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MULTIDIMENSIONAL HYPERBOLIC SYSTEMS
WITH DEGENERATE CHARACTERISTIC
STRUCTURE

M. C. Lopes-Filho® H. J. N. Lopes*

Abstract

In this work we study 2 X 2 hyperbolic systems of the form U, +
A(U)U; + B(U)Uy = 0 with degenerate characteristic structure. We de-
fine partially aligned systems as those for which A and B have a common
eigenvector, and we show that the characteristic structure degenerates
into a pair of curves if and only if the system is partially aligned. We
describe examples and some basic properties of such systems.

When studying multidimensional systems of conservation laws, the most
obvious difficulty one faces is the complexity of the wave propagation struc-
ture that even the simplest of these systems present. Most of what is known
applies to systems in one space dimension and scalar multi-D equations, sit-
uations where information propagates along characteristic curves, rather than
the cones or more complicated geometric structures of the common multi-D
systems. This paper is dedicated to a third group of problems with this prop-
erty, two-dimensional 2 x 2 systems whose characteristic structure degenerates
into curves. These give a simplified wave propagation picture, analogous to the
known cases but complicated by their essential multi-D character. We hope to
convince the reader that these offer a natural starting point for multidimensional
theory for systems.

Examples of systems such as these have appeared in the literature, for in-
stance in the work of Tan and Zhang on Riemann problems for a system related

to the two-dimensional Euler equations for incompressible, ideal fluids, [9]. The
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literature of multidimensional systems of conservation laws is not yet extensive.
We mention the work of Lax [2, 3] on hyperbolicity and multi-D systems and
the landmark monography by Majda [5] as basic literature leading to our set
of concerns. Further related work includes the study on symmetry in multi-D
systems [1].

This paper is organized as follows. We begin with the definition of hyperbol-
icity and characteristics in two space dimensions, to fix notation. We show that
the characteristics being a pair of lines is equivalent to an algebraic condition
(Lemma 1). We then introduce the class of partially aligned systems. Our main
result states that a system is partially aligned if and only if the characteristics
are a pair of curves. The characteristic structure of partially aligned systems
is a generalization of that of a pair of decoupled equations. In that case they
consist of straight lines emanating from every point in physical space. We also
describe specific examples of partially aligned systems and some of their prop-
erties. We discuss in detail the behavior of smooth solutions of the subclass
of totally aligned systems, including L* bounds and shock formation in finite
time.

We start from the notion of hyperbolicity. Let A and B be a pair of constant
2 x 2 matrices, and let ¢ = (£1,&2) be a nonzero vector in IR?. Define C(§) =

£&1A + £ B. Consider the system of differential equations
U: + AU, + BU, = 0. (1)

Definition 1 System (1) is hyperbolic in the direction £ if C(§) has real eigen-
values. It is strictly hyperbolic if C (&) has distinct real eigenvalues. We will
say that the system is (strictly) hyperbolic if it is (strictly) hyperbolic in every

direction.

Assume the system (1) to be hyperbolic. We define its symbol S to be
the matrix-valued function S(7,€) = 71 4+ C(€). We will also consider the
homogeneous quadratic polynomial p(r,¢) = det S(r,€).
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Definition 2 Define the co-characteristic variety
I'={(r,¢) € (R x R*)"| p(r,€) = 0}.
The characteristic variety is defined as
A ={(t,z,y) € R x R?| (t,z,y) = Vp(r,£), for some(r,€) € T'}.

Both A and T are conic subsets of IR® and (IR®)*. This means that if a vector
v belongs to one of them, then any real multiple of v also belongs to it. T'is
conic because it is the zero set of a homogeneous function. A is conic because p
is quadratic, and hence its gradient is linear. There is a natural duality between
A and T.

The function p(7,€) is a second degree polynomial in 7, for every £ fixed.
Looking at it this way we identify it with the characteristic polynomial of the

matrix C(—¢). We consider the even function of ¢
A(€) = (TrC(€))* - 4det C(¢), (2)

which is the discriminant of p(7,£) = 0. Clearly (strict) hyperbolicity in the
direction £ is equivalent to (strict) nonnegativity of A(—¢). Our first result
describes the kind of degenerate characteristic structure in which we are inter-

ested, in terms of A.

Lemma 1 The characteristic variety A of system (1) consists of a pair of
straight lines through the origin if and only if the discriminant A(€) is the square
of a linear homogeneous function of €. The characteristic variety consists of a

single line if and only if A(€) is identically zero.

