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Abstract

Finite element methods are used to solve a nonlinear system of partial
differential equations which models incompressible miscible displacement
of one fluid by another in a porous medium. Our main purpose is to anal-
yse the influence of the velocity approximation on the calculation of the
concentration. A sequentially implicit time discretization is defined. The
pressure is approximated by a classical Galerkin's method and then accu-
rate velocities of the mixture are obtained via a post-processing technique
which involves the conservation of the mass and Darcy’s law. To solve
the concentration equation we use a streamline upwind Petrov-Galerkin
(SUPG) method. Rates of convergence for pressure, velocity field and
concentration are exhibited. Numerical results are presented to confirm
the rates of convergence predicted for pressure and velocity approxima-
tions. To show the influence of the velocity on the concentration an oil
recovery process is simulated in a five spot geometry.

1. Introduction

We study finite element approximations for a system of nonlinear partial dif-
ferential equations governing incompressible miscible displacement in two di-
mensional porous media. The mathematical model consists of an elliptic sys-
tem coming from the conservation of mass and Darcy’s law and a degenerate
parabolic equation expressing the conservation of the injected fluid (concentra-

tion equation). The concentration of the injected fluid in the mixture is the
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variable of main interest. However, special attention must be paid to the ve-
locity field, which is responsible for the transport of the mixture. Let  be a
bounded domain in the plane R? with smooth boundary 8 and T > 0 a fixed
number. Our differential system, under appropriate physical assumptions, is

given by [10-11,19]

divu=f on Qx(0,7), (1.1)
= Moo, o
= "2 Vp Qx(0,T), (1.2)

with the boundary condition
u-v=0 on 90x(0,7), (1.3)
and
¢S% + div (cu) — div (DVe) =éf on Q x(0,T), (1.4)

with the boundary and initial condition
DVc-v=0 on 90N x(0,T), (1.5)

c(z,0) = co(z) on Q, (1.6)

where p and u are the pressure and Darcy’s velocity of the mixture, ¢ = ¢(z) and
k = k(z), the porosity and permeability of the medium, respectively, v = (v1,12)
denotes the exterior normal to 8Q, f denotes source and sink terms. The

diffusion-dispersion tensor D will be considered as in [10], i.e.,
D = D(u) = dpnI+ |ul{d,E(u) + d,E*(u)}, (1.7)

with
E(u) = gru®u,
B (u) =1- E(u),

where d,,, dj and d, are, respectively, molecular diffusion, longitudinal and trans-

(1.8)

verse dispersion coefficients. Normally dispersion is physically more important
than the molecular diffusion; also, d; is usually considerably larger than d,, and

we shall make this assumption in our analysis. Since p(z,t) is determined up
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to an arbitrary additive constant, we normalize it by imposing the condition

/n p(z,t)dz =0, t €(0,7). (1.9)

Finally, we note that in Equation (1.2) g = p(c) is the local viscosity of the
mixture which depends on the concentration ¢. Such dependence is very impor-
tant in the emergence of viscous fingering, displacement efficiency, and ultimate

oil recovery. In the literature the most widely used form to represent p is
p(c) = p(0) [1—c+M*c]_4, c €10,1], (1.10)

where M = u(0)/p(1) is the mobility ratio. It has been observed that for M > 1
displacement fronts may become physically unstable [21]. In this work we will
only consider the case M > 1. The other case (M < 1) is not so relevant from
the numerical point of view [15-16].

It is important to note that velocity and not the pressure appears explicitly
in Equation (1.4). Consequently, that is the motivation for using an efficient
numerical method to approximate this field, which is the main purpose of the
present work.

A brief outline the paper follows. In §2 after introducing the basic nota-
tion and assumptions a continuous-space approximate problem is defined by
using a sequentially implict time discretization. In §3 three different finite
element formulations for the elliptic equations are present. One is based on
Galerkin’s method for the pressure, another on a mixed which approximates
pressure and velocity simultaneously and finally a post-processing technique.
In §4 the SUPG method is applied to approximate the concentration. In
§5 the post-processing approach is combined with a technique of subtraction
of singularity to treat the case of point sources and sinks. Numerical results
are presented in section §6 confirming the rates of convergence of velocity and
pressure approximation in a particular situation with known solution and il-
lustrating the influence of the velocity on the concentration approximation for

different mobility ratios.
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2. Preliminaries

2.1. Notations and Definitions
To introduce the basic notation, we define the following Sobolev spaces [1]
on
@) ={f; [ IfPds<oo},

wro@) = {1 e oy ZL e (@) ol <m)

with their respective norms

Il = ([, 1P2)’

1
0 d
Z /n |8mf |”da:)

|al<m

I fllmp = (

and suitable modifications for p = co. When p = 2, we have ||f|lm2 =
I fllam@ = ||fllm- The case m = 0, i.e,, H°(Q) = L*(Q) has its norm de-
noted by || - |lo = - ||, and inner product

(f.9) = [ fodz.

