuity is expressed separating U_ from U in physical
space, rather than three waves as suggested in state space.

Another fundamental restriction used to construct wave curves for Riemann
solutions is the geometric compatibility condition between wave speeds. This
condition reflects the fact that wave speeds in Riemann solutions increase in
physical space (z,t) from Ur to Ugp. This restriction forces portions of wave
curves to be excized when elementary waves are concatenated to solve a Rie-

mann problem.

6. Bifurcation Diagram for the Contact Curves

Let Up = (uo,vo,co) be a state on the curve of singularities a. Assume that
¢, and ¢, are respectively the minimum and the maximum values for ¢ in the
three dimensional neighborhood N of Uy, where the Riemann problem will be
considered. Without loss of generality, we assume that a contact curve through
a state-U_ in N either crosses the coincidence surface T or else extends from
the level ¢, to ¢, into V.

For each value of ¢ in [c,, ¢], the equations (4.1) represent a strictly hyper-
bolic system of two conservation laws in a planar section N, of A, [9]. This
system fails to be genuinely nonlinear along a straight line, where VA*-¢e® = 0.
According to §3, this line is the slow inflection locus. This straight line lies
exactly on the plane m;, which is one of the invariant manifolds of a(c). We
remark that the existence of an inflection locus is precluded in the hypothe-
sis of [5]. On the other hand, the peculiarity that the inflection locus consists
of straight lines, all contained in a plane, does not affect the features of the
solution we want to emphasize.

Because the characteristic directions associated to A* and )/ are distinct,

utilizing a change of variables, according to 7] one can see that the Riemann
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problem for system (4.1) for each fixed ¢ has a unique solution, defined by two
wave groups. This means that the slow wave curves and the fast wave curves
form a coordinate system for V.. In such a coordinate system, the solution of the
Riemann problem with initial data {UL;Ur} in N, is obtained by considering
the backward wave curve through Ugr and the forward wave curve through UL.
The intersection point between these two wave curves defines an intermediate
constant state U,,, which separates the slow wave group from the fast wave
group in the Riemann solution. The global construction of the Riemann solution
for system (4.1) can be found in [9].

The neighborhood A is subdivided in eight regions by the surfaces T°, my,
S and S,. Here S is the surface generated by slow integral curves through U,
as U, varies on a. The subregions are Ly, L2, L, Ly, and L}, Ly, L}, L}, which
are symmetric with respect to the plane m;. In Fig. 6.1a we show a planar
section of the global subdivision of state space . In Fig. 6.1b we magnify N,
restricted to a plane of constant c. For simplicity we represent this restriction
as a square. Due to the symmetry, left states for the Riemann solution will be
considered only in Ly, Ly, L3 and L4. Actually the surface S, is not a boundary
for the bifurcation diagram of contact curves. As we will see in §7, S; is a
boundary separating left states UL to be considered in the construction of the
Riemann solution. On the other hand, the surface S; is a boundary for the
bifurcation diagram of contact curves, but it is not a boundary for left states

Uy in the construction of the Riemann solution.

T 5 5,

A B

Fig. 6.1a: A planar section of the global Fig. 6.1b: A magnified planar
subdivision of (. neigh-borhood of Uy € a(c).
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In the figures throughout this work we use the following convention: dashed
curves represent shock segments; curves with arrows represent rarefaction seg-
ments and crossed lines represent composite segments in the wave curves lying

on horizontal planes ¢ = constant.

In Fig. 6.2 typical (forward) slow wave curves for system (4.1) obtained in
[9] are shown in N, for a fixed value of ¢ € [cs,¢s]. It is interesting to notice
that for Uy in L; U Ly U Lg, the slow wave curve based on UL intersect the
coincidence surface T, but for Uy, in L4 such intersection does not occur. The

surface S, separates the states U possessing these two distinct behaviors.

Before describing the contact Hugoniot branches, we establish the labels
and conventions used from Fig. 6.3 to Fig. 7.2b. First of all, each figure is a
two-dimensional representation of the three-dimensional neighborhood N. As
we know from Proposition 4.1, the Hugoniot curve H(U_) for any state U_
consists of a part lying on the plane ¢ = c_ and of contact branches transversal
to this plane. The projection of the contact branches onto the plane ¢ = c_ is

indicated by a “3D” label.

