Matemdtica Contemporanea, Vol. 8, 2053—-22/

"- S B M http://doi.org/10.21711 /231766361995 /rmc810
/|

©1995, Sociedade Brasileira de Matemética

SOME EFFECTS OF VISCOUS TERMS ON
RIEMANN PROBLEM SOLUTIONS

Jane M. Hurley Bradley J. Plohr*

Abstract

This paper concerns 2 x 2 systems of conservation laws with quadratic
fluxes corresponding to Case II in the classification of such problems.
Aided by a computer program, we have constructed the solution that
satisfies the viscous profile criterion for shock admissibility with respect
to a particular choice of viscosity term. Our solution differs from that
obtained using the Lax admissibility criterion, even though solutions exist
and are unique for both criteria. With the viscous profile criterion, some
nonlocal Lax shock waves are inadmissible; in their place, transitional
waves appear in the wave patterns.

1. Introduction

In this paper, we present the solutions of Riemann problems for a certain non-

linear 2 x 2 system of conservation laws:

Ui+ F(U), =0, U= ( :j ) (1.1)
with initial data
U, if <0,
U(z,0) = Ua(s) = { g 23 (12)
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We assume that the flux function F' is a homogeneous quadratic function in U,
and that there is an isolated umbilic point at the origin, where the Jacobian is
a multiple of the identity matrix. Away'from the origin, the system is strictly
hyperbolic, i.e., F'(U) has distinct real eigenvalues A;(U) < A2(U). This family
of problems has been classified by Schaeffer and Shearer [8] by reducing Eq,

(1.1) to the normal form (written in components)

{ up + (au? + 2buv + v?), 0, (1.3)

vy + 3(bu? 4 2uv), = 0.
In this paper, we focus on nonsymmetric (b # 0) models falling into Case II, in

which the parameters a and b satisfy the inequality
%bz <a<l+b. (1.4)

For the solutions diagrammed below, ¢ = 0.5 and b = 0.2. We expect that
the solutions obtained using these parameter values are representative of the
solutions for any a and b satisfying the inequality (1.4).

Schaeffer and Shearer [9] have solved the Riemann problems (1.1)-(1.2) un-
der the requirement that all shock waves that appear in the solutions satisfy the
Lax admissibility criterion. (See also Ref. [6] for the symmetric case, b = 0.)
These authors find that a unique solution exists for each Uy and Ugr. In the
present work, we solve the Riemann problems using shock waves that admit
viscous profiles with respect to a particular choice of viscosity term. We also
obtain existence and uniqueness of solutions, although some of our solutions
differ from those for the Lax criterion.

It is well-known that the Lax and viscous profile admissibility criteria lead to
different solutions of Riemann problems. For example, for a scalar conservation
law with a flux function that is a double well, there are Lax shock waves that do
not satisfy the Oleinik admissibility condition, which is equivalent to the viscous
profile criterion. Similarly, the Lax criterion differs from Liu’s criterion [7],
which extends Oleinik’s criterion to systems of conservation laws. In these cases,
a saddle-node bifurcation is responsible for breaking a connecting orbit. In the

present work, however, a different bifurcation phenomenon is the underlying
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mechanism: the occurrence of double separatrix connections, i.e., transitional

shock waves.

2. Admissibility Criteria

A (centered) shock wave solution is a discontinuity that propagates at speed s
and separates two constant states U_ and Us. The quantities s, U_, and U,

are related by the Rankine-Hugoniot condition
—S[U+ —U_]+F(U+) —F(U_) =0. (21)

As is well known, not all shock waves represent physically admissible solutions.

In this work, we consider two different admissibility criteria.