2.2. Regularity of the Data

Initially we impose very strong hypotheses in the analysis of system (1.1)-
(1.10). Some of these hypotheses will be weakened in section 5. The functions
k(z),#(z) and f(z,t) are assumed bounded and measurable in the cylinder
Q = Q x (0,7). This means that we shall tacitly assume that the external
sources/sinks are not concentrated at wells, but smoothly distributed over Q.

Mathematically, we have
0<k"<k(z)<ki<oo, (2.1)
0<¢" < ¢d(z) < du <00 (2.2)

Introducing the function A(+) : R — R given by:

Ae) := k(z)/p(e), (2.3)
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which is well-defined since p(c)~! is a polynomial function and can be extended
to all real set R, considering the bounds (2.1)-(2.2) and definition (1.10), we
easily see that

k*/u(0) < AMc) < k.M/[p(0). (2.4)
Furthermore, we can prove that A(-) is a Lipschitz function in ¢, with constant
equal to L > 0 and strictly positive. The initial condition co(z), in Equation
(1.6), is assumed to have enough regularity. The dispersion-diffusion tensor
D(u) is given by Equation (1.7)-(1.8) with dr > 0 and d; > d; > 0, such that
for each £,7 € R? we have

D(u) - € 2 (dm + diul)|é[? (2.5)
and
D(u)¢ - n £ (dm + dilul)[€][n]. (2.6)

Under the above hypotheses Feng in [11] has shown existence and uniqueness

of solution, in some weak sense, for system (1.1)-(1.10).

2.3. A Sequentially Implicit Time Discretization
Let N € Z, At = T/N, t° = ocAt, 0 € R and 99" = ("' — y")/At,

where %™ is an approximation to 1(z,t"). Considering that

div (uc) =u-Ve+cdivu=u-Ve+ fe, (2.8)

a sequentially implicit method is defined by: Forn =0,1,2,... given & = co(z),
find u™, p" and ¢**! satisfying

divu*=f", on Q, (2.9)

u" = =-A(")Vp" on Q, (2.10)

/n phdz =0, (2.11)

¢c"+$2_cn Ut Vet — div (D(um)VeH) 4 ¢t = -

=L on Q.
This sequentially implicit method combines the advantages of explicit and
fully implicit methods [7,15-17], that is:



244 S.M. C. MALTA A.F.D. LOULA E.L. M. GARCIA

i) the original system becomes partially uncoupled;
ii) stability is provided by the implicit approximation of the concentration.

To simplify the notation, in the following sections, we will suppress the
dependence of the variables on n. The analysis corresponding to the time dis-

cretization will appear in [17].

3. Finite Element Approximations for Pressure and Ve-
locity

Substituting (2.10) into (2.9) and using the no-flow boundary condition u-v = 0
on 99, the sub-system (2.9)-(2.11) can be recast as

—div(Mc)Vp)=f on 9, (3.1)
AMce)Vp-v=0 on 09, (3.2)
/n pdz = 0. (3.3)

Multiplying both sides of (3.1) by ¢ € H'(Q) and integrating by parts, we

obtain the following variational problem:
(MVP, Vo) = (fi9), Yo € HY(Q),
(p,1) = 0.

Let A(-,-) : HY(Q) x H'(2) — R be a bilinear form associated with problem
(3.4), given by

(3.4)

A(p, ) :=/n/\(c)VpV(pdx. (3.5)
From (2.1)-(2.4) and (3.5), we see that
ku
Alp,p) 2 u—OHV‘PHZ, Vee HY(Q), (3.6)
k.M ’
Ap,¥) < = IVelllVel, Ve, € HY(Q), (3.7)

which show coercivity and continuity of A(-,-), and by the Lax-Milgram theorem
(3] there exists p € H'(Q) unique solution of problem (3.4). If f € L*(Q) and
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) is a square we know, from theory of elliptic boundary-value problems, that

p € H¥(Q).

