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POLYNOMIAL FACTORIZATION*

Vilmar Trevisan ®

Abstract

It is perhaps surprising that an algorithm for polynomial factorization
is so sophisticated and complex, representing one of the major successes of
the Symbolic and Algebraic Computation. In this report we study some
details of the algorithms to perform this task, which has applications in
many areas of mathematics.

1 Introduction

Polynomials play a very important role in many areas such as Numerical, Real
and Complex Analysis, Number Theory, Approximation Theory and Control
Theory, just to mention a few areas in mathematics. In Symbolic Computation,
polynomials are important not only because algorithms based on polynomials
form a solid foundation of any symbolic computation system, but also because
they pose new challenging mathematical problems.

Consider, for example, the integral

/ dz
2+ —12°

The best known integration algorithms would first factor 2?4z —12as (z -
3)(z +4). Based on this factorization, the integrand is decomposed into simpler

expressions and the integral computed. Specifically,
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*This is the report of a talk given at the XII Brazilian School of Algebra, which took place
in Diamantina, in August, 1992
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The generalization of this calculus-homework technique results in an ex-
tremely complex mathematical problem, whose study lead to one of the major
successes of computer algebra, namely, the Risch integration algorithm.

Nontrivial integration problems would involve factorization of multivariate
polynomials over algebraic eztensions of the rational numbers. However, even
in these more general settings, the factorization is either reduced to or is heavily
dependent on factoring univariate polynomials. Other applications of polyno-
mial factorization can be found in the areas of coding theory, theory of control,

and Galois theory, just to cite a few.

1.1 Previous Work

The problem of factoring polynomials has a prominent history that D. Knuth
[9] and E. Kaltofen [6] trace back to Newton’s Arithmetica Universalis (1707),
where an algorithm to find linear and quadratic factors of a polynomial with
integer coefficients is presented. This method was extended by the astronomer
F. Schubert in 1793 who devised an algorithm to find all the factors of an
integral polynomial of degree n. L. Kronecker rediscovered the method in 1882
and also gave algorithms for factoring polynomials with two or more variables,
whose ideas are still used for factorization over some domains.

The basic idea of the so called Kronecker algorithm is the evaluation-interpo-
lation technique. Recall that a polynomial of degree n is completely determined
by its values at n + 1 different points. A factor h(z) of degree d is deter-
mined by its values at d 4 1 points, say h(z;),...,h(z441). Also the values of
each h(z;) must be integer divisors of f(z;). So the integers f(z;) are factor-
ized and we try to interpolate from all possible combinations of the divisors of
f(@1),..., f(zay1). If we find a factor we divide it out and change the f(=:)
appropriately. The irreducibility of the factors is ensured by first locating the
degree 1 factors, then degree 2 and so on.

This algorithm turned out to be very inefficient. It solves the factorization
of polynomials by factoring integers, a problem that can be much harder. Major

advances in computer algebra during the last two decades allow the factoriza-
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f(z) € Z[z] f(z) = fi(z) - fr(=)
| mod p T

fp(z)modp — fp(x) = f,} (z)--- f:(m) modp —  fo(z) = fi(z)--- f:(a:) mod gq
Figure 1: Factorization over the integers

tion of polynomials encountered in practice to be performed very quickly. For
example a degree 40 polynomial shown in [16] takes only seconds to factor.

A landmark in this direction is a very efficient algorithm for factoring poly-
nomials over Z,, the field of integers modulo a prime p, introduced in 1967 by E.
Berlekamp [1]. The efficiency of the algorithm suggested factoring an integral
polynomial by first factoring modulo small primes and then reconstructing the
integral factorization by some means such as the Chinese Remainder Theorem.

This technique, known as the modular method has been used to solve a large
class of problems in computer algebra. Examples include the computation of
polynomial greatest common divisors, big number arithmetic, partial fraction
decomposition and a whole class of matrix calculations, such as determinants,
inverses, and solution of system of linear equations. The Chinese Remainder
Theorem, however, does not apply to the polynomial factorization problem.