Proof: We begin by observing that A consists of a pair of lines if and only if I
consists of a pair of planes. Suppose that I' consists of a pair of planes and let
n; and n, be their normal vectors. Since [ is the zero level set of p(7,&) then
Vp is normal to I'. Thus Vp(r,£) must be linearly dependent with one of n,

or naz. By definition of A and by homogeneity of p we see that A must contain
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the spaces spanned by ny and nj, a pair of straight lines. Conversely, assume
A consists of a pair of lines and let n; and n; be their generators. The set T is
hence normal to either n; or n, everywhere. Thus it is contained in the planes
normal to n; and n,. Consider the intersection of I’ with the plane normal to
n;. That must contain a point ¢ where (Vp)(g) is not zero, since otherwise n,
would not be in A. By the implicit function theorem, I' is a two-dimensional
surface near ¢. So, p restricted to this plane is a quadratic function vanishing on
a nonempty open set. This implies p is identically zero on the whole plane. The
same argument applies to the plane normal to nz, which proves our assertion.

Clearly, the argument above also proves that I reduces to a single plane if
and only if A reduces to a single line. It is thus enough to show that I consists
of a pair of planes if and only if A is the square of a linear homogeneous function
of {. If A is the square of such a linear function, one may by inspection conclude
what we want immediately. The converse is a little more delicate.

Suppose that I' consists of a pair of planes, given by a;r + bié1 + cié = 0,
i = 1,2. Observe that both a; and a; must not be zero, because a vertical plane
cannot be contained in a level set of p since the coefficient of 72 is nonzero. Now
we have expressions, 7; = —(1/a;)(bi1 + cié2). We compute A explicitly, and
obtain A = ((b1/a; — ba/az)éy + (c1/a1 — ca/az)é2)?.

If A =0, clearly I is a single plane. The converse hypothesis will mean that
the roots 7; above are identical, which implies the vanishing of A.

a

We now turn to the definition of partial alignment. Let A and B be smooth

functions, defined on a domain @ C IR? with values in the set of 2 x 2 real

matrices. We will consider the quasilinear system
Ui+ A(U)U; + B(U)U, = 0. (3)

We assume that this system is hyperbolic, i.e. for any Uy € Q, the linearized
system Uy + A(Uo)U, + B(Uo)U, = 0 is hyperbolic.

Definition 3 System (3) is partially aligned at Uy € Q if A(Up) and B(Uy)

have an eigenvector in common. We say it is partially aligned in 0 if it is
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partially aligned at every state in Q. We call a common eigenspace of A and B
a direction of alignment. If, for each U in Q, A(U) and B(U) have two common

linearly independent eigenvectors then the system is said to be totally aligned.

We will discuss several properties of partially aligned systems. Assume the
choice of common eigenvector can be made smoothly in state space. The most
important property is the existence of a Riemann invariant associated with the
direction of alignment. The construction of Riemann invariants for hyperbolic
2 x 2 systems in one space dimension is possible due to the fact that all smooth
vector fields in a two-dimensional space are locally conformally equivalent to a
gradient vector field (see [8]). Since state space is two-dimensional, this fact can
be applied to the smoothly varying family of common eigenvectors of the par-
tially aligned matrices A and B. In Proposition 1 we give a sufficient condition
for existence of a smoothly varying family of eigenvectors.

Let r = r(U) be a smooth function, defined on a domain Qo C 2, such that
Vr(U) is a common left eigenvector of A(U) and B(U) for each U in Q. In
particular this vector field does not vanish.

Let w(U) be a smooth function, defined on Qg above, and such that, to-
gether, w and r form a new coordinate system for the neighborhood () in state
space. What is required for w is that the map V(U) = (w(U),r(U)) is a diffeo-
morphism. In particular, Vw and Vr have to be linearly independent. In these
new coordinates, system (3) becomes upper triangular. We will write it as:

{wt+<f(V)V>+<g(V)V> =0 )
re 4+ Aa(V)rz + Ap(V)ry
Denote by f = (f!, f?) and g = (g',9?) the vectors that appear in the first
equation. The scalar functions A4 and Ap are the eigenvalues of A and B
respectively, associated with the common eigenvector.
The main result in this paper is the following description of partial alignment

in terms of the characteristic structure.