& 5y Uy
T o -
1 -
7
g Sz
v UO U;'..I’/’
4 3
| A
\\ M
B 5,
Fig. 6.2: Typical slow wave curves for Fig. 6.3: Projection of H(U_) onto
the system (4.2). the plane ¢ = c_, for U_ in L;.

In Fig. 6.3-6.7, the Hugoniot curves based on U_, with U € N, are rep-
resented as follows. The states labeled by U_, U, Uy, -+ Us, lie on the plane
¢ = c_. The state U’ corresponds to o(U_;U’) = A*(U-). The states U_,
Uy, Us are intersection points between contact branches and planar Hugoniot

branches. They satisfy o(U-;U;) = o(U-;Us) = XA(U-) = X(Ur) = A°(Us).
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The states labeled by Us,, U, and U! lie on the plane ¢ = c,. The states la-
beled by U, lie on the plane ¢ = ¢;. The states labeled by U, lie on the plane
¢ =c, > c_; they are defined by the intersection of H(U_) with the coincidence
surface T°. The states labeled by U! also lie on the plane ¢ = c,; according our
contact entropy criterion the states U, correspond to initial points of detached

admissible contact segments of the Hugoniot curves.

In Figs. 6.3-6.7, the Hugoniot branches lying on the plane ¢ = c_ are
[UU_U"Us) and [UsU-Us]. Each state Uy in the segment [U-Us] or in the
segment [U’U,] can be connected to U- by an admissible slow shock. Each
state U, in the segment [U_Us] can be connected to U- by an admissible fast
shock.

Now let us describe the qualitative behavior of the contact Hugoniot branches.
We have to consider five cases according to the localization of U_ in the subdi-

vision of A/ in Fig. 6.1b.

Case 1. U_ € L.

For U_ lying in L,, Fig. 6.3, the projection of the contact Hugoniot branches
on plane ¢ = c_ are the local segment [U;U_U,U1U,] and the detached segment
[U'UsU!Us). Along the local contact branch in the three dimensional space, the
value of ¢ increases from ¢, to ¢, (Us € T?) and decreases from ¢; to c,. Along
the detached contact branch, ¢ increases from the minimum value ¢, = ¢; to
the maximum value c. According to our contact entropy criterion, the states
U, in the local segment [U,U_U,] within L; and the states U, in the detached
segment [U'U,] within L3 U L) can be connected to U- by an admissible contact
discontinuity. We remark that the state U” in Fig. 6.3 may lie on either side
of the surface S;. The important thing is that U’ belongs to the left hand side
of state Us along the segment [U_U’ UsU,].

Case 2. U_ € T?, the boundary between L, and L.

For U_ lying on the coincidence surface T, boundary between regions Ly

and Lo, the Hugoniot curve is represented in Fig. 6.4. In this case, the states
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U_, U, and U, in the local contact branch coincide, as well as the states U’,
Us and U! in the detached contact branch. According to our contact entropy
criterion, the admissible contact segments are the local segment [U,U- U,] and

the detached segment [U,U}].

[ Us
Fig. 6.4: Projection of H(U-) onto Fig. 6.5: Projection of H(U-) onto
the plane ¢ = c—, for U~ on T". the plane ¢ = c—, for U~ in L.

Case 3. U_ € L,.

If U is moved from L; across T* to L, the contact branches and the
admissible segments are similar to the case when U~ € Ly, but the states U, and
U_ in the local contact branch exchange position with U, and Ui, respectively,

relative to the Case 1 above. The admissible contact segments are [U,U_U,]

and [U.Uy).
Case 4. U_ € S, the boundary between L, and L3 U L.

For U_ € S, Fig. 6.6, the contact branches suffer a nontrivial bifurcation.
The states U, and U’ on the contact Hugoniot branches of the previous cases
move towards each other and they meet at the secondary bifurcation point U;
on a in Fig. 6.6. This secondary bifurcation is illustrated also in Fig. 4.4 in
three-dimensional state space (with U; = U*). In this case, the admissible

contact segments correspond to the local segment [U,U_U;] on Sy, together
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with the segment [U;U;] on the invariant plane m;.