Another milestone in the factoring process was the 1969 paper by H. Zassen-
hauss [18]. Based on a result of 1918 called “Hensel’s Lemma”, Zassenhaus
shows how to “lift” a factorization from modulo p* to modulo p**. The integer-
modular-integer relationship was then complete. After the integral polynomial
f is factored over Z,, the factorization modulo p is lifted to a factorization
modulo g, g exceeding an estimate on the size of the largest coefficient of any
factor of f. From this factorization modulo g, the true factorization over the
integers can be recovered via combinations of one or more mod g factors.

The diagram of figure 1 illustrates pictorially the structure of modern algo-
rithms for factoring polynomials over the integers.

D. Musser and P. Wang & L. Rothschild extended the integer-modular re-

lationship to factorization of multivariate polynomials over the integers. The
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extension to factorization over algebraic number fields was made by P. Wang
in 1976. In 1982, A. Lenstra, H. Lenstra & Lovaz [10] introduced a polynomial
time complexity algorithm, named LLL, for recovering the true factorization
over the integers given the lifted univariate factorization. This shows that uni-
variate polynomial factorization can be done in polynomial time. Finally, a
result by E. Kaltofen [7], allows the reduction of multivariate to univariate in-
tegral polynomial factorization to be done in polynomial time. For a complete
survey on polynomial factorization, the papers [6, 8] are recommended.

We present here some aspects of univariate factorization over finite fields

and refer to [16] for the factorization over the integers.

2 Factoring over Finite Fields
We consider here the factorization of a polynomial
f(z) =anz” + an12™ '+ 4 a1z +ap, an #0

with coefficient a; € GF(q), the Galois field of g = p* elements, for p a prime
number and k a positive integer, into its irreducible factors in GF(q). We
assume the polynomial f is monic and squarefree, that is its leading coefficient
is 1 and that it does not have repeated factors.

Finally, we present the well known Berlekamp algorithm, which is the pro-
totype algorithm for factorization over small finite fields. In section 4, we in-
troduce a result that enables us to reduce the complexity of factorizations over
extensions of finite fields. We then present the Cantor-Zassenhaus algorithm
that is more efficient than Berlekamp’s for larger values of p.

In section 6, we discuss an efficient implementation of the Distinct Degree

Factorization, a partial factorization that, in principle, speeds up all algorithms.

3 Overview of Berlekamp’s Algorithm

Berlekamp’s algorithm [1] is a major milestone in the study of the polynomial

factoring problem, and a brief review is pertinent here. Qur presentation is for
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GF(p), even though the procedure is also valid for GF(p*).
Assuming that f(z) is monic and squarefree in GF(p)[z], where p is a prime,

Berlekamp’s algorithm was devised based on the following observations:

1. Ther irreducible factors fi(z), f2(z), -, fr(z) of f(z) are relatively prime
in GF(p)[z]. Given a set of residues s; in GF(p) and using the Chinese
Remainder Theorem, there is a unique polynomial v(z) € GF(p)[z], such
that:

(a) deg(v) < deg(ITi-, fi) = deg(f)
(b) wv(z) =s;mod fi(z), 1 <i < (1)

This implies that given v(z) and the residues s;, we can compute the
factors f;(z) by taking gcds
fi(=z) = ged(v(e) - s, f(=)).
2. Applying the result given by
Lemma 3.1 If g(z) is a polynomial in GF(q)[z], then (g(z))? = g(=7).
to equation (1) we have
v(z)P = sf = 5; = v(z) mod f(x).

Because of the above Lemma and because f;(z)|f(z) it is sufficient to find

a polynomial v(z) such that
v(zP) — v(z) = 0 mod f(z).
3. In order to find the polynomials v(z) as above, we can use matrix opera-

tions. Consider the matrix @ (see section 6). Then the solutions v(z) of

the equation above can be viewed as solutions of
ViQ-1=0 (2)

where V is the vector of coefficients of v(z). In other words, the problem

reduces to finding the null space of the system of equations (2).
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4. The number r of solutions v(z) of (2) is the number of factors of f(z).