3.1. Galerkin Method

Let {rx} be a family of polygonalization 7, = {K} of Q, satisfying the
minimum angle condition [3], and indexed by the parameter h representing the
maximum diameter of the elements K" € 7,. For a given positive integer [ > 1

we introduce the finite element space
Ni= {3 € C°Q); aux € R(K), VK € n},

where P(K) is the set of polynomials on K of degree less than or equal to [,
i.e., N, is the space of piecewise continuous polynomial functions of degree .
By standard interpolation theory we have [3]: Given a function v € H'*1(Q)

there exists an interpolant ¥, € A, such that

llv = Oall + hllv = dally < Koh'*! [v]iga, (3.8)

where | - |, denotes the usual semi-norm in the Hilbert space H™(f).

The Galerkin finite element approximation of problem (3.4) in A}, reads:

Find p, € N, such that

(Aen)VPr, Vo) = (fipn), Yen € M,

(pn,1) = 0,
where ¢, is a finite element approximation for concentration assumed given.

(3.9)

Since N, is a conforming finite element space, i.e., N}, € C°(Q), those results
obtained in Equations (3.6) and (3.7) can be immediately transferred to the
discrete case, and existence and uniqueness of the discrete problem (3.9) is
assured.
Let
P=Pr=P—Pn+Pr—Pn
where pr, € N, is a projection of p into AV, to be defined. Before estimating

p — pr and Py, — pi we call attention to:
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a) Since we need, as before, A(-) to be a uniformly limited, Lipschitz and

strictly positive function, we assume [5] that
—e < cn <6+,
with € > 0 a small arbitrary constant.
b) From interpolation theory, it holds that

Vi € L®(Q).

Following the ideas found in [5,25], where an auxiliary elliptic problem is
introduced in the error analysis of problem (3.9), we define 5, € AN as an

elliptic projection of p in A given by

(’\(C)Vﬁh’V‘Ph) = (/\(C)VP,VLP;,), Y ¢n ENIm
(Pn,1) = 0,

‘

(3.10)

where (p, c) is the solution of the continuous problem (1.1)-(1.10). The following

a priori error estimate for elliptic problem (3.10) is found
Lemma 3.1: There exists a positive constant K, such that

Ip = ull + Bl V(2 = pu)I| S Ky M3R™ |pli, (3.11)
where Ky = Ky (Q, (ko/k*)2 Ko) and |« |11 is the usual H'*1(Q) seminorm.

Proof: Using the definition of the elliptic projection (3.10), the coercivity and
continuity constants exibited in Equations (3.6)-(3.7), respectively, and Cea’s

Lemma (3], we have
V(= )l < (ko/K)EME inf, [9(p =gl
ahENK
From the interpolation theory (see Equation (3.8)), we obtain

IV(p = )| < KaMER! |p|iss,
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if we assume p € H'*'(), [ > 1. Applying the Nitsche trick (3] we have
lp =l < KiMER* piyy,

which completes the proof.

For the global error p — p; we prove

Lemma 3.2: There ezist positive constants K, and f\’g such that
I = pall < llp = #ll + Kalle = eall (3.12a)
IV(p—pn)l S NIV (p = #r)ll + Kalle — ca]l. (3.120)
Proof: Subtracting (3.9) from (3.10) and considering Equation (3.4), we have
(Alen)Vpn = M) Vpr, Vior) = 0,
which is equivalent to
(Men)V(pn = Pn), Vion) = ([Me) = Men)IVin, Vipn) , Yo € Ni.

Taking @5 = pr — pa in the previous equation and applying Holder’s inequality,

we obtain

k" /1ollV (pn = Bu)II* < Llle = eallllVAnlloo |V (pa — 541l

from which yields
IV(pr = B)Il < Kzlle — eall, (3.13q)

with K2 = po/k*L||Vps||e a positive constant independ of . Taking Equation

(3.13a) and Poincaré’s inequality we get
llpn = Pl < Kalle — el (3.13b)

with K, = K, (K3,9). Using the triangular inequality in the definition of the

global error p — p; and considering Equations (3.13 a-b), we obtain

i = pull < llp = #all + Kalle — call,
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V(P =Pl S 11V (p = B)ll + Kalle — cal],

and the proof is complete.

From Lemmas 3.1 and 3.2 we have the following error estimates to problem
(3.9)
Ip = pall < KaMER™ pliss + Kalle = call (3.14a)

IV(p = pu)ll < ExMzh'pliy + Kollc — e, (3.14b)

for p sufficiently regular, i.e., p € H'*(Q), [ > 1.