/A Us

Fig. 6.6: Projection of H(U-) onto Fig. 6.7: Projection of H_(U—) onto
the plane ¢ = c—, for U~ on Sj. the plane ¢ = ¢, for U_ in L3 U L4.

Case 5. U- € L3 U Ly.

For U lying in L3 U Ly, Fig. 6.7, the contact Hugoniot branches consist
of the local branch [U,U-Us) together with the detached branch [U.UsU,U; U]
Comparing with the previous figures, notice that the states Uy and U, in Fig. 6.7
migrated to the detached contact branches, while the state Uy migrated from
the detached to the local contact branch. In addition, the state U; of the
previous figures disappeared. As opposed to the previous cases, here the local
branch does not intersect any coincidence surface in the neighborhood of a,
and the variable ¢ varies monotonically from ¢, to ¢;. Thus, according to our
entropy criterion, states on the local contact branch can be connected to U_ by

admissible contact discontinuities, but states on the detached branch cannot.

Remark: If the projections of the contact branches of Fig. 6.5, Fig. 6.6 and
Fig. 6.7 are drawn in a single picture, one can also identify the saddle behavior

of the contact curves near a.

7.The Riemann Solution near o(c)

For any given left state U_ outside the coincidence surface T*, we have three
distinct directions to follow when constructing wave curves through U in the

three-dimensional state space . The lower wave curve, denoted by wYU-),
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consists of the states that can be connected to U_ by waves with lower speed.
The middle wave curve, denoted by W?2(U_), consists of the states that can
be connected to U_ by waves with intermediate speed. The upper wave curve,
denoted by W3(U_), consists of the states that can be connected to U_ by waves
with upper speed.

We can choose the neighborhood N of Uy € a(c) small enough to ensure
that A* < A and A® < ). This means that the upper wave curves in N
always coincide with the fast wave curve through U_ in horizontal slices NV, of
N. But, as we may have A° = X°, the lower and the middle wave curves consist
of segments of either slow or contact waves. Since in N, the system (4.1) is
strictly hyperbolic for each fixed ¢, the fast (upper) wave curves are not tangent
to the slow wave curves. The same argument is valid for the contact curves and
the fast (upper) wave curves. Thus the upper wave curves for system (4.1) are
tangent neither to the lower nor to the middle wave curves.

As we will see, although the wave curves for our model are only continu-
ous and may possess jumps in derivatives at isolated states, a generalized Lax
construction still works to obtain unique Riemann solutions.

In order to describe the Riemann solution we begin by building the forward
lower wave W'(UL). Then we construct a surface, which will be denoted by M,
generated by middle wave curves based on states Uy, with U,, varying along
W1(Uy). Finally, we are able to construct the Riemann solution for a given

state Up in (, using arguments based on transversality of the wave curves.

Remark: As we will see in the next, the Riemann problem for initial states
restricted to the surface M consists of a straightforward generalization of the
Riemann problem for the Keyfitz-Kranzer-Isaacson-Temple class of models for
two conservation laws, [6, 4].

In the following, we will construct the surface M for generic initial left state
UL in V. The surface M consists of portions of two types. Portions of the first
type correspond to Uy, varying along each segment of W!(UL). Portions of the

second type correspond to distinct segments of W*(Uy,) for Uy, varying in a
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particular segment of W*(UL).

We have to consider three distinct regions for Ur.

Case 1. U, € L,.
This region is characterized by the inequalities A°(Ur) < A*(UL) < M(UL).

The Hugoniot curve thrbugh Uy, (Fig. 6.3 with Uy = U_) has the admissible
contact segments [U,U,], [U.Us]. It also has two distinct slow shock segments
[ULUs) and [UyUs] on the plane ¢ = cz. Since A°(Ur) < A°(UL), the lower
wave curve W1(Uy) starts at Uy, by the admissible contact segment [UsU,] (see
Fig. 7.1a). The contact segment [U,U}] of Fig. 6.3 lies in L3 U Lj. It does
not belong to W!(Uy) because contact discontinuities in this segment have
speed values between A*(Uz) and A/ (U). On the slow shock segments we have
o(U;Uh) = o(UL; Us) = A°(UL). Since o decreases from Uy to U, and from Uj,
to Uy, we have that o(U~;U) € A°(Uy) for all states U in the segments [U, U,)
and [UsUy]. Therefore the slow shock segments [U; U] and [UsUy] also belong to
W?'(UL). Thus, the lower wave curve W!(UL) consists of the contact segment
[U.U,] and the slow shock segments [U1Uz), [UsUs], as shown in Fig. 7.1a. The

intersection point of [U;Up] with the invariant manifold S) is labeled as Uz.