2.1. Lax Criterion. For a 2 x 2 system of conservation laws, the Lax admis-
sibility criterion requires that, of the four characteristics on the two sides of a
shock wave, precisely three impinge on the wave. This means that one of the

following sets of inequalities is satisfied:
s < /\1(U[,), /\1(UR) <8< /\2(UR), (22)

or

MUL) <s<X(Up),  M(Ug) <s, (2.3)

where s is the speed of the shock wave. A shock wave satisfying inequalities

(2.2) (resp., (2.3)) is called a Lax 1-shock wave (resp., Lax 2-shock wave).

2.2. Viscous Profile Criterion. The viscous profile criterion requires that
a shock wave arise as the limit, as ¢ — 0, of a traveling wave solution to a

parabolic equation associated with Eq. (L.1),
Ui+ F(U), = ([ D(U)U,]., (2.4)

where D(U) is called the viscosity matrix. Such a traveling wave solution is of

the form

Uz,t) = U (m = St), (2.5)

€
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where U(€) — Us as £ — Foo. To be a solution of Eq. (2.4), U must satisfy

the ordinary differential equation
=s[U(€) - U-1+ F(U(§)) - F(U-) = DU()U"(©)- (2.6)

According to the Rankine-Hugoniot condition (2.1), U~ and U, are critical
points of the dynamical system (2.6). A shock wave is said to have a viscous
profile if there exists an orbit that connects U~ to Uy, and shock waves with
viscous profiles are said to be admissible. For 2 x 2 systems, the question of
shock wave admissibility reduces to studying planar dynamical systems and
their critical points.

The admissibility of a shock wave depends, in general, on the viscosity matrix
D(U). In this work, we make the simplest choice, D = I. This choice is not
necessarily the best for physical modeling, but it leads to certain mathematical
simplifications. For instance, the Lax inequalities determine the types of the
critical points U_ and U, of the dynamical system (2.6). Furthermore, because
F'(U) has real eigenvalues, a generic critical point has one of three types: a
repelling node, an attracting node, or a saddle point.

Although the chosen viscosity matrix is very special, and some features of
the solution are not generic, we expect that the solution for a more general
choice of D(U) has many of the same features as appear in the solution for
D = I. The solution for a broader class of viscosity matrices is the subject of

current research.

3. Construction of the Wave Curves

The solutions presented in this paper are the product of both analytical and nu-
merical work. The numerical work was done using a computer program written

by E. Isaacson, D. Marchesin, and B. Plohr.

3.1. Rarefaction Curves. A rarefaction wave is a piecewise smooth, scale-
invariant solution U(z,t) = U(z/t) of Eq. (1.1). After substituting U(z/t)

into Eq. (1.1), one finds that the construction of an i-rarefaction curve entails
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solving for integral curves of the differential equation U’ = r;(U/), where r;(U) is
aright eigenvector of F'(U). An i-rarefaction wave through Uy, is that portion of
the i-th integral curve through Uy along which the characteristic speed A;(U) is
increasing. The shape of the integral curves (and hence the rarefaction curves)

for our model can be determined analytically (see Ref. [9]).

3.2, Shock Curves. The Hugoniot locus for a fixed state Uy, is given by the
set of all points Ug that satisfy Eq. (2.1) for some speed s. The Rankine-
Hugoniot condition, however, says nothing about the physical relevance of the
shock waves that satisfy it. (See Ref.[4] for a listing of shock wave types that
can occur for a 2 x 2 system.) The 1-shock curves (resp., 2-shock curves) are

those portions of the Hugoniot loci that satisfy the Lax inequalities (2.2) (resp.,

(2.3)).