An approximation of the velocity field ug,
ug := —A(ch)Vpa, (3.15)
can be estimate from
u—uf = Mc)V(pn = p) + [Mer) — Mc)| V. (3.16)

Taking the L?-norm in both sides of the above equation, using Equation (3.14b)
and the hypotheses on A(-), we have

luf —ull < KsMZR|pligs + KoMl — e, (3.17)
with K3 = k.Ii’l/uo and Ky = (||Vps||oL + ];’gk‘,//_to) positive constants.
Remark 3.1: Concerning the velocity approximation uf, given by (3.15), we

note that

a) It is a descontinuous field and does not obey the boundary condition u§-v =

0 at the nodes in a strong sense;
b) It converges with one order lower than the pressure approximation pp;

c) Its error estimate (3.17) depends on the error in the approximation of the
concentration, ||c — c4||, and on the mobility ratio M. The factor M3

deteriorates u$ as M increases.
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Therefore, uf is a poor approximation for the velocity field, specially for larger
values of M, with severe consequence on the concentration approximation as

illustrated in numerical experimentes presented in section 6.

To obtain velocity approximation with improved accuracy and regularity

mixed methods based on Raviart-Thomas formulations will be considered next.

3.2. Mixed Methods

The idea behind mixed methods-is to approximate velocity and pressure
simultaneously. To this end we first introduce some additional notations. Let
Vi={veH(div);v.n=0 on 00},
W:={p e L*(Q);(p,1) =0},
where H( div ) := {v € (L*(Q))?% divv € L?(Q)} with norm given by:
VI divy = Noall® + llozll® + || div v,
For o, € V and ¢ € W we define the bilinear forms:
a(6;0,B8) = (st728)
b(a,p) = —(div a, ),

with A(-) as defined before and 8 a smooth function assumed to be known.

(3.18)

The mixed formulation consists in finding {u,p} € V x W, such that
a(c;u,v) -i-'b(v,p) =0, Vv eV,
b(u,p) = —(f,9), Yo €W,
which is equivalent to solving a family of saddle-point problems. These two

(3.19)

equations express Darcy’s law and conservation of mass in a variational sense.

The no-flow boundary condition (1.3) is strongly incorporated into V.

Let V;, and W, be the Raviart-Thomas spaces [20] associated to the family
mnand V), x W, CV x W, such that
Vii={vn € Va, vh-n=0 on dN},
Wi = {pn € Wh; (¢,1) = 0},
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with div Vi C W, by construction. The finite element approximation of
problem (3.19) reads
Given ¢y, find {u},pM} € Vi x Wi such that

a(ch;udl,vi) + b(va,pM) =0, Vvi € Vi,
buM,on) = =(fren)y YVoun € Wi

Existence, uniqueness and convergence of the solution of (3.20) relies on the

(3.20)

well-known theory for mixed method [2,4,9,20]. For smooth data, the numerical

analysis for this problem leads to

Lemma 3.3: Let {u,p} € V x W and {u},p}} be the solutions of (3.19) and
(3.20), respectively. Then

lu = ulllgdivy +lp =PRI < KsM(|lu = vallg divy + Ip = aall+

(3.21)
+||C_ Ch”), V{Vhsqh} € Vh X Why

with K5 independent of h, M and c.

Proof: By construction of Raviart-Thomas spaces we have
a(cn; Vi, Vi) 2 aMIVally divy YV € Ka(0),

b(Vh, @n)
vi & [Vl div)

with a > 0, 8 > 0 independent of h and M, and

2 Bllenlls Yon € Wa,

Kn(f) ={vn € Vh; b(vh,on) = =(fipn) YV on € Wi}.

From Bezzi’s Theorem [2] problem (3.20) has a unique solution {u},pM} €

Vi x Wy. Following the convergence analysis of finite element methods we
decompose our estimates in two parts. First, we define a projection {a},M} €

Vi x Wy of the solution {u,p} € V x W by

a(c; ap, va) + b(vi, ApT) = a(c;u, va) + b(p, va), Vi € Vi,
b(ﬁ}!:/l,(ph) = b(ua‘rah)a V Ph € Wh,
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which is easily estimated by Brezzi’s Theorem [2], leading to

lu =@}l divy +Hlp— BRI < KeM(llu = Vallgdiv) + P = aall),

(3.22)
VVh € Vh7 gn € W'n

with Kg depending on « and 8. To estimate u} — @} and p} — p} we have
the system
a(ewudf —alf,vi) + b(va, P = BYY) = a(c ), va) — a(en; G}, va),
vvh € vh,
b(u,’}‘ - ﬁﬁ’l,tph) = 0, Vor € W,

which leads to
lluh! = ¥l div ) + P = BYIl < Ko Mlc = eall, (3.23)

with K7 independent of h, M and c. The proof is completed combining (3.22)
with (3.23).
From the interpolation theory for Raviart-Thomas spaces applied to esti-

mates (3.21) we obtain
= i, + I = PO € KoM (B plusa + o= cal),  (3:24)

with K3 depending on K.

