

γ -HYPERELLIPTICITY AND WEIGHTS OF WEIERSTRASS POINTS

Fernando Torres

In this note, M is a compact Riemann surface (or a projective, irreducible non-singular algebraic curve defined over an algebraically closed field of characteristic zero) of genus g and for a point $P \in M$, m_1, \ldots, m_g are the first g positive terms of non-gaps of the Weierstrass semi-group H(P) at P and w(P) is the weight of H(P).

The surface M is called γ -hyperelliptic if it is a double covering of a compact Riemann surface of genus γ . If $\gamma = 0$, M is simply called hyperelliptic.

The theorems we present here are part of our Ph.D. dissertation and these are r elated to the following result about hyperelliptics:

If $g \geq 2$, the following are equivalent:

- (.) M is hyperelliptic,
- $(H_1) \exists P \in M \text{ such that } m_1 = 2,$
- $(H_2) \exists P \in M \text{ such that } w(P) = \binom{g}{2}.$

With respect to (H_1) , we have:

Theorem 1. If $g \ge 6\gamma + 4$, the following are equivalent:

- (i) M is γ -hyperelliptic,
- (ii) $\exists P \in M$ such that H(P) is a γ -hyperelliptic semigroup.

By a γ -hyperelliptic semi-group H we mean a numerical sub-semigroup of (N, +) such that:

. The first γ positive terms m_1, \ldots, m_{γ} are even,

$$m_{\gamma} = 4\gamma$$

$$4\gamma + 2 \in H$$
.

Theorem 1 follows from a Castelnuevo's bound and from arithmetical properties of γ -hyperelliptic semigroups. Also, the implication (ii) \rightarrow (i) of this theorem, is a stronger version of a result of T. Kato [3].

With respect to (H_2) , we have:

Theorem 2. There exists a polynomial function $F(\gamma)$ such that if $g \geq F(\gamma)$ and $P \in M$, the following are equivalent:

(i) H(P) is t-hyperelliptic for some t between 1 and γ ,

(ii)
$$\sum_{i=1}^g m_i \leq g^2 + (2\gamma+1)g - \gamma(2\gamma+1)$$

Then, from

$$w(P)=rac{3g^2+g}{2}-\sum_{i=1}^g m_i$$

and from the previous theorems, we have an analogue of (H2):

Theorem 3. There exists a polynomial function $F(\gamma)$ such that if $g \geq F(\gamma)$, the following are equivalent:

(i) M is γ -hyperelliptic,

(ii)
$$\exists P \in M$$
 such that $\binom{g-2\gamma}{2} \leq w(P) < \binom{g-2\gamma+2}{2}$.

Part (ii) \rightarrow (i) of theorem 3 was obtained by Kato [2] for the cases $\gamma = 1$ and for $w(P) = \binom{g-2}{2} + 2$. The cases $\gamma = 1, 2$ of the theorem, were proved by Garcia [1].

γ-HYPERELLIPTICITY AND WEIGHTS OF WEIERSTRASS POINTS 183

References

- [1] Garcia, A., Weights of Weierstrass points in double coverings of curves of genus one or two, Manuscripta Math. 55, 419 432 (1986).
- [2] Kato, T., Non hyperelliptic Weierstrass points of maximal weight, Math.

 Annalen 239, 141 147 (1979).
- [3] Kato, T., On criteria of γ -hyperellipticity, Kodai Math. J. 2, 275 285 (1979).

Instituto de Matemática Pura e Aplicada Estrada Dona Castorina, 110 22460-320 - Rio de Janeiro - RJ e-mail:feto@impa.br.