By converting to a polar coordinate system (R, ) centered at Uy, the Hugo-
niot locus can be parameterized by the angle ¢. The computer program men-
tioned above uses this parameterization to numerically generate the Hugoniot

locus for any point Uy,

3.3. Composite Curves. In Ref. [9], Schaeffer and Shearer prove that the
only composite waves that can occur for homogeneous quadratic models are 1-
RS-composite and 2-SR-composite waves. A 1-RS-composite wave occurs when
a l-rarefaction curve intersects the inflection locus, i.e., reaches a point where
the characteristic speed A;(U) is no longer increasing. To extend the 1-wave
curve past this inflection point, a 1-shock wave that is characteristic on its
left side (i.e., \;(U-) = s) is adjoined to the rarefaction wave, resulting in a
composite wave. A 2-SR-composite wave occurs when a 2-shock curve ends
at a point U* because the shock speed coincides with the characteristic speed
A2(U*). To extend the 2-wave curve past the point U*, a 2-rarefaction wave is
adjoined to the right side of the shock wave, resulting in a composite wave. The

computer program uses Newton’s method to construct composite waves.
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4. Transitional and Overcompressive Waves

Certain shock waves that are admissible inder the Lax criterion are also admis-
sible under the viscous profile criterion. For the case D = I, Lax 1-shock waves
with viscous profiles correspond to connections from repelling nodes to saddle
points, and Lax 2-shock waves with viscous profiles correspond to connections
from saddle points to attracting nodes. However, not all Lax shock waves pos-
sess viscous profiles. Moreover, there are shock waves that do not satisfy the
Lax criterion and yet have viscous profiles. In the solutions that follow, such

non-Lax shock waves play an important role.

4.1. Transitional Waves. Transitional waves are not associated with a par-
ticular characteristic family, but instead occur in a wave pattern lying between
a 1-wave group and a 2-wave group. Thus certain Riemann solutions consist of
three or more distinct waves. In a Riemann solution for a quadratic model, there
is at most one transitional wave group, which is either a transitional rarefac-
tion wave or a transitional shock wave. (See Ref.[3] for greater detail regarding

transitional waves.)

Schaeffer and Shearer [9] use transitional rarefaction waves in their solutions
for Uy in certain regions (regions C1, C2, and C'2 described below). Transi-
tional rarefaction waves occur when a 2-rarefaction wave is adjoined on its right
side by a l-rarefaction wave. Since the wave speed is given by the eigenvalues
Xi(U) of F'(U), such transitional waves can occur only when there are states
at which the eigenvalues coincide. In our problem, this occurs only at the um-
bilic point, U = 0. In a region where a transitional rarefaction wave occurs,
the solution is as follows. A 1-wave connects UL to a point UM1 such that the
2-rarefaction wave curve drawn through Uy, intersects the imbilic point. Pass-
ing through the umbilic point, the 2-rarefaction curve becomes a 1-rarefaction
curve, which is traversed to a second intermediate point Up,. A 2-wave curve

is then taken to a right state Ug.

Transitional shock waves are non-Lax shock waves that nevertheless do pos-
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sess viscous profiles. The viscous profile of such a shock wave connects two
saddle points. Reference [3] describes the wedge-shaped regions in state space
within which such shock waves can occur. (For the transitional shock waves
described in this reference, the connecting orbits lie along a straight lines. In
the case of homogeneous quadratic models (1.3) with D = I, all saddle-saddle
connections are of this kind [1], [3] .) When D = I, the wedge-shaped transi-
tional regions degenerate and transitional shock waves occur only between a left
state UL on a secondary bifurcation locus and an open interval of right states Ug
on the same bifurcation line. Therefore, in a region where a transitional shock
wave is required, the solution consists of a 1-wave to a point on the secondary
bifurcation line Uy, , followed by a transitional shock wave from U M, to a point
Uwm, lying in the transitional interval, and finally a 2-wave from Unt, to Ug. The
transitional shock wave, like a 2-shock wave, must have a wave speed greater

than that of the wave preceding it.

4.2. Overcompressive Shock Waves. In contrast with Lax shock waves,
overcompressive shock waves have all characteristics impinging on the shock,
i.e., A2(UR) < s < M(Ug). For the case D = I, an overcompressive shock
wave connects a repelling node to an attracting node. Such shock waves form
boundaries of Ug regions. For a Riemann solution containing a 1-shock wave
followed by a 2-shock wave, it is possible that as Ug is varied along the 2-shock
curve, the speed of the second wave becomes coincident with that of the first,

at which point the solution consists of a single overcompressive shock wave.