Theorem 1 System (8) is partially aligned if and only if its characteristic
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structure consists of a pair of curves emanating from every point in physical

space.

Proof: Fix Up € Q and call A = A(Up) and B = B(Up). By Lemma 1, the proof
is reduced to showing the equivalence of partial alignment and the property that
the discriminant A(¢) be the square of a homogeneous linear function of €.
First assume A and B have a common eigenvector n, associated to the
eigenvalues A4 and Ap. Set L = (A4, Ap). Then g =< L,£ > is an eigenvalue

of C(£), and n is its eigenvector. The other eigenvalue is Tr(C(€)) — I, also a

linear function of ¢. The characteristic polynomial of C(£) can be written as
p(r, =€) = det(rI — C(€)) = % — Tr(C(€))r + det(C(¢)),

with discriminant A = (TrC')? — 4det C. This expression is exactly the square
of the difference of the eigenvalues. In this case, A = (2l — TrC(£))?, as we
wanted.

Conversely, assume that the discriminant A is the square of a homogeneous

linear function of ¢,

A = (mé& +nk)*. (5)

First assume A is diagonalizable. Since the trace and determinant are invari-

ant under conjugation, we will rewrite the problem on a basis of eigenvectors of
A. We denote the new matrices A and B by:

_|a 0 | b bre
A_[O az]a,ndB_[b21 b22].

Now we write the discriminant of the characteristic polynomial of C(¢) =
§1A + £, B, with A and B above. We obtain the expression
A = (a1 — a2)* + 26162(ar — az)(biy — byo) + €2 [(bu — ba)® + 4b12b21] . (6)

Matching the corresponding coefficients of the two expressions (5) and (6)
for the quadratic polynomial A(£), we see that either a; = ay or bygby = 0. In

the case a; = ay, the matrix A was originally a scalar multiple of the identity,
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and therefore, any eigenvector of B is a common eigenvector. In the second
case, if by; = 0, then the first basis element of the chosen basis of eigenvectors
of A is also an eigenvector of B and if by vanished, the second basis element
would then be the common eigenvector.

Next suppose A is not diagonalizable. The matrix A must have repeated
eigenvalues and a one-dimensional eigenspace. Thus there is a basis on which
the problem can be rewritten with new matrices:

_ a 1 _ bll blg
A—[O a]andB-—[bzl bn]'

The discriminant of the characteristic polynomial of C(€) in this case is
A = baadbyr + € [(bus — ba2)? + dbazbn] -

By matching coefficients again we see that by has to be 0, hence the vector
(1,0) in the new basis is also an eigenvector of B. This completes the proof.

[m]

The degenerate case where the characteristics reduce to a single line is the
case where both A and B have repeated eigenvalues. We call a state with this
kind of degeneracy coincident. A system that is totally aligned and coincident
has both dependent variables functioning as Riemann invariants, propagating
along the same characteristic. This implies that the characteristic is a straight
line. Thus, totally aligned, coincident systems behave very much like scalar
equations.

In studying partially aligned systems, a hypothesis of non-coincidence may
play the role that strict hyperbolicity plays in 1-D theory. Systems that are
everywhere coincident are nonlinear examples of constant multiplicity multiple
characteristic systems. Systems that possess both coincident and non-coincident
states are examples of systems with characteristics of variable multiplicity, and
are notoriously difficult to deal with (see [6] for some of the linear theory of
hyperbolic equations with multiple characteristics). Another way of stressing
the role of coincidence for the class of partially aligned systems is the following

Proposition.
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Proposition 1 Let A(7) and B(t) be smooth one-parameter families of par-
tially aligned 2 x 2 matrices. Let 1y be such that A(mo) and B(my) are not coin-
cident. Then there ezists a neighborhood [ of T such that A(t) and B(7) are
not coincident in I. Furthermore, there ezists a smooth vector-valued function

n(r) which is a common eigenvector of A(t) and B(r) for all T near 7.

Proof: The first statement is a trivial consequence of the characterization of
coincidence in terms of the vanishing of A.

Let us proceed to the second conclusion. Assume, without loss of generality,
that A(r) has distinct eigenvalues near 7,. Therefore there are two smoothly
varying families of eigenvalues of A. The respective eigenvectors can hence be
chosen smoothly. One of these must necessarily be a common eigenvector.