Based on these observations, we can factor a monic squarefree polynomial

f(z) according to

Algorithm 3.1 BER
Step 1. Fill the matriz Q
Step 2. Find the null space of V|Q — I] =0
Step 3. Compute w(z) = ged(v(z) — s, f(z)) for0< s <p
and for some v(z) a solution of V[Q — I] = 0.
Step 4. Step 8 produces at least one non-trivial factor of
f(z). If the number of factors is < r, then repeat

Step 8 with a different v(z), otherwise terminate.

This algorithm is very efficient for small values of p. Its worst case complex-

ity is
O(n® + rpn?) (3)
operations in GF(p) where r is the number of irreducible factors and n is the
degree of f(z) [5, 9]. The expression above is an upper bound for the running
time of Berlekamp’s algorithm and it shows that for larger values of p this is

not a good approach to factor f(z) over GF(p).

4 Factorization over Large Finite Fields

Algorithms like Berlekamp’s where we try all possible values of GF(q), are called
deterministic. Notice that, necessarily, the running time of such a procedure is
proportional to g, which is not desirable for large q.

For factoring polynomials over large finite fields, Berlekamp (2] devised a
different algorithm. It aides the factorization problem by finding roots of a
polynomial with coefficients in the prime field. The best running time algorithm
(6] is due to R. Moenk and it is in O(n® + n?logp + nlogp) if p — 1 is highly
composite. The number of polynomial gcd’s required in Berlekamp’s algorithm

is proportional to g. When g is large it becomes advantageous to find the s’s
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such that ged(f(z),vi(z) — s) # 1. This can be done by computing the residues
modulo f(z) of 1,v(z),v}(z),. .. until a power of v;(z) is a linear combination
of the previous powers. It can be shown that 1,v;(z),v¥(z), ..., v}(z) are always

linearly dependent modulo f(z). This linear combination can be written as a

polynomial G;(vi(z)) = T}, gjvj(z). It can be shown [18] that

Gi(vi(e)) = [[(vi(=) - ), (4)

with ged(f(z), v; — ) nontrivial.

Hence G;(vi(z)) splits and its roots are the desired s values. Thus the
problem of finding factors of f is reduced to that of finding the roots of G;(v;(z))
in GF(g), with ¢ = p*. The roots of a polynomial G(z) € GF(q)[z] can be
computed using an algorithm of Berlekamp [2]. Three different approaches
apply depending on the type of the field: for ¢ = p large, g large but p small,
or otherwise.

Algorithms of this nature are said to be probabilistic, since the elements are
chosen at random and, after a suitable transformation to increasing probability,
are tested for roots.

The Cantor-Zassenhauss algorithm, discussed in detail below, can be ap-
plied to the factorization problem in any finite field. The time complexity is
polynomial in n, the degree of the polynomial, and log g, q being the cardi-
nality of the field, which makes the procedure more efficient than Berlekamp’s.
The drawback, however, is that these algorithms have to perform arithmetic
intensively in the field, which is quite costly if it is an extension of Zy.

The most common factoring problem is when a polynomial f(z) with coef-
ficients in Z, is to be factored over an extension GF(p*). For this case we can
speed up the Cantor-Zassenhaus algorithm by first factoring f over Z,. There
still remains the task of factoring over GF(p*) the factors of f that are irre-
ducible in Z,[z]. The following result gives, without any cost, the number of

irreducible factors and its respective degrees in GF(p*).

Theorem 4.1 Let f be an irreducible polynomial of degree n in a finite field
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GF(q). Ifk is natural number and d = gcd(n, k) then f has d irreducible factors
over GF(q*) all of degree n/d. '

Proof. The order of the irreducible polynomial f is the order of any root of f
in the multiplicative group GF*(g"). Recall that GF(q") is the splitting field of
f hence it contains all roots of f. Let g be an irreducible factor of fin GF(g*).
If e is the order of f, then the order of g is also e. The multiplicative order of
q considered as an element of the ring R, the integers modulo e is n and the
degree of g is equal to the multiplicative order of ¢* in R (see [11]). The powers
¢, =0,1,..., considered modulo e, form a cyclic group of order n. Thus the
order of ¢* is n/d and so is the degree of g.