5. Characteristics of the Solution to the Riemann Prob-
lem

In general, solutions to Riemann problems consist of a series of waves — rarefac-
tion waves, shock waves, and composite waves — with increasing wave speed,
joining a left state Uy to a right state Ug. For a 2 x 2 system, the result, for
a fixed left state UL, is a diagram representing the various wave combinations

required to get from Uy to different right states U in state space. As we vary
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UL, the solution diagram also changes; however, for small variations in Uf, the
solution is qualitatively the same, i.e., the number and relative positions of each
Ur region remains the same. Using the Lax criterion, Schaeffer and Shearer [9]
found the regions within which variations in Uz have no qualitative effect on
the solution. Because of the homogeneity of the flux function in our problem,
these regions are sectors bounded by certain Uy boundary lines. For a generﬁl
theory of Uy, boundaries, we refer to Refs. [9], [5], and [2].

5.1. U, Boundaries. The Uy boundaries for the model of this paper are
shown in Figure 5.1 (for the Lax criterion) and Figure 5.2 (for the viscous
profile criterion). For clarity, these figures correspond to @ = 0.9 and b = 0.8;
this choice enhances the distinction between the lines B and H; while keeping
the same relative positions of the boundary lines as for a = 0.5 and b = 0.2,

which are the values used in the Ur diagrams below.

The lines marked B consist of points Uy, such that the Hugoniot locus of
UL contains a secondary bifurcation point. The lines marked Iy, £ = 1 or 2,
comprise the inflection loci — points where genuine nonlinearity of the system
fails, i.e., A, (U)r(U) = 0. The lines marked D, represent the 1-family/2-family
double sonic locus — points U, in the plane for which there exists a shock wave
to a state Ug with speed s such that A;(UL) = s = A\2(Ug). Finally, H, marks
the 2-family hysteresis locus — points UL in the plane for which there exists
a shock wave to a state Ur with speed s such that s = A;(Ur) and Ugr € I5.
The labeling of the regions A, B, and C is the same as in Ref. [9]. All of
these bifurcation loci were generated from analytic formulae by the computer
program mentioned above; these formulae are described in the Appendix.

Figure 5.1 illustrates the division of the Uy, plane presented by Schaeffer and
Shearer [9] using the Lax criterion; it is to be c;;ntrasted with the division for
the viscous profile criterion, shown in Fig. 5.2. In Ref. [9], the boundary I
is omitted; however, in this paper, we consider I; to be a UL, boundary. Also,
using the viscous profile criterion, the double sonic loci no longer form bound-

aries, for the following reason. In the context of the Lax criterion, the double
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sonic locus is a Uz, boundary because moving Uy, across it opens a segment of
Lax shock waves on the Hugoniot locus. However, these shock waves do not
possess viscous profiles. Consequently, there is no qualitative difference in the
viscous profile solutions between regions A2 and A3, nor between regions A’2

and A'3.

FIGURE 5.2. UL boundaries us-
ing the viscous profile criterion.

FIGURE 5.1. UL boundaries us-
ing the Lax criterion.

Therefore the number of sectors we must consider with the viscous profile cri-
terion is nine. Please note that we have renumbered some of the regions in
the viscous profile case. In particular, region A’3 in the viscous profile solution

corresponds to region A’4 in the Lax solution.