Remark 3.2:

a) From (3.24) we observe that the mixed method leads to the same rates of

convergence for velocity and pressure in H( div ) and L?, respectively.

b) Estimate (3.24) with s = 0, which corresponds to the lowest order Raviart-
Thomas element, shows first order rate of convergence for u in H( div )
norm, while (3.17) with | = 1 shows the same rate of convergence for uf

but in L%-norm only. Thus u} is more accurate and regular than u§.

¢) We should also note that u} is less affected by the mobility ratio M than
u§: estimate (3.17) is multiplied by M?% while (3.24) is multiplied by M.
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As an alternative to the mixed method we consider a post-processing ap-
proach [24] with a standard finite element implementation and improved accu-
racy and regularity to approximate the velocity after computing an approxima-

tion to the pressure field.

3.3. The Post-Processing Technique

Let pj, be a finite element approximation of p given by the Galerkin Method,
for example, and U, C H( div ). For simplicity we adopt U, C (H*(2))? C
H( div ), such that

Uh={Vh€Nh XN;,, vp-v=0 on BQ},
with M, € C%(Q), as defined before. The post-processing technique consists in
Finding uf €U, such that

(A" (ea)uf + Vpn,va) + M2§(divul — f, divvy) =0, Vv, €Uy, (3.25)

where 6 is a positive constant depending on the mesh size. Since we have
assumed that A(-) is strictly positive A~!(-) = 1/A(-) makes sense.
By means of a simple calculation and applying Green’s formula to Equation

(3.25) we have the following expression for the post-processing method:

Given pp € N, find uf €U, such that

o (3.26)
Ag(uf,vh) = (pn + Mz6f, divvy), Vvi € Uy,

where As(ul,vi) = (A\"(en)ul,vi) + Mz6( div uf, div v3).

Taking into account the bounds on A~!(-) (see Equation (2.4)) we obtain
As(Vh,vi) > I(Q“Vh”i]( divy’ Vvi € Uy, (3.27a)

|As(wn, Va)| < Krollwnllr divyIVall g divys  Ywns Vi € Un, (3.27b)

with Ky = min {pg/]VIk.,M%J} and Ko = max {,uo/k‘,M%J}.



A POST-PROCESSING TECHNIQUE TO APPROXIM;\TE 253

Now we analyse problem (3.26) taking 6 = h. This error analysis will justify
some numerical results presented at the end of this work. From Equation (3.26)
we define the weighted norm

1

Ivalle == (A~ (ea)va,va) (3.28)

which is equivalent to L?-norm, due to the limitations shown in Equation (2.4).

By the definition of As(:,-) we have
An(uF,vh) == (A (en)ul, vi) + MEA( div uf, div va)

and
An(Viy va) = [[vall? + M| div va||? =: [||valll2-

Using (1.1), (1.2) and (3.26) we obtain the following “consistency equation” for

the post-processing
Ah(u - uf,vh) = - (/\(C)/)\(Ch)Vp, Vh) - (ph, div V},), Vv, € Up, (329)

from which follows
Anul = vi,uf =vi) = (A(e)A(e) = Mew)lVp, ufl = Vi) +

+(pn — py div (uf = va)) + (A7 (ea)(u = Va), Uk = Vi)-
+M3h( div (u —va), div (uf — Vi)

Applying Cauc/}/ly-Schwarz inequality and considering that 2ab < oa’ + 1b?, we

have

LAu(af = vauf —va) < Slipn —pl® + flu = valli -
+M7h|| div (u = va)|? + Kulle — ell?,

with Kui = (|Vpllze(@L)?Ho/k". Since Ap(wn,wn) = |||wnl||?, taking into
account Equation (3.30) and the triangular inequality we conclude that
=l S el = pall+ o — vall+ 33 5h] div (= va) |+

+K11lc — el
(3.31)
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On the other hand, using definition (3.28) and Equation (2.4) we have
llu = vallZ < po/k*|lu = val*. (3.32)

Then, from the interpolation theory (see Equation (3.8)), error estimates (3.14
a-b) and Equations (3.31)-(3.32), we obtain

lu = ufll < KuaMs {B*2(pls + fulir) + fle = call} (3.33)

with K3 a positive constant independent of k, M and ¢ .