Let us construct the part of the surface M generated by W?(Up), with U,
varying along the lower wave curve W!(UL). The construction can be followed
using Fig. 7.1b. In this figure, thick lines represent boundaries of smooth
portions of the surface M; thin lines represent contact segments; and slow
wave curve segments are represented by means of the same convention used in
Fig. 6.2. We recall that slow wave curves have constant ¢ while contact curves

are transversal to planes with constant c.

The portion M; of M in Fig. 7.1b is generated by slow wave curve segments
of W?(Uy,) with U,, varying along the contact segment [U,U;] of Fig. 7.1a. Due
to the geometric compatibility condition, one end point of W?(U,,) lies on the
contact segment [UaU,] while the other one lies on the detached contact segment

[U!U!] of Fig. 7.1b (or Fig. 6.3). The boundaries of M; in Fig. 7.1b are the



288 D. MARCHESIN A. J. SOUZA

contact segments [U,U U], [U.UsU!] and the portion [U,U!] of W2(U,).

S

Fig. 7T.1a: Projection of W!(Uy) for UL Fig. 7.1b: Projection of surface
in Ly. M for Uy in L.

Now let us consider the portions of the surface M generated by segments of
W?(Upn), with Uy, varying along [U;U;] of W!(UL) in Fig. 7.1a. Since we have
A(Un) < A(Un) < M(Un) along [U;Us)], the first segment of W?(U,,) must
be the admissible contact segment through U,. The surface M; in Fig. 7.1b
is generated by such contact segments. Since U lies on the invariant manifold
S1, W¥Up) for Un € [UyUr) C Ly and for U, € (UsUs] C La have different
behaviors. According to Case 5 in §6, as shown in Fig. 6.7 with U,, = U_, the
contact through Uy, in (U;U;] does not intersect the coincidence surface T in
a neighborhood of a; the segment extends from the plane ¢ = ¢, to the plane
¢ = c. If Un belongs to [U,U7) (Case 3 in §6, Fig. 6.5 with U, = U_), the
contact curve through U,, intersects the coincidence surface T° at a state to
be called Us, (which corresponds to U, in Fig. 6.5 and which is not drawn in
Fig. 7.1b). In the limit case, when U,, = Uy, the contact curve through U,
has a secondary bifurcation exactly at the state U? on the singular curve (see
Fig. 6.6 with U_ = Uy, or Fig. 4.4 with U’ = U*). According to Case 4 in
§6, the Hugoniot curve H(U7) has two admissible segments, one through U7 (on
the invariant manifold S;) below U; and another (on the invariant manifold
m1) up to state U;. Recall that the curve a is the triple intersection of the

surfaces 7%, S; and 7. The surface M, in Fig. 7.1b shares the contact segment
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[U.U,] (within L;) as a boundary with the surface M;. The segment [U,U;] in
Fig. 7.1b defined by the states Uz on T as well as the contact segment [U;U,)
of Fig. 6.6) are the other boundaries of M,

Since Ug lies on T?, we have A°(Ug) = A*(Us). Thus W?(U,,) (for Un, €
[(U1Ur)) can be continued at U by a slow rarefaction segment inwards L;. Ac-
cording to the geometric compatibility condition, the end point of this segment
of slow wave curve is a state U, which lies in the detached contact branch of
H(Un) (or of H(Up)) in the plane ¢ = ¢g > ¢, (see Fig. 6.4 with U_ = Up
and UL = Uj). Notice that we have o(Un;Uj) = A°(Un) = A°(Up) = A°(Up) =
o(Up; Up). The surface M3 in Fig. 7.1b is generated by the slow wave curve
segments through Up that belong to W?(U,,), as Uy, varies along [U;U). The
surface M3 shares the segment [U,U;] in Fig. 7.1b as a common boundary with
My; it also shares the slow wave curve segment [U,U!] with M;. The segment
(U.U;] in Fig. 7.1b obtained as the locus of states Uy when Up varies on [U,U;]
is another boundary of Msj.