5.2. Diagram Legend. In the solution diagrams that follow, we have used
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the following notation:

—— 1-Rarefaction waves
2-Rarefaction waves
ssmssmns 1-Shock waves
-------- 2-Shock waves
TIEITEY) Composite shock waves
[TTTTTTT] Overcompressive shock waves
00000000 Transitional shock waves
oooooooo Locus where shock waves become characteristic

The arrows on the curves indicate the direction of increasing wave speed.
A point called B marks the intersection of the Hugoniot curve of Uy with a
secondary bifurcation line, and the corresponding point B* marks whefe the
Hugoniot curve of B bifurcates. A point called C marks the intersection of the
l-rarefaction curve through Uy, with Dy, and the corresponding point C* marks
the point reached with a 1-shock wave with characteristic speed from the point
C. A point called X marks the point where the nonlocal 1-shock or 1-composite
branch is no longer admissible according to the viscous profile criterion. A point
called Tg represents the point along the l-rarefaction branch of U from which

a transitional rarefaction wave originates.

The point Oy, marks the end of a branch of 2-shock waves from UL; this
shock wave is overcompressive. The point Op marks where the 2-shock branch
from B* (i.e., one of the branches of the bifurcated Hugoniot locus of B) be-

comes overcompressive.

The solution diagrams below illustrate the various wave patterns that occur
for a fixed left state U and ‘an arbitrary right state Ur. The labeling by the
letters R, S, and T indicate the series of waves that occur in the Riemann
solution when Ug is in that region. For example, RT'S denotes a 1l-rarefaction
wave followed by a transitional shock wave and then a 2-shock wave. The

notation (RS) (resp., (SR)) denotes a shock wave that is characteristic on its

left (resp., right) side.
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6. Solution of the Riemann Problem

6.1. Comparison of Lax and Viscous Profile Solutions. Figures 5.3
and 5.4 show the solutions for a fixed left state Uy in the region A2 using the
Lax criterion and the viscous profile criterion, respectively. For right states Up
sufficiently close to Uy, the solutions are identical since weak Lax shock waves
(i.e., shock waves where |Uy, — Un| is sufficiently small) possess viscous profiles.
Strong Lax shock waves, however, do not necessarily have viscous profiles. Part
of the Lax solution is constructed using such shock waves with no profiles, viz.,
certain shock waves that lie on the detached branch of the Hugoniot locus.
First we consider the solution based on the Lax criterion (see Figure 5.3). On
the detached branch of the Hugoniot locus, there is a region of 1-shock waves.
Extending beyond the 1-shock waves is a segment of composite waves consisting
of shock waves that are characteristic on the left. Such waves are constructed
by taking a 1-rarefaction wave from the point U, to a point Ups lying between
UL, and C on the 1-wave curve, and following it with a 1-shock wave from Um
to a point in the composite segment, the shock wave having speed A;(Uay).
The entire Lax solution is then constructed by drawing the 2-wave curves that
originate from intermediate states on the local branch of the 1-wave curve, the
detached branch of the 1-wave curve, and the segment of composite waves. The
two small regions near the point C* labeled SS and S(SR) are distinguished
from the larger regions above them with the same labels only because nonlocal
Lax 2-shock waves drawn from points on the local 1-wave curve are used in

these regions.



J.M. HURLEY B.J. PLOHR

214
e, s,
‘O'. ‘...
.. ‘.
. sA KN SR
. .
. .
&.. K..
R * L
ss s 88 »
/ A
;. €© ’
’
2¢ ’
’
ss O’I RS ” ;'( RS
-u&;:_‘_'_» / .'...,,.---l.-. l-:—__’.-_-.. 1 -.‘.....ll-lln
R(SR)

FIGURE 5.3. Lax solution: Up in
region A2.

FIGURE 5.4. Viscous profile solu-
tion: Uy in region A2.

FIGURE 5.5. Viscous profile solu-
tion: Uy in region Al.