Remark 3.3: From estimate (3.33) we observe that:

a) depending on the concentration approximation the post-processing tech-
nique may present a gain of O(h%%) in the rates of convergence for velocity
compared to the Galerkin and mixed methods defined in sections 3.1 and

3.2, respectively;

b) the velocity approximation uf is also less affected by the mobility ratio M

than uf and u}.

Numerical experiments performed with a particular situation of known exact
solution (A(-) = Ao =constant) have exhibited rates of convergence for velocity
that are higher than those predicted by the numerical analysis. In this case
we found both velocity and pressure with optimal rates of convergence since

pressure is calculated by Galerkin’s method.

4. The SUPG Method for the Concentration

Our objective is to determine an approximate solution ¢; for the concentra-
tion ¢, assuming that u} is given by the post-processing technique defined in
the last section. Recalling that the concentration equation is predominantely
convective, it is well known that standard numerical methods such as second
order finite differences or classical Galerkin finite element formulations do not

work well when applied to this problem [13-14]. Here we use the Streamline
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Upwind Petrov Galerkin (SUPG) method to approximate the solution of the
concentration equation. Such method was introduced in [13] and can be viewed
as a variant of Galerkin’s method.

A finite element approximation, based on SUPG method, for Equation (2.2)
is defined by: '

For n = 0,1,2,..., and ¢ > 0, given u} and ¢} we determine ci*' € M,
satisfying:

( "__C",ﬂh> + a(cpttymm) = f(nn) + (@ R(p*) uh - Vim)w = 0
Y € My,

(4.1)

where ¢ is a scalar, in general depending on the mesh; the product (+,:)s is

calculated only inside each element K, i.e.,
Nl\
(fhlgh / fl\gl\dzs (4'2)
I\-l
with Ng the number of elements of the discretization, and fr, gx the restriction

of fi,gn to element K. In addition,

Flm) = (f*H&+ ) (4.3)
and
R(c! ¢_n_;‘:n +ul Vet — div (D(u})Vert!)+
h h h
+(cz+l *n+1)fn+1

is the residual equation for the test function cj*!.

(4.4)

The last term in the left-hand side of Equation (4.1) is activated only when
the hyperbolic features of this equation prevail over the parabolic ones. As such,
the SUPG method improves stability compared to Galerkin’s method applied
to predominantly convective problems [13,14]. When this term is “off” SUPG
reduces to the usual Galerkin’s method.

In [14] the following a priori error estimates for SUPG method applied to

a transport equation with u} replaced by a given function u™ in (4.1) is proved

llle™*! = ek l| < Kish**5[c™ |uan, (4.5)
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where
llealll := 7 lonll + e [ Vipnl| + ot [ju™ - Ty

Here we have a different problem since u}, is approximated by a finite element

method. In [17] the following error estimates was found to this case:
™ = Rl S Kyah® 5™ oy + Kigllum — ud||, (4.6)

where
18alllew := [|Bhllun + 1941 + oF |uF - Vet

with [|[onles = (¢h, on)? a weighted norm.

In Equations (4.5) and (4.6) we are assuming that ¢*+! ¢ HMY(Q), k> 1,
with k the degree of the interpolation polynomial of the finite dimensional sub-
space M. In the numerical analysis made in the previous sections we present
different methods to approximate the velocity field. It has been experimentally
observed that when M increases the velocity approximation becomes an impor-
tant factor in the calculation of the concentration. Numerical experiments for

different mobility ratios will be shown in section 6 to illustrate this influence.

5. Point Sources and Sinks

In realistic reservoir simulation, the external flow is concentrated at wells. In
this case the right-hand side of Equation (3.1) is given by
Nu
f= '_;Q-'J(ma,yi), (5.1)
where N,, is the number of wells, (i, y;) denotes the Dirac measure at (@i, i)
and @ are the specified flow rates of the wells with Qi > 0 in the injection
wells and @Q; < 0 in the production wells. In this section we shall modify our
formulation to recognize the existence of these point sources and sinks. Such
modification is frequently called removal or subtraction of singularities [4,6,10).
Taking into account Equation (3.1) with f given by Equation (5.1), we can
write:
p(z) := pr(2) + pa(2), (5.2)
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with p, denoting the singular part of the pressure, which is given by
i L g
Z o /\ ln |z~ xl'l . Epu (5.3)

with Ai(c) = k(zi)/u(c(z;)). The regular part p, will be approximated by a

finite element method. Similarly we decompose the Darcy velocity as

(z) := 227“\( )Vln]a: z;| + u,(z), (5.4)

i=1

where the first term on the right-hand side denotes the singular part u,. The

regular part of the velocity field u, satisfies

divu, =0 on @, (5.5)

e = =XO)Vpr + 55 (M/Ae) = 1) ui (5.6)
i=1

Urv=-=u,'v, on 0. (5.7)