According to Case 3 in §6, the states along the contact segment up to Uj
are admissible to be connected to Uy, € [U1U7) C L, (see Fig. 6.5 with U,, =
U-, Uy = U, and U, = Up). Since M*(Up) < A°(Uj) < M (Up), this contact
segment belongs to W2(Uy,). The surface M, in Fig. 7.1b is generated by
the admissible contact segments (of H(Un)) through Uj, as Uy, varies along
[U1U7). The surface My shares the segment [U.U?] in Fig. 7.1b as a common
boundary with Ms; it also shares the contact segment [U;U;] (lying on ;) as a
common boundary with M;. The contact segment [U.U,] in Fig. 7.1b is another
boundary of Mj. '

The portion Mj is the last part of the surface M drawn in Fig. 7.1b. It is
generated by the admissible contact segments based on U,,, which varies along
the shock segment [UsUy] of W(UL) in Fig. 7.1a (see Fig. 6.7 with U,, = U_
and use the symmetry). The surface Mj; shares the admissible contact segment
[ULU!] with surface My; it also shares the contact segment [U!U,] with surface
M.

Now the surface M is complete. We have M = M; U My U M3z U M4U M, a
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stratified surface. In order to construct the Riemann solution with initial data
{UL; UR} € Ly x N, we start with the state Ur in N and first obtain the state
U2 as the intersection point of M with the backward upper (fast) wave curve
through Ug. The state U2 is well defined, because the surface M consists of
slow and contact segments, which are transversal to upper wave curves. Next
we define the state U}, as the intersection point of the backward middle wave
curve through U2 with the forward lower wave curve through Up. The state
Uy, is well defined because M was generated by middle wave curves based on
W?(UL) with such wave curves transversal to W*(UL). The Riemann solution
possesses two intermediate constant states, U} and UZ, and consists of a lower
wave group (which in turn consists of slow or contact waves) from Uy to UL,
followed by a middle wave group (which consists of slow and/or contact waves)
connecting Uy, to U2 and then an upper wave group (which consists of fast
waves) connecting U2 to Ug.

The structure of the Riemann solution of system (8.1) for Uy in subregion
Ly and Ug in N depends on the position of the state U in M. If U? lies
on M, the Riemann solution consists of the sequence contact/slow/fast wave
groups; if U2 lies on My, M, or Ms, it consists of a sequence slow/contact /fast
wave groups; and if U2 lies on Mj, the Riemann solution consists of a sequence
slow/contact-slow /fast wave groups. We remark that if U2 lies on My, the wave
group contact-slow-contact used to connect UL to U2 corresponds to a single
contact discontinuity, with speed A°(U2) = A°(Uy,). Finally, it is easy to verify

that the solutions depend L}, -continuously on Uy, and Uk,

Case 2. U, € Ly U L.

This region is characterized by the inequalities \*(UL) < A(Up) < M(UL)
with the slow wave curve through Uy, crossing the coincidence surface 7.

The Hugoniot curve H(UL) for Uy in L, and for UL in L3 are drawn in
Fig. 6.5 and Fig. 6.7 (with U, = U-), respectively. Since the construction of
the surface M is similar in both cases, we will consider only Uy, € Ls. The lower

wave curve W'(Up) is shown in Fig. 7.2a. According to the inequalities above,
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W1(UL) starts at UL as a slow wave curve (see Fig. 6.2). In one characteristic
direction, the slow wave curve through Up reaches the coincidence surface 7"
at the state Us, with ¢, = cL. In the opposite direction, there is no coinci-
dence of wave speeds, and W*'(UL) reaches a boundary of A at the state Us.
The segment [UzU,] crosses the invariant manifold S; at the state Uz. Since
A*(U,) = A*(U,), the lower wave curve W!(Uy) is continued into the region Ly
by the contact segment [U,Ua], with Us lying on plane ¢ = ¢, (see Fig. 6.4,
with U = U,). But the slow rarefaction segment [ULU,) defines the composite
segment [U/U}] with Uj, € Lg. The state Uj in Fig. 7.2a corresponds to the
state U’ in Fig. 6.7. Since wave speeds along composite segments coincide with
wave speeds of states along the corresponding rarefaction segment, we have that
[UiU1) also belongs to W (UL). The slow wave curve is continued at U}, by the
shock segment [UyUs), which corresponds to the segment [ULU4) in Fig. 6.7.
Since o(Ur; Up) = M(UL) < X°(UL) = o(UL; Us) and o decreases from Up, to
Us, UL can be connected to each state on segment [ULU4) by a Laz 1-shock of
system (4.1). In other words, [U4Us4] belongs to W*(UL).