FIGURE 5.6. Viscous profile solu-
tion: Uy in region C1.
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The entire nonlocal 1-shock curve and 1-composite curve is admissible with
the Lax criterion, but only a portion of it is admissible with the viscous profile
criterion. This nonlocal 1-shock curve intersects a secondary bifurcation line at
the point X. For any right state Ur lying on the 1-shock or 1-composite curve
extending beyond X, there is no connection from U, to U, hence no viscous
profile. Also, of the nonlocal 2-shock waves used to construct the Lax solution,
none possess viscous profiles. This occurs because the left state Uz and the
segment in question are situated on opposite sides of a secondary bifurcation
line. For a right state Ug in a region reached using such a shock wave, both
Uy, and Ug, are critical points of Eq. (2.6); however, there are two other critical
points of the system that lie on the secondary bifurcation line separating UL
and Ug. These other critical points are saddle points and there is a connecting
orbit between the two. This connection interferes with the one from Uy, to
Ug. The result is seen in Figure 5.4, where the inadmissible segment is replaced
with an interval of transitional shock waves. The entire viscous profile solution is
then constructed by drawing the 2-wave curves that originate from intermediate
states on the local branch of the 1-wave curve, the admissible portion of the
nonlocal 1-wave curve, and the transitional interval. Note that the point C
plays no role in the viscous profile solution, since the bifurcation locus Dy is
not a boundary.

The precise structure of the solutions that involve transitional waves de-
pends, in an essential way, on the chosen viscosity matrix D = I. (In particular,
it is not generic that a single left state B has an interval B*X of right states
that give transitional shock waves.) The result of changing D is the subject of

ongoing research.

6.2. Viscous Profile Solution in Remaining Regions. The diagrams for
all of the other regions are affected in much the same way, so we describe them
only briefly.

As Ur, moves across the secondary bifurcation line B into region Al, the

detached 1-shock branch also crosses B. In contrast with the solution described
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above for region A2, the entire detached 1-shock curve lies on the same side of B
as Up, so it remains admissible by the viscous profile criterion. Also, a segment
of 1-composite waves extends beyond the detached 1-shock curve. Not all of
these 1-composite waves are admissible, however. This is because the 1-shock
waves with characteristic speeds that originate from intermediate states on the
1-rarefaction branch beyond the point B do not possess viscous profiles; this
causes the composite segment to end at the point X. Transitional shock waves
are needed to complete the solution, as indicated.

When U, moves from the A regions to the C regions, there is a fundamental
change in the solution. In regions C1, C2, and C’2, a transitional rarefaction
wave is necessary to obtain a complete solution (see Figures 5.6, 6.1 and 6.2).
For Ug in a region where such a wave is used, the solution is constructed in the
following way. First, a 1-wave (rarefaction in C1, composite in C2, and shock in
C'2) connects UL to a point Tk on the transitional rarefaction curve. (This curve
coincides with a secondary bifurcation line.) From Ty, the 2-rarefaction curve
is traversed up to the umbilic point, where it changes into a 1-rarefaction curve.
This 1-rarefaction wave is then traversed to an intermediate state Ups, and a
2-wave curve joins Uy to the right state Ug. In the figures, the lines marked B
are secondary bifurcation lines; these lines form the boundary between 2-wave
curves originating on the 1-wave curve from U, and 2-wave curves originating
on the transitional rarefaction wave.

The solutions for Uy, located in regions A’ all share a common feature — the
1-wave curve from Uy, intersects the 2-inflection locus at a point I* (see Figures
6.3, 6.4 and 6.5). The 2-wave curve through I* creates a Ur boundary, since
the orientation of the 2-wave curves is reversed as the intermediate state on the
1-wave curve crosses I,. In other words, for an intermediate state Ups on one
side of this boundary curve, the 2-wave curve through Ups consists of a shock
wave in one direction and a rarefaction wave in the other, and these directions
are reversed as Upy moves across the boundary curve. The remainder of the

solutions in these regions is similar to the solutions in the regions A.
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218

J.M. HURLEY B.J. PLOHR

FIGURE 6.5. Viscous profile solu-
tion: Uy in region A'3.
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FIGURE 6.7. Viscous profile solu-
tion: Blowup of Figure 6.6.