To define a finite element method to approximate p, and u, we recall some
properties of the solutions u and p of the subsystem (1.1)-(1.2), with f given
by (5.1). According to [12,22] there exists positive constants K¢ and K7 such

that
Ipll1=e < Kya,

’ (5.8)
lluII(Lz-a(g))z < Ky,

with € > 0 an arbitrary small constant, and the above norms defined in the
fractional-index Sobolev spaces H"(Q),reR 1.

Using Equations (5.5), (5.'6) and (5.3) we obtain

= div (A(c)Vp,) 2 div ([Me) = Ai(e)] Vi), (5.9)

i=1
with
=A()Vpr v =Ac)Vp,-v on 00, (5.10)



258 S. M. C. MALTA A.F.D.LOULA E.L. M. GARCIA

whose variational form is given by

(MO Te) = =3 (M) ~A(e)] Vi, V)

|=1

-2 / ()P, - vpdz. ¥ o € HY(Q).

i=1

The Galerkin method associated to problem (5.11) reads

Find p., € My such that

(Mer)Vprn, Vion) = = z([A (ch) = Ai(ch)] Vil Vion)

i=1

- Z/ Ai(en Vp, verdz, Y on € M,

i=1

with A}, as defined in section 3.
The post-processing technique to evaluated u,4 is now defined by

Given p.y, € M, find u,, € [7;,, such that,
(urnyva)+  MES( div upm, divva) = = (A(ch) Ve, va)

+Z( (cn)/Ni(en —l]u,,vh) Yvi € Uy,

i=1

(5.11)

(5.12)

(5.13)

where U := {Vh € My X Mi; Vi - v = —u,, - v on 80}, with u,, denoting the

interpolant the u,.

Using the previously defined notations we can re-write Equation (5.13) as

An(urn,vi) = =(Vpe,vi) + % ([/\.'-I(Ch) - )\_l(ch)]ui;"h) ;
i=1

with Ax(urs, va) i= (A7 (ca)urn, i) + MER( div up, div vy).

The pressure and velocity approximations are then given by

Ph = DPs + Prh

Uy = U, + Upp.

(5.14)
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In particular when A(c) = Ao, Ao a positive constant, the velocity field
does not depend on the concentration since system (1.1)-(1.10) is naturally
uncoupled. In this case, the elliptic sub-system has solution p € H3=¢(Q).
The analysis presented in section 3 applied to this case leads to following error

estimates:
a) For the pressure
Ip = pall = lIpr = prall £ K1sh™ ! |pr|me1
I9(p = pu)ll = 19(pr = Pra)ll  Kroh™ |pe|mss-

b) For the post-processing velocities
flu = unll = [lur = wrall £ Kaoh™*|pelmea. (5.15)

with m = min{(,2 - ¢}.
6. Numerical Results

To confirm the rates of convergence predicted in the analysis presented in section
3, corresponding to the finite element approximations of pressure and velocity
fields based on Galerkin’s method and on the post-processing technique, we
solve the Poisson problem (Equations (3.1)-(3.3) with A = 1) in a square domain
Q = {0,L} x {0,L} (L = 1.854075) with a point source at z = y = 0.0 and a
point sink at z = y = L, whose analytical solution is given by (18]

plavs) = i

1 — en?zen?y
4

cn’zenly
with cn denoting the elliptic cossine with modulus 1/ v/2 [23]. The finite element
approximations were computed with a sequence of 2 x 2,4 x 4,8 x 8 and 16 x 16
uniform meshes of bilinear quadrilateral elements (! = 1).