Fig. 7.2b: Projection of surface

Fig. T.2a: Projection of W(Uy) for UL
y J M for U in L2 U Lj.

in L, U L.

Let us to construct the surface M, generated by middle wave curves through
U, with U, varying along the lower wave curve W!(Uy) in Fig. 7.2a. The
construction is shown in Fig. 7.2b. We begin the construction of M for Un on

the contact segment [U,U;] of W!(UL) in Fig. 7.2a. Since [U,Us] lies within
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region Ly, W?(U,) must start by a slow wave curve segment. According to the
geometric compatibility condition, one end point of W?(Uy) is a state on the
local contact segment [U,U,] of Fig. 7.2b (or Fig. 6.4); the other end point of
W?(Upn) lies on the nonlocal contact segment [U;U}] of the same Fig. 7.2b (or
Fig. 6.4). The portion M, of M in Fig. 7.2b is generated by slow wave curve
segments of W2(U,), as Uy, varies on the contact segment [U,U,] of W(Up).
The boundaries of surface M, are the contact segment [U,U,] (within region
L), the slow wave curve segment [U,U}], and the contact segment (ULUL).

Now let U,, be a state on the segment [U,U;] of W(U) in Fig. 7.2a. For
Un € [U,Ur), the shape of H(U,) is the same as that of H(U.) in Fig. 6.5,
and for U, € (UrUs] the shape of H(Un) is the same as that of H(U-) in
Fig. 6.7. Since \*(Un) < A°(U,), the middle wave curve W?(U,,) starts as a
contact segment through Uy,. The portion M, of M , represented in Fig. 7.2b,
is generated by such admissible contact segments, as Up, varies along (U, U] of
Fig. 7.2a. The contact segment [0.U,] in Fig. 7.2b (which lies within L,) is
a common boundary with the surface M;. This boundary is continued by the
segment [U,U;]. The segment [U,U?] is defined by the intersection of M, with
the coincidence surface T, Again the state U* is the secondary bifurcation
point of H(Uz). The contact segment [U;U;] in Fig. 7.2b is also a boundary of
M,.

For Uy, on the segment [U,U7) in Fig. 7.2a, let Us be a state in the segment
[U,U;] in Fig. 7.2b. Since A(Us) = A*(Uj), the middle wave curve W(U,)
can be continued at Up into L; by a slow wave curve, starting by a rarefaction
segment. According to the geometric compatibility condition, this middle wave
curve stops at the state U; (U, in Fig. 6.4) such that A(Ug) = a(Us; Up) =
A°(Ug) = A°(Up). The portion M3 of M in Fig. 7.2b is generated by segments
(UsUp] of W*(Uy), as Uy, varies along the segment [U,Ur) of WY(UL). The
surface M3 shares the segment [U,U?] in Fig. 7.2b as common boundary with
the surface M. The segment [U:U!] defined by the states Uj, and the slow
wave curve segment [U,U;] are other boundaries of Mj in Fig. 7.2b.

Since we have o(Up; Up) = A*(Uj) and A°(Us) > X*(Uj), the middle wave



FUNDAMENTAL SOLUTIONS OF A SYSTEM 293

curve W3(Uy,) (for Un € [U,Ur) in Fig. 7.2a) is continued by the portion of the
admissible contact segment up to U} (see Fig. 6.5 with U, = U-, U, = Up and
U, = Uj). According to Case 3 in §6, this contact segment of H(Uy,) satisfies the
contact entropy condition. The portion Mj of surface M in Fig. 7.2b consists of
such admissible contact segments through U}, as Uy, varies along [U,Ur). The
surface M, shares the segment [U2U!] in Fig. 7.2b as a common boundary with
the surface Ms; The surface also shares the contact segment [U;U;] with the

surface M,. The contact segment [U/U}] is another boundary of M.