Observe that when n and k are relatively prime, the factor is already irre-
ducible over the extension and there is no need to further break it. If the factor
is reducible in GF(p*) we proceed with the Cantor-Zassenhaus algorithm. The
arithmetic will be done now in the extension field. This theorem is bound to
speed up the factorization for two reasons. F irstly it avoids as much as possible

the arithmetic in the field GF(g*). Secondly, it deals with smaller problems.

5 Overview of Cantor-Zassenhaus Algorithm

In 1981, Cantor and Zassenhaus [4] introduced a new probabilistic factorization
algorithm whose expected running time is polynomial in n, the degree of f, and
log ¢, g being the cardinality of the field GF(q), making it suitable for large
values of g. We give here a brief outline.

Let g = p* be the size of the finite field GF(q), with p a prime and k a

positive integer. The polynomial
f(z)=anz" + apy2™ ' + oo f a2 + ao,

with the coefficients a; € GF(q), is to be factored into irreducible polynomials
over GF(q). We can use the Cantor-Zassenhaus [4] algorithm to carry out the

factorization.
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Algorithm 5.1 : CZ
CZ-1. Make sure that f is squarefree and is monic.
CZ-2. Factor f into a product

f(z) = I] hi(), (5)

where each hi(z) contains only irreducible
factors of degree 1
CZ-3. Factor each hi(z) into irreducible factors.

Step CZ-1 is the same as in the Berlekamp’s algorithm. The partial fac-
torization of Step CZ-2 is called the distinct degree factorization, and will be
discussed in detail presently. Many ways to factor hi(z) are discussed in [15].
Below we present the Cantor-Zassenhaus original technique. We call Step CZ-3

uniform degree factorization .

6 Distinct Degree Factorization

A basic algorithm to perform CZ-2 is based on the following

Lemma 6.1 The polynomial %™ — z is the product of all distinct monic irre-

ducible polynomials in GF(q)[z] with a degree dividing m.

and seems to be known to S. Schwarz as early as 1956.

Factorization (5) will be achieved using the Distinct Degree Factorization
(DDF) algorithm below. Most h; will be 1, but the factorization will be non-
trivial unless all factors of f have the same degree. In any case, DDF reveals

the number and the degrees of the irreducible factors of I

Algorithm 6.1 : DDF
DDF-1. Set i« 1, ro(z) —
DDF-2. Set ri(z) « (ri_1(z))? mod f(z)
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DDF-3. Set hi(z) « ged(f(z),r:i(z) — z)
IFhi £ 1, set f(z) — f(z)/hi(a)
If f(z) = 1 terminate

DDF-4. Set 1«1+ 1.
If 21 < deg(f(z))go to DDF-2,

else set haeg(s) — f(z) and terminate.

The costliest step is, clearly, DDF-2. The usual way to raise r;(z) to a large
power is to use the binary method [9]. The number of multiplications modulo
f(z) is O(log q)'. Based on a suggestion by Berlekamp [2] we recommend the
following different approach.

Suppose 7;_1(z) = by_12" "+ - -+ b1z + by is a polynomial of GF(q)[z], then,
from Lemma 3.1, ri(z) = (ri—1(z))? = bp_129™1) 4 ... 4 b, 29 + by. Therefore, if

we pre-compute the values
Qi(z) = 2 mod f(z), fori =0,...,n — 1. (6)
and store Q; as the ith row of the n x n matrix @, we have

ri(z) = risi(z) - Q. (7)

Once we have formed the matrix @, equation (7) provides a fast way to
compute r; from 7;_;. If we have to compute various r;(z) mod f(z), where
f(z) does not change (when f is irreducible for example), the total savings
more than justify these pre-computation steps. In [15] can be found details on
how to fill the matrix Q.

An example.Consider the polynomial

F3(z) = 904050 = + 1479450 z® — 2336817 =° — 3403088 z*
+2021847 z* 4 1477766 z* — 1006566 = + 170694,

to be factored modulo p = g = 11.