0

Another important observation on partially aligned systems is that they are
always nonstrictly hyperbolic, in the sense that at every state Up there exists at
least one direction ¢ where C(¢) has coincident eigenvalues. We determine this
direction by looking at the discriminant A(¢) = (miéy + mas)2. We observe
that it always vanishes on a straight line. Nonstrict hyperbolicity in more than
one direction implies A vanishing and hence coincidence.

Consider a linearization of a partially aligned system at a constant state.
We can rotate physical space, to make the direction of non-strict hyperbolicity
the z-axis. With that rotation, the matrix A will have repeated eigenvalues,
which after a Galilean transformation of physical variables, can be assumed to

be zero. In upper triangular form, this linearized system has the form:

0 a K1 b _
Ut+[0 OJUI+[0 'U2JU1,—0.

This is a particularly simple form for the linearized systems, that calls attention
to the non-strict hyperbolic nature of these.

We describe examples of partially aligned systems.

1. Consider the systems:

{ u + (u2/2)1‘ + (f(u, v))y =0 (7)
v+ (9(u,0))s + (v7/2), = 0.
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If this system is partially aligned, and the alignment direction is neither
horizontal nor vertical, then the eigenvalues for the common eigenvector

are u and v, and the following relation holds:

(gv = u)(fu = U) = Gufo.

Where the direction of alignment is either vertical or horizontal, the eigen-
values change and the corresponding relation becomes f, = 0 or g, = 0
respectively. On the other hand, if either (g, — u)(fu — v) = guf, or
fo = 0 or g, = 0 then the system is partially aligned. For instance,
fu,v) = eu? + (uv)/2 + ev? and g(u,v) = —eu? + (uv)/2 — v? are a

specific case of these examples.

2. A system of conservation laws can be obtained from the incompressible 2-
D Euler equations, setting pressure and density constant in the momentum
balance equations. This system was first studied by Tan and Zhang [9)
who discussed Riemann problems. The system has the form

u + (u?), + (uv)y 0
{”t + (w) + (v?), 0. (8)

This system is partially aligned, with a rather singular coincident state
at (0,0), and non-coincident elsewhere. Its structure was used in [4] to
study shock formation, via a compression rate argument. In this shock
formation study, this system was used as a template for a small class
of partially aligned systems for which that analysis holds. Any smooth

function constant on rays is a Riemann invariant for this system.

Let us now make a brief discussion of totally aligned systems. This is in-
tended to illustrate the use of a pair of Riemann invariants in a multidimensional
context. These systems have two linearly independent common eigenvectors and
can be put in diagonal form, with a Riemann invariant constant along each one
of the respective wavefields. This provides local L* estimates for smooth solu-
tions, and behavior similar to 1-D 2 x 2 systems. We make this more precise

below, but first we must introduce the notion of characteristic boz.
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Let n;(U), i = 1,2 be the characteristic vector fields, i.e. the pair of common
eigenvector fields, defined on an open set  in state space. Let Up be a point
in Q. Consider /;(U), i = 1,2 Riemann invariants associated to the respective
characteristic field, defined on a neighborhood € of Uy and such that the map
L = (l1,12) : Qo = L(Q) is a diffeomorphism.

Definition 4 A characteristic bor neighborhood Q, compactly contained in Qq,
is the inverse image, through the map L of a rectangle {a; < l; < b1} X {az <
12 < bz}

Therefore, a characteristic box is bounded by a curved quadrilateral where
each pair of opposing sides is perpendicular to one of the characteristic wave-
fields, n;(U). To any point U in state space we associate a fixed characteristic
box neighborhood, @(Up), containing Uy and compactly contained inside Qp,
the domain of L.

Proposition 2 Let U(z,y,t) be a smooth solution of a totally aligned sys-
tem, defined on R? x [0,T), with compactly supported initial data. If the set
{U(z,y,0) | (z,y) € IR%} is contained in the closure of a characteristic bozx
Q(Uo) then the solution remains in the closure of Q(Up) for all timet < T.

The Proposition localizes quite sharply the solution as long as it is smooth,
for sufficiently small initial data. This can be interpreted as an a priori L™

bound, or better, as an exclusion of singularity formation through blow-up.

Proof: Suppose that at time ¢y, there exists a compact connected set N of
(z,y)-space such that U(N X {to}) is contained in one of the characteristic
boxes () defined above. Let L(Q) = {a1 < li < b1} x {az < Iz < by}. Let
D be the domain of determinacy of N x {0}, consisting of the points (z,y,1)
such that ¢ > #o and both characteristics emanating backwards from (z,y,t)
intercept the plane t = ¢; inside N. We claim that U(D) C Q.