FIGURE 6.6. Viscous profile solu-
tion: Uy in region Bl.
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As Up moves into region Bl, the local branch of the Hugoniot locus of
UL experiences a secondary bifurcation and a segment of overcompressive shock
waves opens up along this branch (Figure 6.6). Away from this overcompressive
segment, the solution in region Bl is the same as that in region A’l. As UL
moves closer to the boundary Hj, the endpoints of this overcompressive segment
approach each other and finally coincide when Uy, lies on H;. The box in Figure

6.6 indicates the area that is blown up in Figure 6.7.

7. Conclusion

It is clear that the admissibility criterion plays an important role in the so-
lutions of Riemann problems. Using the viscous profile criterion, we obtain
solutions that differ substantially from the Lax solutions. Except for Uy, in the
C regions, the Lax solution consists solely of combinations of two waves. In
the viscous profile solution, however, we must use transitional shock waves to
obtain existence throughout the plane, and in these areas, the solution consists
of three distinct waves. Thus a significant qualitative feature of the solution
(the number of wave groups) is sensitive to the admissibility criterion. One
must be careful, therefore, in using a system of conservation laws to model a

physical phenomenon, to adopt a criterion that accurately reflects the physics.

In this paper, we have only considered the case D = I. This simplifying
assumption also leads to behavior that is not generic. In particular, the transi-
tional region is degenerate when D is a multiple of the identity /. Further work
in this area will entail looking at the solutions for different choices of viscosity

matrix.

Appendix. In Ref. (2], formulae are derived for the bifurcation loci of general
systems of conservation laws. These formulae are based on the fundamental
wave manifold, which is a regularized solution set for the Rankine-Hugoniot

condition. When the wave manifold approach is applied to quadratic models,
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one obtains convenient explicit expressions for the bifurcation loci. For such
models, points in the wave manifold can be parameterized by (R, ,¢) € R X

R x (—m/2,m/2] in the following way: -

us = uclp) — Ble)n & 3 Reos, (7.1
v = v(p) + a(p)k £ -;—R sin ¢, (7.2)
s = Ao() + D(p)x, (7.3)

where the coefficient functions e, 8, D, Ac, e, and v, are defined below. The
various bifurcation loci are curves in (R, k, ¢)-space, which map to state space
via Egs. (7.1) and (7.2). For homogeneous quadratic models, in fact, these
curves comprise connected components in which ¢ is constant while R and &
lie along a line; the values of ¢ are roots of homogeneous polynomials in cos ¢
and siny. In this appendix, we summarize, without proof, the formulae used

in the present paper.

Before we present these formulae, we introduce some notation specific to
quadratic models. Consider a general (not necessarily homogeneous) quadratic

flux function in U,

PO = (o s o) (0
Associated with such a flux are the following functions (see Ref [3]):
a(p) = %{(ag + by) cos 2¢ + (b — ay) sin2¢ + ag — by}, (7.5)
Bly) = %{(bz + 1) cos 2¢ + (c2 = by) sin 2 + by — 1}, (7.6)
() := %{(dz + e1) cos2p + (e3 — dy)sin2¢ + d; — €}, (7.7
a(p) = %{(al — by) cos 2 + (by + az)sin 2¢p + a; + by}, (7.8)

B(ep) := 5{(1)1 — ¢3) cos 2¢ + (c1 + by) sin 2¢ + by + c3}, (7.9)
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F(p) := 5{(d1 — €3) cos 2¢ + (e1 + dy) sin2p + d; + €;}.

We also introduce the following functions:

Dlp) := a(p)B(¢) - Blp)aly),

H(p) = afp) cos p + B(p)sin p,

f(p) = é(p) cos ¢ + B(ip) sin g,
vU(p) := —a(p)sinp + B(p) cos ,
7(p) := ~&(p)sinp + B() cos .