First we solved the problem using the methods defined in section 3, without
removing the singularities. In this case p € H'~¢(2), and the maximum rate of

convergence expected is 1 —¢ for the pressure approximation, and no convergence



260 S.M.C.MALTA A.F.D.LOULA E. L. M. GARCIA

for the gradient in Z2—norm. To check these conclusions and the influence of the
singularities on the approximate solution we computed the error in 0* = /B,
with

B:= {{z,y}eﬂ; a2’ +y? <rgor (m—L)2+(y—L)25ro}

for different values of r. Figures 6.1 (a)-(b) exhibit the convergence rates for
pressure and its gradient, respectively. Note the influence of r on these rates.
For ro > 0.5 the solution becomes more accurate and optimal convergence rates
are recovered,

Then we combine the Galerkin method with the technique of removal of
singularities defined in section 5. In Figure 6.2 a) we compare the convergence
rates for the pressure obtained using this approach with those given by the
mixed method presented in reference (8] in which the removal of singularities
technique is only applied to the velocity field, Futhermore, Figure 6.2 b) exhibits
the rates of convergence for the velocity field evaluated with the mixed method
and and the post-processing technique combined with removal of singularities.
We clearly observe the improved accuracy of the post-processing technique. As
predicted in the analysis the mixed method presents first order rates of conver-
gence for both velocity and pressure approximations while the post- processing
technique shows second order rate of convergence for the velocity field which is
even higher than that derived in section 5, that is A!® according to equation
(5.15).

From the computational point of view the first order mixed method and
the post-processing approach with bilinear lagrangian element, adopted in the
present experiment demand about the same effort, For example, taking an
n X n mesh of bilinear elements wich corresponds to a 2n x n mesh of first order
Raviart-Thomas triangles, if n 2 3 the mixed methods will have more velocity
degrees of freedom than the post-processing.

To illustrate the influence of the velocity on the concentration we solve a
five-spot problem with different mobility ratios. The domain (see Figure 6.3)

consists of a square (unit thickness) with side L, corresponding to one quarter
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40 Log(error) ' 00 Log(error) _ ‘
-1.0 -1.0} ? 1
=-2.0 -2.0
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- Log(h) - Log(h)
a) pressure b) gradient

Figure 6.1 - Rates of convergence for classical Galerkin method
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Figure 6.2 - Rates of convergence for mixed method and post-processing technique
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of a five-spot arrangement. The injector well I is at the lower-left corner
(z =y =0) and the producer well P at the upper-right (z =y = L). In all the
plots that follows we use 40 x 40 uniform grid of bilinear quadrilateral elements
and a time step of 5 days, with: L = 1000.0ft, permeability ¥ = 100.0mD,
viscosity of oil (1) = 1.0cP, molecular diffusion dp, = 0.0f%, d; = 10.0f¢ and
dy = 1.0ft. The porosity is set to a constant value of 0.1 and the well flow rates

are all 200 square feet per day, thus a pore volume of solvent is injected in 2000

days.

The results are presented as isoconcentration curves of the injected fluid at
250, 500 750 and 1000 days for M = 1.0 and M = 20.0. For M = 1.0 the
velocity field is independent of the concentration and the finite element approx-

imations are more stable than for M > 1, as confirmed in the numerical results

that follow.

) o ) o
P P o
) 6 ) )
L
P P °
) o ) o

Figure 6.3 - Five-spot arrangement
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Figure 6.4 and 6.5 show the concentration maps obtained with SUPG com-
bined with velocity approximations given by Equation (3.15), corresponding
to Darcy’s law with pressure approximation calculated by’ (3.9). Figure 6.4,
corresponding to M = 1.0, presents satisfatory results while Figure 6.5, corre-
sponding to M = 20.0, shows the influence of this inaccurate velocity approxi-
mation on the concentration maps in this case. On the other hand, combining
the SUPG with the velocity field given by the post-processing technique plus
removal of singularity improved accuracy is obtained for the concentration as

show in Figure 6.6 for M = 20.0.

2

250 days 500 days

_J

750 days 1000 days

Figure 6.4 - Concentration maps with uf, M=1.0
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250 days

750 days

500 days

1000 days

Figure 6.5 - Concentration maps with uhG, M=20.

N

250 days

al

500 days

750 days

Figure 6.6 - Concentration maps with u,’:, M=20.
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7. Conclusions

Numerical analysis and error estimates for finite element approximations of the
nonlinear system of partial differential equations governing miscible displace-
ment in a porous medium are presented.

The influence of the mobility ratio M on the constants multiplying the error
estimates of the velocity approximations is analized, showing that the post-
processing technique presents a more accurate approximation which is also less
influenced by M. A numerical experiment with a specific situation of known ex-
act solution showed optimal rate of convergence for the post-processed velocity,
which is even higher than the one derived in the present analysis.

The results presented in Figures 6.5 and 6.6 lead us to a better understanding
of the longstanding problem for adverse mobility ratio computations. From
Figure 6.5 we observe that the grid orientation effect, usually attribute only to
numerical dispersion in oil reservoir literature, in this case is mainly due to a

poor approximation of the velocity field.
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