Suppose, by contradiction that U(D) is not contained in Q. Observe that
there exists a § > 0 such that

U{(z,y,t) €D |to <t <to+6})CQ.
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This follows from the continuity of U, the compactness of N and the fact that
characteristic boxes are open. Let ¢* be the maximal such . By the compact-
ness of D and by hypothesis, there exists a point P in D N {t = to + ¢*} which
is not in U~!(Q). The backwards characteristics emanating from P have their
images through U completely contained in the domain of definition of the Rie-
mann invariants. As the Riemann invariants are constant on their respective
characteristics, a; < [1(U(P)) < b; and a; < l3(U(P)) < bz, which implies that
U(P) € Q, a contradiction.

Next assume that at time ¢o, U(N x {to}) is contained in the closure of a
characteristic box Q. We claim that U(D) is still contained in the closure of
Q. Define Q. as L™*((a; — €,b; + €) X (az — €,b; +€)). Let €9 > 0 be such
that @, is contained in o, the domain of definition of the Riemann invariants.
Then U(N x {to}) is contained in Q. for every 0 < € < €o. By the argument
above, U(D) is contained in all of these @Q., hence in their intersection, which
is exactly the closure of Q.

Now let P = (z,y,t) be any point for which ¢ < T. Consider the domain
of dependence of P, consisting of those points at time ¢ = 0 which can be con-
nected to P by a union of characteristics. Since the characteristic speeds depend
smoothly on U they are globally bounded. Thus the domain of dependence of
P is contained in a compact set. Let N be a connected open set, with compact
closure, covering the domain of dependence of P. Then P is contained in the
domain of determinacy of N. It follows from the argument above and from the
hypothesis on the initial data that U(P) belongs to Q(Up).

0O

The nonlinear sharp Huygens principle argument for shock formation, due
to Klainerman and Majda (see [5]) works in this case, exactly as in the original
1-D case. Although they are nonstrictly hyperbolic, totally aligned systems
have better analytic behavior than general strictly hyperbolic systems, as was
observed by Rauch in [7].

Proposition 3 There is no global smooth solution of a totally aligned system
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with compactly supported initial data.

Proof: We will assume, by contradiction, that there is a global smooth solution
with compactly supported initial data. Pick a Jordan curve C in physical space
IR?* x {t = 0} containing the support in its interior. Clearly, U(C,0) = Up, a
constant state. Call 2 the open set determined by the interior of C. The domain
of influence of Q2 is the union of all forward characteristics emanating from points
in Q. It is contained in the set bounded by the union of all characteristics
emanating from points on C, i.e., the union of two cylinders with base C and
distinct inclinations. This is true because as long as the solution remains smooth
characteristics of the same family cannot cross. After a finite time, the two
cylinders which emanate from C separate, so that the intersection of these
cylinders with a horizontal plane {t = t¢} are composed of two disjoint Jordan
curves, congruent with C and each contained on the outside of the other. The
support of the solution now is contained in these two disjoint regions, and in
each one of them, a Riemann invariant is constant. These two pieces of the
solution no longer interact, and the evolution in each one of them is governed
by a scalar conservation law, which will trivially form shocks in finite time, for
any nonconstant smooth compactly supported initial data.
[m]
We add a few concluding remarks. What we have done can be generalized
to 2 X 2 systems in many space dimensions. The notion of partial alignment
is, however, far more singular in that context. The introduction of the class
of partially aligned systems poses a wealth of interesting problems, in terms of
generalizing known theory to them. There is enough structure to make some
interesting generalizations possible, as the authors have shown in [4]. If these
problems will be interesting or not will depend on whether partially aligned
systems can be used as physically meaningful models, even if only in special
circumstances. We think this may well turn out to be the case. In our view, the
most important open problem is deciding if a-priori estimates for weak solutions

are available. We mentioned the work of Rauch [7], which shows one cannot -
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expect BV or L? estimates, p # 2, for multi-D systems, but the only partially
aligned systems that satisfy his hypothesis are totally aligned ones, which are
exactly the systems that turn out to admit BV estimates after all.

The authors are pleased to thank Barbara Keyfitz, for her encouragement,

her comments and, most importantly, for her scientific inspiration.
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