The portion Ms of M in Fig. 7.2b is generated by the admissible contact
segments through U, varying along [U;Uy] of W!(UL) in Fig. 7.2a. The surface
M shares the contact segment [U.U!] as a common boundary with surface M;,
as well as [U!U,) as a common boundary with the surface Mj.

Thus the surface M = My U Mz U My U M, U Ms is now complete. The
Riemann solution for an arbitrary state Ur in a neighborhood of Uy € «
is obtained as in Case 1: we obtain the intermediate states U2 € M and
UL € W'(Uy) by constructing the backward wave curves through Ur and Uy,
respectively. If U2 € M), the sequence consists of slow-contact/slow/fast wave
groups. If U2 € M, U My U M;, the Riemann solution consists of the sequence
slow/contact/fast wave groups. Finally, if U2 € Mj the sequence consists of

slow/contact-slow/fast wave groups.

Case 3. Uy, € L.

This region is characterized by the inequalities A*(U) < A°(UL) < M (UL);
however, the slow wave through Uy, does not cross the coincidence surface T°.
Thus the lower wave curve coincides with the slow wave curve on plane ¢ = cy.
This implies that the portions M;, M3 and M, of the previous cases vanish.
According to Case 5 of §6 (and using the symmetry), the middle wave curves
W (U,), with U, varying along W*(UL), consist only of the (local) admissible
contact segments of H(Uy,). Such contact segments extend from ¢, to ¢, (see
Fig. 6.7 and use the symmetry). Thus the surface M consists of only one por-

tion, generated in the same way as the portions M; and Ms in the previous
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cases, by admissible contact segments. The Riemann solution for an arbitrary
right state Up is simpler than the previous cases. The sequence of waves in the

Riemann solution is always slow/contact /fast wave groups.

Acknowledgments. We thank the Departamento de Sistemas da Computagio
da Universidade Federal da Paraiba - Campus II, for the usage of its computa-

tional facilities.

References

(1] R. Courant, K. Friedrichs, Supersonic flow and shock waves, John Wiley &
Sons, New York, (1948).

(2] I. M. Gel'fand, Some problems in theory of quasi-linear equations, Amer.
Math. Soc. Trans., Ser. 2, 29 (1963), pp. 295-381.

(8] M. Golubitsky, D. G. Shaeffer, Singularities and Groups in Bifurcation
Theory, vol. I, Springer Verlag, 1985.

(4] E. Isaacson, Global solution of a Riemann problem for a non-strictly hy-
perbolic system of conservation laws arising in enhanced oil recovery,
preprint, Rockefeller University, New York, (1981).

[5] E. Isaacson, B. Temple, Nonlinear Resonance in Systems of Conservation
Laws, SIAM J. Appl. Math., vol. 52, #35, (1992), 1260-1278.

(6] B. Keyfitz, H. Kranzer, A system of non-strictly hyperbolic conservation
laws arising in elasticity theory, Arch. Rat. Mech. Anal., 72 (1980),
219-241,

[7] T. P. Liu, The Riemann problem for a general systems of conservation laws,
J. Diff. Eq. 18 (1975), 218-234.

(8] J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer Verlag,
1983.



FUNDAMENTAL SOLUTIONS OF A SYSTEM 295

[9] A. J. de Souza, Stability of Singular Fundamental Solutions Under Pertur-
bations for Flow in Porous Media, Comp. and Appl. Math., vol. 11, #2,
(1992), 73-115.

[10] A. J. de Souza, Wave structure for a non-strictly hyperbolic system of
three conservation laws, Notas de Matematica n.° 01, DME/CCT/UFPB,
(1993).

[11] B. Temple, Systems of Conservation Laws with Invariant submanifolds,

Trans. Amer. Math. Soc., vol. 280, #2, (1980), 781-795.

Intituto de Matematica Universidade Federal da Paraiba,

Pura e Aplicada Departamento de Matematica e

Estrada Dona Castorina, 110 Estatistica

22460-320, Rio de Janeiro, RJ 58109-970, Campina Grande, PB, Brazil

Email: marchesi@fluid.impa.br Email: desouza@brufpb2.bitnet