In these terms, define

u(p) := —[1()B'(¢) = B(¢)Y (¢))/D,

ve(p) := =[a(®)7'(v) = (@) (#)]/D,

() 1= a(p)uc() + Ble)ve(p) + ().
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(7.10)

(7.11)

(7.12)
(7.13)
(7.14)
(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

It can be shown that: D and D are homogeneous quadratic functions of cos

and sin; u, fi, v, and & are homogeneous cubic functions of cos ¢ and sin ®;

and

N := —4D(p){aouc(®) + Bove() + Y0}

(7.20)

is independent of ¢, the coefficients ag, 8o, and 7o being the terms of a(p),

B(¥), and y(p) that are independent of ¢.

For the normal form (1.3), we have a; = a, by = b, ¢; = 1, ay = b, b, = 1,

and all other coefficients equal to zero. Therefore the functions (7.5)-(7.10)

simplify to become

1
a(p) = bcos2yp + 5(1 — a)sin2¢p,

B(p) = cos 2¢p — %bsin 20,

(7.21)

(7.22)
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1(p) =0, (7.23)

a(p) = %(a— 1) cos 2 + bsin2¢ + %(a+ 1), (7.24)
B(p) = %b cos 2¢ + sin2¢ + %b, (7.25)

Y(p) = 0. (7.26)

Also, D(¢) = a — b* — 1 is a constant, (uc(p), ve(#)) = (0,0), and n = 0.

The (right-sided) secondary bifurcation locus is obtained as follows. First
find the values of ¢ such that u(p) = 0; there are up to three roots of this ho-
mogeneous cubic function. Then each root corresponds to a branch of the sec-
ondary bifurcation locus, namely the line along which R and & satisfy D(p)k +

3v(#)R = 0. In the case of the normal form, the equation for ¢ is
sin® ¢ + 2bsin? p cos  + (a — 2) sinp cos® p — beos® =0, (7.27)
which has three distinct solutions in Case I
The inflection locus comprises points in the surface R = 0 for which x and
¢ satisfy
" 1 1
[2(e)D(¢) + 5r(P)D (P)ls = Zu(¢)n/D(p) = 0. (7.28)

For the normal form, this means that fi(¢) = 0 and & is arbitrary. The require-

ment on ¢ reduces to
cos (3 sin? ¢ + 3bsin ¢ cos ¢ + a cos cp) =0. (7.29)

This equation has only one solution, ¢ = 7/2, in Case II.

For points on the double sonic locus, R is arbitrary, D(p) = 0, and Eq.
(7.28) is satisfied. In the case of the normal form, x must be zero, and the

equation D(p) = 0 can be expressed as

sin? @ + bsin p cos p + (b2 — a) cos’ o = 0. (7.30)
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8%
B
w

There are two distinct solutions ¢ in Case II.

The (R, &, p)-coordinates of points on the (right-sided) hysteresis locus sat-

isfy the system of equations
—%ﬁ(v:)R + [A(¢)D(p) + %u(so)D’(w)]rC = %u(%)n/D(w =0,  (7.31)

—3D @R+ o)D) + SUD (Pl — Sulen/D(e) =0 (732

In the case of the normal form, Eqs.(7.31) and (7.32) reduce to

1 .
—5D(@P)R + i(¢)D(p)k = 0, (7.33)
1 :
—Z’D'(cp)R + (p)D(p)k = 0. (7.34)
For Eqgs. (7.33) and (7.34) to have a nontrivial solution, ¢ must satisfy
o " 1 ~, .
D(e)i(e) = 5D (p)ile) = 0; (7.35)

this equation can be written
2sin® ¢ + 3bsin? ¢ cos p + (6a — 3b%) sin p cos® ¢ + (3ab — 2b%) cos® p = 0. (7.36)

There is only one solution ¢ of this equation in Case II, and for this value for ¢,

there is a one-dimensional solution set of the linear equations (7.33) and (7.34).
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