!Here and throughout this report log(z) represents log,(z)
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Notice that F3 is squarefree over Z;;. In this case, n(logg+2n — 5) +2 =
96,whereas ng = 77. The shift-add method [16] is advantageous to fill the

matrix Q. The resulting @ matrix is

i+ Gl o0t deg
-5 -3 -5 2 3 3 -1
-1 -3 -2 5 2 -1 -1
Q=|"1 -4 0 3 2 —4 -5
-1 -5 0 -4 5 —4 2
-5 2 4 -2 -5 -3 4

. 3 3 0 4 4 3 1|

Notice that
Fi(z) = f(z) = 42" + 52° + «° + 42* 4 32® + 42? — 4 mod 11.

We now go through algorithm NDDF. Step NNDF-1 initializes i to 1 and 7(z) to
the second row of @, which means r(z) = —5z° — 32° — 5z +22° + 322+ 3z — 1 .
Now NDDF-2 returns hy(z) = ged(r(z) — z, F3(z)) = z* + 2 + 3z + 5, while
NDDF-3 sets f = 4z*+2®—2?+42—3. NDDF-4 sets i = 2 and r(z) = . Then,
step NDDF-2 sets h, = 42* + 23 — 22 + 4z — 3, and the algorithm terminates.

There are 3 irreducible factors of degree 1, whose product is
hy =2®+ 22+ 3z +5,
and 2 irreducible factors of degree 2, whose product is
hy =4z* + 2% — 2% + 4z — 3
7 Uniform Degree Factorization

After distinct degree factorization, we have reduced the problem of factoring

the general polynomial
f(z) =anz™ + an_12™ '+ -+ + ayz + aq,
over GF(q) to the problem of factoring a monic polynomial

h(z) = h'-(:c) =gz + d;-ﬂ:‘_l + -+ diz + do, (8)
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which is a product of irreducible factors of the same degree i. Factoring this
polynomial is trivial if [ = 3.

A polynomial ¢(z) € GF(q)[z] is a separating polynomial for h(z) if 0 <
deg(gcd(t, k) < 1. The uniform degree factorization problem, therefore, has
been reduced to finding separating polynomials for h(z). Next we will describe
the Cantor-Zassenhaus method to solve this problem. Additional methods for

the uniform degree factorization can be found in [15, 16].

Algorithm 7.1 : CZSEP
CZSEP-1. Choose a random polynomial t(z) in GF(q)[z] of degree < 2i—1
CZSEP-2. Set t(z) — (t(z)) " mod h(z)
CZSEP-3. Compute g(z) = ged(h(z),t(z) — 1)

As an example, take h, = 4z + 2% — 22 4 4z — 3 from the example of section
6. We know it is a product of two irreducible factors of degree 2 over Zy;.
Taking {(z) = z + 1, at random. In CZSEP-2 t(z) is set to ¢(z)® mod hy(z) =
32 — 32% — z + 1. Now ged(hy(z), t(z) — 1) = 2 — z — 4. We conclude that,

modulo 11,
4:1:4-1—:03—1:2—{—43—3:4(m2—z—4)(z2+4z+5).
An example.Consider the polynomial
fl®)=92"+32°+ 142" —162°+52° — 112* —32° — 222 — 132 — 13,

with coefficients in Zs7, to be factored over the field K — GF(37®). Since
ged(f, f') = 1, we conclude that f is squarefree in K. Firstly, our algorithm
factors f over Zz;. For this, after a monic transformation, the DDF returns the

partial factorization

f(z) = ha(z) ha(z) hy(z)
=(2+10) (2*+152° +162*~162+7) (262 -13),
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where h; and h4 are irreducible and h; is product of 2 irreducible factors of
degree 2. To further break h;, we use the Cantor-Zassenhaus separator and
obtain

hy(z) = (2® — 12z — 3) (z* — 10 = + 10).

Using Theorem 4.1, we see that this is the factorization into irreducible
factors over K.
For the factorization of integral polynomials, that is, the lifting of modular

factors and the recovery of integral factors, we refer to [16].
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